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ABSTRACT: Today, image forgery is common due to the massification of
low-cost/high-resolution digital cameras, along with the accessibility of computer
programs for image processing. All media is affected by this issue, which makes the
public doubt the news. Though image modification is a typical process in entertainment,
when images are taken as evidence in a legal process, modification cannot be considered
trivial. Digital forensics has the challenge of ensuring the accuracy and integrity of
digital images to overcome this issue. This investigation introduces an algorithm to
detect the main types of pixel-based alterations such as copy-move forgery, resampling,
and splicing in digital images. For the evaluation of the algorithm, CVLAB, CASIA V1,
Columbia, and Columbia Uncompressed datasets were used. Of 7100 images evaluated,
3666 were unaltered, 791 had resampling, 2213 had splicing, and 430 had copy-move
forgeries. The algorithm detected all proposed forgery pixel methods with an accuracy
of 91%. The main novelties of the proposal are the reduced number of features needed
for identification and its robustness for the file format and image size.

RESUMEN: Hoy en día, la falsificación de imágenes es común debido a la masificación
de las cámaras digitales de alta resolución y bajo costo, junto con la accesibilidad
de los programas de computadora para el procesamiento de imágenes. Todos los
medios de comunicación se ven afectados por este tema, lo que hace que el público
dude de la noticia. Aunque la modificación de imágenes es un proceso común en el
entretenimiento, cuando las imágenes se toman como evidencia en un proceso legal,
la alteración no puede considerarse trivial. La ciencia forense digital tiene el desafío
de garantizar la precisión y la integridad de las imágenes digitales para superar este
problema. Esta investigación introduce un algoritmo para detectar los principales tipos
de alteraciones basadas en píxeles, como copy-move, resamplig y splicing en imágenes
digitales. Para la evaluación del algoritmo se utilizaron las bases de datos CVLAB,
CASIA V1, Columbia y Uncompressed Columbia. Se evaluaron 7.100 imágenes, de las
cuales 3666 eran auténticas, 791 tenían resampling, 2213 tenían splicing y 430 tenían
falsificaciones de copy-move. El algoritmo detectó todas las alteraciones basadas en
pixeles con una precisión del 91%. Las principales novedades de la propuesta son el
reducido número de características necesarias para la identificación y su robustez al
formato y tamaño de la imagen.

1. Introduction Image manipulation is more common today due to the
massification of low-cost/high-resolution cameras,
along with the availability of programs for image
processing such as Inkscape, Photoshop, and Corel
Draw, among others. Although image alteration is
common in entertainment, when images are taken as
evidence in a legal process maintaining the integrity of the
original image is fundamental. Thus, digital forensics has
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the challenge of ensuring the accuracy and integrity of
images in a legal process.

Various researchers have made significant efforts
to identify manipulated images using digital image
processing algorithms. This is because the process
of visually identifying alterations to digital images is
complicated for the human eye. Researchers have
found that the process of falsifying an image modifies
the neighborhood and statistics of the host image [1].
Thanks to these traces of alterations, it is possible to
detect altered images. The scientific literature describes
different approaches to detect the falsification of digital
images, including methods based on the type of camera,
as well as the format, physics, geometry, and pixels of
the image [2]. One of the main advantages of pixel-based
methods is that they do not require knowledge of either
the camera manufacturer’s parameters or the original
image.

Among the most common alterations in pixel-based
methods are copy-move, resampling, and splicing.
According to [3], copy-move alteration takes place when
a region of an image is copied and pasted into the
same image without any geometric transformation. In
contrast, if at the time of pasting the copied region some
geometric transformation is performed, this is known as
resampling. Splicing is generated by copying a region of
an image and pasting it in a different one to add or hide
important information. Although these operations may
be visually imperceptible, it is possible to find statistical
changes in the image due to a correlation change between
neighboring pixels at the edges of the base image [2].

