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ABSTRACT: Footwear production is subject to the variability inherent in any process, and
producers often need to apply tools that allow them to make the right decisions. This
work documents the process to optimize the buffer allocation in a shoe manufacturing
line minimizing the cycle time in the system, applying a metamodeling approach. It
was found that the Front sewing operation, and the interaction between the Lining
sewing operation and the assembly operation have the greatest effect on the flow
time of the product within the process; the optimum assignment of spaces follows a
non-uniform arrangement on the line saturating the slower stations; the cycle time
follows a non-linear behavior vs. the total number of spaces (N ) in the line. For a certain
value ofN , the cycle time reaches a minimum value.

RESUMEN: La producción de calzado está sujeta a la variabilidad inherente en cualquier
proceso y los fabricantes necesitan aplicar herramientas que les permitan tomar
decisiones certeras. En este trabajo se documenta el proceso para optimizar la
asignación del buffer en una línea de producción de zapatos, minimizando el tiempo
de ciclo en el Sistema, aplicando un enfoque de metamodelado. Se encontró que el
cosido del frente y la interacción entre la operación del cosido del forro y la operación
de ensamble tienen el mayor efecto sobre el tiempo de ciclo del producto dentro del
proceso, la asignación óptima de espacios consiste en un acomodo desigual en la línea
saturando las estaciones más lentas y el tiempo de ciclo sigue un comportamiento no
lineal vs. la cantidad total de espacios disponibles (N ) en la línea. Para un valor de N ,
el tiempo de ciclo alcanza un valor mínimo.

1. Introduction

The motivation of this study is the design of a shoe
production line that is about to start production operations,
considering the registered data and the estimated times as

well as the estimated production. The company is located
in the city of León, State of Guanajuato, Mexico, a city
famous for its flourishing leather and footwear industry
[1]. Like any process, the line will be subject to random
events that will generate variability in the flow.

The objective of the company is to keep the cycle time at a
low level and also keep the quantity of work in process in
front of each operation under control; however, given that
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restricting the level of work-in-process inventory in any
productive system has as the undesirable effect of limiting
the quantity of finished product obtained, the assignment
of spaces (in pairs of shoes) must be optimum; this is
the Buffer Allocation Problem, a well-known optimization
problem.

Regarding the management, the administrators must
make decisions about the resources required to produce
a particular model, which gives rise to a critical question:
How should this type of industry be managed? To
answer that question, decision-makers need to use tools
and/or models to represent the system to analyze the
different options available in the design and management
of a production line. A model makes it possible for
an administrator to understand how each one of the
system’s variables relates to each other and minimize
the associated uncertainty by proposing changes in the
operating conditions subject to randomness [2, 3].

2. Description of the process

The line in question consists of 7 operations and produces a
specific model of shoe. In the first operation, the parts that
form the shoe lining are joined together by seams (Lining
Sewing). On leaving this process, the parts that form the
heel of the shoe (Heel Sewing) are joined together. In
parallel, the front part of the shoe is joined to the heel by a
seam (Front Sewing). In the stage known as assembly, the
pieces are put together to give shape to the shoe. During
the next phase, the seam created during assembly is folded
(Seam folding), then glue is applied to the lining, which
is turned over to be glued to the leather (application of
glue and sticking), and it is finished by burning off surplus
threads (Flaming). The pairs are put together and then
sent to another section of the factory (Figure 1). We must
take into account that the stations have different operating
times (unpaced).

2.1 Buffer Allocation Problem

Companies face the problem of controlling the quantity of
work in process accumulated in the production lines, so
the size of the queue (buffer) in front of each station (B1,
B2, · · · , Bn) needs to be limited, which is a non-trivial
decision for managers, administrators, and supervisors.

By limiting the quantity of work in process, there is a
reduction in the problems of accumulation and lack of
material at the stations resulting from the differences
in processing times between consecutive stations or by
machine failures [4]. The cycle time (CT ), Throughput
(Th), and the Work in process (WIP ) are common
performance measurements and are expressed as a
function of (B1, B2, · · · , Bn). The BAP is posed as an

optimization model and is an NP-Hard problem. At the
present time, variants are recognized in accordance with
the performance measure used. The first is [5]:

Maximize the Th of the line:

Th (B1, B2, · · ·Bn) (1)

Subject to:

N =
n−1∑
i=1

Bi (2)

BL
i ≤ Bi ≤ BU

i and integers (3)

The value of Th must be maximized (1), the total number
of spaces (N ) all along the line is restricted (2), and there
are upper (BU

i )and lower (BL
i ) bounds of number of

spaces at each station (3). The second, which is known as
a dual problem, is:

Minimize the number of spaces on the line:

N =
n−1∑
i=1

Bi (4)

Subject to:
(B1, B2, · · ·Bn) ≥ ThT (5)

BL
i ≤ Bi ≤ BU

i and integers (6)

It is necessary to minimize the total number of assigned
spaces (4), constraint (5) specifies that the production
must comply with a minimum requirement (ThT ), and (6)
limits the number of spaces at each station. In this paper,
the average cycle time on the production line is used as
the objective function [6, 7]:

Minimize the Flowtime:

Cycle T ime (B1, B2, · · ·Bn) (7)

Subject to:
(B1, B2, · · ·Bn) ≥ ThT (8)

N =
n−1∑
i=1

Bi (9)

BL
i ≤ Bi ≤ BU

i and integers (10)

Where (7) is the cycle time that has to be minimized;
constraint (8) establishes that the production must be
higher than or equal to a target while there is also a limited
total number of spaces given by (9) and the number of
spaces at each station is bounded (10).

Equations 1, 4, and 7 do not have a closed-form
expression, so we resorted to a simulation model and a
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Figure 1 Simplified diagram of shoe production

fractional experimental design to obtain the equations as
a function of Bi’s; these expressions are formally known
as metamodels because they were obtained from the
analysis of the simulation of the process being analyzed
[8, 9]. A regression model might be linear:

y = a0 + a1x1 + a2x2 + · · ·+ anxn + ξ (11)

If the statistical analysis indicates that themodel (11) is not
suitable for predicting the behavior of the system, then a
higher-order model is recommended:

y = a0+
n∑

i=1

aixi+
n∑

i=1

n∑
j=1

aijxixj+
n∑

i=1

aiix
2
ii+ξ j ̸= i

(12)
In expressions (11) and (12), coefficient a0 is the origin
ordinate, coefficient ai is the first-order effect of variable
i; coefficient aij is the effect arising from the interaction
between factors i and j; coefficient aii is the quadratic
effect of factor i, and term ξ is the noise or effect resulting
from factors that are not considered in the model.

2.2 Fractional experimental designs

In a complete factorial experimental design, K factors
with 2 levels each and their respective combinations (2K )
are analyzed. This is mainly used for determining the
significant variables as well as the interactions between
them. The results are expressed in a regression model,
like (11) or (12).

A situation to consider is that as the number of factors
increases, the number of experiments to be done grows
explosively until it is impractical to perform all the
experiments with all the combinations because of the
time consumption involved. The alternative is resorting to
fractional factorial to determine the main variables and
their significant interactions, mainly when we suspect
that there are lower-order interactions that could have an
effect on the behavior of the system [10].

3. Previous work

The BAP has increasingly attracted attention as the
recommendations about limiting the amount of work in
process, derived from the Lean approach, for example,
have motivated administrators to understand better how
the flow of the entities on a production line behaves when
the size of a queue is restricted. Maximizing the Th is
the most studied variant with results reported in serial
systems up to 100 reliable stations as well as in systems
with breakdowns or failures [4, 6]; practical and real cases
reported are from the automotive industry [11, 12].

Other performance measurements are also used:
maximize the profit in a serial system with failures and
with different service times [13]; minimizing the total
number of spaces (variant two of the BAP) [14]; minimizing
the assignment cost [15, 16] and minimizing inventory cost
of assembly systems with failures [17]. Minimizing Cycle
time is only reported for unreliable serial lines [7].

Several approaches can be found for obtaining the
metamodels of performance indicators: neural networks
applied to asynchronous lines in series and with failures
[18]; 2K experimental design combined with simulation
[19]; fractional factorial designs [20] to obtain the
production rate of a line with assembly and failures;
response surfacemethods to obtain amodel for production
in an unreliable system [21]. A general conclusion is that
models with interactions between buffers predict Th, TC ,
orWIP more accurately than linear models.

In a comparison of regression analysis and artificial
neural networks for modeling the production rate, neural
networks showed a better fit of the data, although only the
value of R2 is used as a performance criterion [22].