1.1 Copy-move detection

Various state-of-the-art approaches are available to
identify copy-move alterations. However, for most of the
algorithms studied, the detection of forgeries consists
of four main stages: preprocessing feature extraction,
pairing, and visualization [4]. One of the most used
methods for copy-move forgery identification is the
Scale-Invariant Feature Transform (SIFT), as this method
works on the image’s key points extraction. In [5], authors
presented a hybrid method for detecting copying on an
image using SIFT and the Principal Component Analysis
(PCA) kernel to extract the main points by blocks. A
variation of the previous method was presented in [6], in
which they used the KAZE point detector together with
SIFT to extract more crucial points. A method to identify
copy-move forgeries with the Discrete Wavelet Transform
(DWT) was proposed in [7]. Initially, they applied the DWT
on the image to obtain both the detail and approximation
coefficients; then, they extracted the critical points

with SIFT on the detail coefficients. Subsequently, they
compared the feature vectors to identify which regions
were falsified. Another recognized feature extractor is
the Speeded Up Robust Features (SURF), which detects
interest points and descriptors [8, 9]. A technique to detect
copy-move forgeries based on SURF and KD-Tree for the
comparison of multidimensional data was presented in
[10].

Recently, many researchers applied deep learning
methods in areas such as mechanics [11], medicine [12],
and a solution for copy-move detection [13]. [14] proposed
a deep learning approach with a transfer learning model
that uses VGG-16 custom design convolutional neural
network (CNN). A deep learning technique based on the
CNNmodel with multi-scale-input and multi-stages of the
convolutional layer was proposed [15]. This method used
three phases: encoder block, decoder block to extract
feature maps and classification. In the encoder block,
the images are downsampled in multiple levels to extract
features maps. In the decoder block, features maps
are combined and upsampled until the output feature’s
dimension matches the input image’s dimension. Finally,
a sigmoid activation function was adopted as a classifier
in the last phase. The authors in [16] suggested a dual
branch CNN model with multi-scale input by choosing
different kernel sizes. First, the images were resized and
standardized on-the-fly; then, the images were passed to
the CNN. The CNN architecture had two branches with
standard input but different kernel sizes to extract distinct
features maps. From the experimental result, the method
was lightweight and performed high-grade prediction
accuracy for the MIC-F2000 dataset.

1.2 Resampling detection

Several authors have focused their work on the
identification of unnatural periodicities in digital images
to detect resampling alteration. A method to detect the
periodicity in images introduced by resampling and the
compression of the JPEG format was implemented. To
achieve this, they calculated the probability map of the
image using the EM (Expectation-Maximization) algorithm
[17]. Another method for resampling detection based on
the EM algorithm and the probability mapping (m-map)
of pixels in the frequency domain was used in [18]. This
technique worked in the absence of any watermark or
digital signature. In [19], a method capable of detecting
traces of geometric transformation was proposed, using
the periodic properties present in interpolated signals to
detect whether the image has been modified or not.
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1.3 Splicing detection

For this type of falsification, the paste operation alters the
image’s general statistics by incorporating textures and
borders that contrast with the original image [20, 21]. In
recent years, some work carried out for splicing detection
has focused on the extraction of the characteristics of
an altered image and its original. The most relevant
characteristics are used to train and validate a classifier,
then the trained model is used to detect forgery on
the image [22, 23]. In [24, 25], the authors presented
a Local Binary Pattern (LBP) method due to its ability
to represent textures with a low computational cost.
LBP and the approximation coefficients of the DWT to
extract the frequency characteristics were proposed in
[26, 27], incorporating the histograms of the DWT detail
coefficients to the vector support machine. Several
authors have proposed LBP methods, such as LBP-DCT
[28] and LBP-Enhanced [29]. In [20], an excellent method
to highlight statistical changes from Markov’s transition
probability characteristics was introduced. Other authors
have proposed combinations to improve results, such as
Markov-DCT-DWT [30], Markov-DCT [31], Markov-QDCT
[32], and Markov-Octonio DCT [33]. As copy-move
detection, a deep learning approach is used for splicing
detection. In [34], a two-branch CNN learns hierarchical
representations from the input RGB color or grayscale test
images and feeds a support vector machine as a classifier.

In this study, a hybrid algorithm for the detection of
copy-move, resampling, and splicing forgery is proposed.
The main contributions of this work are as follows:

• The proposed algorithm allows the identification of
the three most common types of image forgery at
a time. Most previous studies found in scientific
literature only permitted the classification of some
type of forgery per algorithm.

• Experiments were carried out with eight datasets,
all with different resolutions and format features,
to assess the robustness of the introduced hybrid
algorithm.

• An improvement in the thresholding of the
Markov-based preprocessing was achieved that
allowed a significant reduction in the features used
for the classifier.