To finish this review, it is important to mention that
the BAP study was used to obtain properties of the
production lines: the value of Th in reliable systems in
series with equal service times follows a behavior of an
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Table 1 Data of the process

Station
Service
time

(seconds)

Std.
Dev.

Coefficient
of

variation

Probability
distribution

Lining Sewing 31.59 3.07 0.0097

Exponential

Front Sewing 22.02 2.29 0.1039
Heel Sewing 19.81 1.51 0.0762
Assembly 55.04 3.39 0.0615

Seam folding 18.93 1.19 0.0628
Application of glue and sticking 29.28 1.27 0.0433

Flaming 28.62 1.52 0.05301

inverted bowl in accordance with the number of stations
and the number of assigned spaces; theWIP is gradually
increased in accordance with the distribution of spaces
on a line with N stations [23]. It was also found that the
optimal buffer allocation is one in which more space is
allocated to stations at the end of the production line with
equal service times [24]; on the other hand, in assembly
lines with non-balanced service times, the results indicate
some benefits of asymmetrical buffer patterns [25]. The
aforementioned is relevant since it will allow evaluating
the solutions obtained in the Results section.

4. Materials and method

The average service time at each station was obtained
from a sample [1]. The total data in each one was 20.
Then the mean, standard deviation, and coefficient of
variation were obtained (Table 1). From the coefficient
of variation, the operations were observed to have a low
natural variability; the sample does not consider failures
at the stations that interrupt the output of shoes and make
a piece stay longer in the system: the absence of workers
or failures of the sewing machines are the failures that
are more often observed on this line; however, there are
no data at the moment; in view of the above, we shall, as
an approximation to a real process operation, assume a
moderate variability with a coefficient of variation equal
to 1 value that corresponds to an exponential probability
distribution [26].

A simulation model of the production line was constructed
using the Arena package, designed for the analysis of
systems with a discrete-event approach. We assume that
pieces are always available in the input operations (front
sewing and lining sewing).

The blocking rule used is the one known as blocking
after service; in other words, the piece does not leave the
station until there is a place in the next queue [27]. There
are 4 workers in the assembly operation, while there are
two workers assigned to the rest of the operations. All the

stations have a storage area for the work in process with
finite capacity given in pairs of shoes (Table 2); there are 8
storage areas in total that shall be called “buffers”.

It is worth mentioning that in the “Assembly” station,
the total buffers are divided into two, half for the flow of
pieces that arrive from “Heel Sewing ” and the other half
are assigned for the entities that arrive from the “Front
Sewing” station. All buffer levels are summarized in Table
2 and correspond to the space available in front of the
stations.

Table 2 Buffer, assigned variable, and levels

Station Symbol Low level High level
Heel Sewing x1 2 10
Seam folding x2 2 10
Application of glue
and sticking

x3 2 8

Flaming x4 2 6
Lining Sewing x5 2 6
Front Sewing x6 2 12
Assembly 1(Heel
sewing operation)

x7 2 6

Assembly 2(Front
sewing operation)

x8 2 6

A working day consisting of two 8-hour shifts each or 960
minutes is simulated, rejecting the first hour of simulation,
which corresponds to the heating period. The recorded
performance measurements were Cycle Time and Th; the
WIP on the line was obtained by applying Little’s Law:
WIPS = Th× CTS .

We resorted to an experimental design for constructing
a metamodel of the cycle time and Th with the size of
the buffers as variables; if running a complete factorial
design, 256 experimental runs plus the central points
for collecting information about the curvature of the
region should be performed. Given that the number of
experiments would require a huge amount of time, we
resort to a fractional experimental design for the analysis.
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Table 3 ANOVA of the cycle time

Source SS d.f. MS F value p-value
Model 41.60 8 5.20 50.91 < 0.0001 significant
x1 0.0053 1 0.0053 0.0517 0.8248
x2 0.0377 1 0.0377 0.3687 0.5573
x3 0.1073 1 0.1073 1.05 0.3295
x4 0.4218 1 0.4218 4.13 0.0695
x5 4.89 1 4.89 47.91 < 0.0001
x6 33.56 1 33.56 328.54 < 0.0001
x7 0.0526 1 0.0526 0.5145 0.4896
x8 2.64 1 2.64 25.83 0.0005

Residual 1.02 10 0.1021
Lack of fit 0.4700 5 0.0940 0.8524 0.5674 Non-significant
Pure error 0.5514 5 0.1103
Cor Total 42.62 18

Table 4 ANOVA of the Th of the production line

Source SS d.f. MS F value p-value
Model 91443.82 8 11,430.48 34.13 < 0.0001 Significant
x1 125.13 1 125.13 0.3737 0.5547
x2 128.33 1 128.33 0.3832 0.5497
x3 185.25 1 185.25 0.5532 0.4741
x4 182.21 1 182.21 0.5441 0.4777
x5 66,817.27 1 66,817.27 199.52 < 0.0001
x6 15.97 1 15.97 0.0477 0.8315
x7 55.63 1 55.63 0.1661 0.6922
x8 26.19 1 26.19 0.0782 0.7854

Residual 3,348.92 10 334.89
Lack of fit 1,621.42 5 324.28 0.9386 0.5269 Non-significant
Pure error 1,727.50 5 345.50
Cor Total 94,792.74 18

The study is divided into two phases: exploration and
characterization.

5. Results and discussion

5.1 Exploratory phase

This phase aims to obtain preliminary information about
the behavior of the cycle time and production as a function
of the quantity of work in process permitted at each
buffer. A fractional experimental design 28-4 with 19 runs
was used; the levels are summarized in Table 2. This
design does not consider interactions between factors and
generates a linear model. The design and the calculations
were executed with the support of Design Expert 12
package.

The ANOVA table for the cycle time (Table 3) shows
that the linear model is significant for the cycle time;
in other words, it contains the factors that explain the

behavior of the cycle time.

In the case of the cycle time, the buffers corresponding to
front sewing (x6) and lining sewing (x5) are the ones that
concentrate the highest effect, followed by the Assembly
buffer 2(x8). The curvature is not significant; therefore,
the linear model would adequately explain the behavior
in the experimentation region. The correlation coefficient
indicates that the linear model explains 97.6% of the
variability of the process.

In the case of production, the results in table 4 indicate
that the buffer corresponding to lining sewing (x5) is the
variable that controls the production of the entire line. This
model explains 96.47% of the variability of the process.

Both for the cycle time and for the production of the
line, it is only viable with the current design to obtain the
x1x2, x1x3, x1x4, x2x3, and x2x4 interactions while the
remaining 19 are confusing or masked. In earlier papers,
interactions between the buffers have been found to have
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Table 5 Regression statistics

Response Std. Dev. Predicted mean C.V(%) R2 R2 adjust R2 pred Adeq. Precision
Cycle time 0.1986 5.54 3.58 0.9862 0.9837 0.9799 62.11

Th 13.09 2,907.36 0.454 0.9732 0.9662 0.9529 28.37

Table 6 ANOVA for the cycle time with significant interactions

Source SS Df MS F value p-value
Block 4.43 2 2.23
Model 174.64 11 15.88 402.69 < 0.0001 significant
x1 0.0766 1 0.0766 1.94 0.1682
x2 0.0811 1 0.0811 2.06 0.1566
x3 0.0725 1 0.0725 1.84 0.1799
x4 0.1917 1 0.1917 4.86 0.0312
x5 24.77 1 24.77 628.17 < 0.0001
x6 144.59 1 144.59 3,667.33 < 0.0001
x7 0.0041 1 0.0041 0.1032 0.7491
x8 13.34 1 13.34 338.42 < 0.0001

x5x6 1.31 1 1.31 33.10 < 0.0001
x5x8 2.30 1 2.30 58.23 < 0.0001
x6x8 0.1475 1 0.1475 3.74 0.0577

Residual 2.44 62 0.0394
Lack of fit 1.25 52 0.0241 0.2025 0.9999 Non-significant
Pure error 1.19 10 0.1191
Cor Total 181.55 75

a significant effect on the performance measurements as
well as on other properties such as the blocking probability
for a station [4, 22, 24]. Although the correlation coefficient
is high, we consider performing new experiments that will
enable us to detect the significant interactions between
buffers, so the second phase of runs is performed to
characterize the region of interest.

5.2 Characterization phase

The original experimental design was increased with
new runs to determine the coefficients corresponding to
the interactions. Twenty-four points/combinations were
added with two replications each to estimate the standard
error, which gives 48 experiments. The curvature is not
significant but, for the purpose of improving the precision,
6 additional runs were added with 3 central points, which
generates a second block with 57 experiments. Adding the
two blocks together, the design has 76 experiments. With
the stepwise method, the non – significant interactions
were rejected by employing the statistic p as a criterion,
and thus a reduced model was obtained.

For the cycle time, the end result is a model with the
8 original variables plus 3 interactions: x5x6, x5x8 and
x6x8. In thismodel, the lack of fit is not significant; in other
words, there is a curvature in the region, but the model’s
predictions cycle time are adequate; the correlation

coefficient is 0.9862, which indicates that the factors
included in the model explain 98.62% of the variability,
the value of the adjusted correlation coefficient is 0.9837,
which indicates that adding new factors marginally lowers
the ability to explain the variability of the process (Table 5).

Variables x5(Lining sewing Buffer), x6(Front sewing
Buffer), x4(Flaming Buffer), together with x5x8(Lining
sewing Buffer - Assembly Buffer 2), x5x6 (Lining sewing
Buffer - Front sewing Buffer ), and x6x8(Front sewing
Buffer - Assembly Buffer 2) interactions are the ones that
explain the variability of the cycle time (Table 6).

The metamodel corresponding to the production of
the line explains 97.32% of the variability of the process.
The effect of the curvature is not significant; therefore, the
model is suitable for predicting the production of shoes.

We observe that the x5 (Lining sewing Buffer) and x1

(Heel Sewing Buffer) variables are significant, followed
by the x3x7 (Glue and sticking Buffer - Assembly Buffer
1)interaction; finally, there are the marginal effects of
the following interactions: x1x7(Heel Sewing Buffer -
Assembly Buffer 1), x3x6(Glue and sticking Buffer - Front
sewing Buffer), x1x3(Heel Sewing Buffer - Glue and
sticking Buffer), x4x7(Flaming Buffer - Assembly Buffer
1), x5x8(Lining sewing Buffer - Assembly Buffer 2)and
x2x8(Seam folding - Assembly Buffer 2)(Table 7).
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Table 7 ANOVA of Th with significant interactions

Source SS d.f. MS F value p- value
Block 5766.99 2 2,883.49
Model 3.609E+05 15 24,059.53 140.33 < 0.0001 Significant
x1 619.58 1 619.58 3.61 0.0623
x2 97.26 1 97.26 0.5673 0.4544
x3 154.70 1 154.70 0.9023 0.3461
x4 291.10 1 291.10 1.70 0.1977
x5 3.297E+05 1 3.297E+05 1,923.28 < 0.0001
x6 0.0045 1 0.0045 0.0000 0.9959
x7 43.59 1 43.59 0.2542 0.6160
x8 5.86 1 5.86 0.0342 0.8540

x1x3 760.82 1 760.82 4.44 0.0395
x1x7 845.52 1 845.52 4.93 0.0303
x2x8 569.21 1 569.21 3.32 0.0736
x3x6 790.29 1 790.29 4.61 0.0360
x3x7 1004.85 1 1,004.85 5.86 0.0186
x4x7 619.56 1 619.56 3.61 0.0623
x5x8 598.34 1 598.34 3.49 0.0668

Residual 9,944.11 58 171.45
Lack of fit 7,279.61 48 151.66 0.5692 0.9049 not significant
Pure error 2,664.50 10 266.45
Cor Total 3.766E+05 75

Metamodels

Equation 13 is the model of the cycle time:

CT =

3.1409− 0.008218x1 − 0.00849x2 − 0.01059x3+

0.02606x4 − 0.02188x5 + 0.3257x6 − 0.0038x7+

0.368925x8−0.01374x5x6−0.04561x5x8+0.004629x6x8

(13)

For Th, Equation 14 is the proposed model:

2, 778.03+0.40615x1−1.44x2+6.3032x3−2.1371x4+

31.933x5+1.1215x6−2.2382x7−5.3081x8−0.28547x1x3+

0.440447x1x7+0.3598x2x8−0.2239x3x6−0.6326x3x7+

0.7887x4x7+

0.7509x5x8 (14)

To verify that the metamodels possess an adequate degree
of accuracy [28], 5 additional simulation runs of the central
point were made, and the confidence intervals of Cycle
time and Th were constructed. The respective confidence
intervals are calculated below (Table 8 and 9).

The metamodel predicts an average value for the cycle
time of 5.51; the confidence interval is 5.31 – 5.71; the
average of the five simulations is 5.645. In this case, the

Table 8 Conditions for preliminary validation

x1 x2 x3 x4 x5 x6 x7 x8

6 6 5 4 4 7 4 4

Table 9 Cycle time and production obtained by simulation

Run CT Th
1 5.58 2,921
2 5.64 2,936
3 5.61 2,927
4 5.66 2,930
5 5.87 2,918

model predicts a mean cycle time within the confidence
interval. Likewise, the model predicts a mean of 2916.77
pairs of shoes, the confidence interval is 2903.78 – 2929.75,
the mean of the simulations is 2926.4, and equal is found
within the confidence interval; This level of accuracy is
enough for the purpose of the study (Table 10).

Assignment of spaces to minimize the cycle time

Once the models had been obtained, we proceeded to find
the distribution of buffer spaces that minimizes the cycle
time on the line, subject to the constraint of total available
space, the desired production target, and the number of
allowable spaces in front of each station. The optimization
model is as follows:

181



S. Hernández et al., Revista Facultad de Ingeniería, Universidad de Antioquia, No. 103, pp. 175-185, 2022

Table 10 Confidence intervals of the mean

Response Prediction
Std.
Dev.

95% PI
low

Sim.
Mean

95% PI
high

CT 5.51541 0.195108 5.31276 5.645 5.71806
Th 2,916.77 13.091 2,903.78 2,926.4 2,929.75

Minimize

CT = 3.1409−0.008218x1−0.00849x2−0.01059x3+

0.02606x4 − 0.02188x5 + 0.3257x6−
0.0038x7 + 0.368925x8 − 0.01374x5x6 − 0.04561x5x8+

0.004629x6x8 (15)

Subject to:

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 = N (16)

2, 778.03+0.40615x1−1.44x2+6.3032x3−2.1371x4+

31.933x5+1.1215x6−2.2382x7−5.3081x8−0.28547x1x3+

0.440447x1x7+0.3598x2x8−0.2239x3x6−0.6326x3x7+

0.7887x4x7 + 0.7509x5x8 ≥ Thmin (17)

xL
i ≤ xi ≤ xU

i , i = 1, . . . , 8and integers (18)

Where (15) is the objective function, (16) the constraint on
the number of spaces available on the entire production
line, (17) is the constraint on the Th required, and (18)
corresponds to the range of spaces available in front of
each work station and are integer variables.

A sensitivity analysis was made to quantify the effect
of the total available space (N ) on the assignment of
places in front of each station (xi). The maximum value of
N is the sum of xu

i ‘s that is 60 spaces; 5-unit decreases
were used. The lowest level corresponds to the value of
N with a feasible solution for the problem. The required
Thmin is 2900 pairs per working day.

The mathematical model is a non-linear integer
optimization model and was programmed in the LINGO
13 package installed on a computer with an Intel Core i7
processor. The model has a total of 8 integer variables
and 10 constraints; the runtime is reasonable and, in
our case, was not a variable to be considered so, for the
moment, the use of ametaheuristicmethod is not justified.

Furthermore, for each solution obtained, 5 simulations
were performed, thus obtaining CT , WIP , and Th. In
order to compare with the results of the metamodel, the
relative error (RE) was calculated using Equation 19:

RE =
(RM −RS)

RS
(19)

Where R is the mean of the performance measurement,
the subscriptM refers to the prediction of the metamodel
and S to the result obtained from the simulation.

We observed that the cycle time has a non-linear
behavior inasmuch as the number of spaces available in
the line N decreases (Figure 2). 4 scenarios were detected
where the cycle time is found in the 3.25 – 3.28 range, each
one corresponds to a distinct distribution of the available
spaces in front of each station (Table 11).

 

 

Figure 2 Cycle time vs. N

In the case of the production, we observe a similar behavior
to that observed in [24] and [25]: there is a maximum value
of Th for every combination of vector B (Figure 3).

 

 

Figure 3 Th vs. N

Regarding the distribution of the spaces, the inspection
indicates that the optimal assignment consists of a
non-uniform arrangement; the result is in accordance
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Table 11 Sample results of the Metamodels (M ) and Simulation (S)

N WIPM CTM ThM WIPS RE CTS RE ThS RE
60 17.784 5.31 3,008.92 18.86 -0.057 5.69 -0.066 2,983.6 0.0085
55 13.164 3.96 2,988.616 14.43 -0.088 4.35 -0.088 2,989 -0.0001
50 10.82 3.27 2,973.372 10.85 -0.003 3.29 -0.004 2,970.8 0.0009
45 10.943 3.29 2,985.948 10.83 0.011 3.28 0.002 2,968.6 0.0058
40 11.098 3.34 2,990.929 10.98 0.011 3.33 0.003 2,969.4 0.0073
35 11.25 3.38 2,994.195 10.97 0.026 3.32 0.018 2,972.8 0.0072

Table 12 A sample of assignment of spaces

N
Lining
Sewing

Heel
Sewing

Assembly 1
Front
Sewing

Assembly 2
Seam
folding

Application
of glue and
sticking

Flaming

60 6 10 6 8 6 10 8 6
55 6 10 6 3 6 10 8 6
50 6 10 6 2 2 10 8 6
45 6 10 2 2 2 9 8 6
40 6 10 2 2 2 4 8 6
35 6 10 2 2 2 2 5 6

Table 13 Average blocking probability obtained from the simulation

N
Lining
Sewing

Heel
Sewing

Front
Sewing

Assembly
Seam
folding

Application
of glue and
sticking

60 0 0 0.675 0 0.017 0.029
55 0 0 0.129 0 0.013 0.028
50 0 0.25 0.054 0 0.006 0.019
45 0.02 0.616 0.053 0 0.008 0.023
40 0.001 0.617 0.052 0.0037 0.01 0.024

 

 

(a)N = 40
 

 

(b)N = 50

Figure 4 Schematic representation of the optimal assignment ofN spaces

with the ones obtained in [25]: in production systems
with different processing times, an asymmetrical buffer
distribution can offer advantages (Table 12).

To complement the results, the average blocking
probability of the stations was recorded for each simulated
scenario. This gives us more elements to evaluate the

quality and characteristics of each solution proposed. We
found that when 40 spaces are assigned, the cycle time
has a value of 3.34 minutes, and the required production
constraint is fulfilled. Moreover, the highest blocking
probability corresponds to the sewing heel station with
0.617 and is caused by the Assembly 1 buffer.
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Another scenario that attracted our attention was the
one corresponding toN = 50 spaces, where the cycle time
is 3.27 minutes, slightly higher than the one obtained with
N = 40, but moreover, the simulation results indicate that
the average blocking probability for the heel station is 0.25
(Table 13).

Analyzing both cases, we observe that the optimum
solution for N = 40 is Assembly 1 = 2 and Seam Folding
= 4 spaces, and the optimum arrangement for scenario
N = 50 is Assembly 1 = 6 and Seam Folding = 10; in the
scenario N = 50, a higher amount of material is allowed
in the queue, which, will increase the average WIP in
the operation and, in turn, increase the CT on the line,
although the difference is marginal (Figure 4a and 4b).

6. Conclusions

Decision-making is a task that requires the use of tools
that lower the associated uncertainty. The manufacturing
system is subject to sources of randomness, and
this makes the task more complex. If the analytical
expressions are not available or are complex, one strategy
is to apply the simulation-experiment design-optimization
approach to get a metamodel that incorporates the
variables of interest. This provides us with approximate
information about the system in question. The buffer
assignment problem (BAP) is an example of the need to
resort to the use of metamodels. It is not common to find
real case studies where the BAP is applied; the above
includes the footwear industry.

In this work, the problem of distributing the available
spaces in a shoe production line was presented,
minimizing cycle time. In this case, it was necessary
to obtain the cycle time and production models as a
function of Bi ‘s. Several interactions between stations
were found to be significant; each interaction shows the
effect of the buffer between pairs of stations.

The optimization model allows determining the best
allocation of spaces in the line, reducing the associated
uncertainty due to the stochastic nature of the system.

We observed that the cycle time follows a non-linear
behavior vs. the total amount of work in process on the
line (N ). In the sensitivity analysis, a value of N was
found where TC reaches a minimum value. Due to the
fact that it is a process with unequal processing times, the
optimal allocation of spaces (B1, B2, · · · , Bn) follows a
non-uniform arrangement on the line.

Still, it is convenient to consider other factors to decide;
in our case, assigning a certain amount of spaces will
generate the phenomenon known as blocking; when

analyzing the solutions, this parameter allows locating
where an interruption of flow within the line will occur
most frequently.
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