2. Proposed algorithm

The general framework of the proposed algorithm
methodology is presented in Figure 1. The proposed
method is based on the outstanding work presented by
E-Sayed [31] and on the improved thresholding method
presented by Kumar et al. [35]. Unlike previous studies, we

reduced the derivative matrices in space and frequency to
2 (vertical matrix and horizontal matrix), and the improved
threshold was used to reduce the feature vector evenmore.

This proposed algorithm is divided into two parts:
copy-move detection and Markov preprocessing that is
used for resampling detection. In the proposed method,
the main contribution is the identification of the type
of alteration of a digital image either by copy-move,
resampling, or splicing.

2.1 Markov preprocessing

First, the image was converted to grayscale. Then,
the horizontal and vertical derivatives of the image
in space were calculated, after which the Markov
process was carried out to obtain the characteristics
in space. Subsequently, the image was divided into
8x8 non-overlapping blocks, and the DCT was applied
to each block. After that, the horizontal and vertical
derivatives were calculated for the resulting image. Next,
the Markov process was performed to obtain the frequency
characteristics. Finally, a vector of spatial and frequency
characteristics was created to train a polynomial SVM.

DCT block

Since the altered image had changes in its local frequency
distribution, it was possible to detect these changes with
the DCT coefficients. First, the grayscale image was
divided into 8×8 blocks without overlapping, and the DCT
(version 2) was applied to each block individually. Finally,
the values of the DCT coefficients were rounded, and the
absolute value was calculated, as presented in Equation (1)
and (2):

BDCTmk(u, v) = DCT2 (Imk(i, j)) (1)

F (u, v) = | round(BDCT )| (2)

Where BDCTmk(u, v) represents the DCT of each 8 × 8
block and F (u, v) is the complete image of the absolute
rounded value.

Derivative matrices

It is possible to use an edge detector to observe statistical
changes in the image because the operation of placing
one image over another (splicing) introduces statistical
alterations on the image edges [31]. To detect them,
the horizontal and vertical derivatives of the image were
calculated using Equation (3) and (4):

Eh(x, y) = I(x, y)− I(x+ 1, y)

1 ≤ x ≤ Sx − 1, 1 ≤ y ≤ Sy

(3)
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Figure 1 General flow diagram of the proposed algorithm

Ev(x, y) = I(x, y)− I(x+ 1, y)

1 ≤ x ≤ Sx, 1 ≤ y ≤ Sy − 1
(4)

Where I(x, y) is the image, Sx and Sy are the image’s
dimensions. Likewise, the horizontal and vertical
derivatives of the frequency image are calculated using
Equation (5) and (6):

Fh(u, v) = F (u, v)− F (u+ 1, v)

1 ≤ u ≤ Su − 1, 1 ≤ v ≤ Sv

(5)

Fv(u, v) = F (u, v)− F (u+ 1, v)

1 ≤ u ≤ Su, 1 ≤ v ≤ Sv − 1
(6)

Where Su and Sv are the image’s dimensions in frequency.
It should be noted that up to this point, all resulting
matrices had positive integer values.

Thresholding

To reduce the feature vector dimensions and the algorithm
complexity, a threshold Tmust be performed. If the value of
the derivative matrix is higher than T, this value is replaced
by T. Conversely, if the value of the matrix is less than –T,
this value is replaced by –T, as shown in Equation (7):

Tx(u, v) =

 +T X(x, y) ≥ +T
−T X(x, y) ≤ −T

X(x, y) otherwise
(7)

Where X(x, y) are all derivative matrices
(Eh(x, y), Ev(x, y), Fh(u, v), Fv(u, v)). For this study,
an adjustment was made in the range of thresholding
based on the work presented by Kumar et al. [35], who
stated that better results were obtained when using a
range of (i, j) =∈ {−T,−T +2, . . . , T +2, T}. Attention
should also be given to the selection of an appropriate
threshold, because a small T value may cause the
transition probability matrix (TPM) not to be sensitive
enough to detect alterations due to information loss. On
the other hand, a high T value can cause the TPM to be
extensive and therefore increase the feature vector and
the complexity of the algorithm. In general, a threshold
of T = 3 should be used to maintain a balance between
sensitivity and complexity.

Probability transition matrix (TPM)

As previously mentioned, the splicing operation changes
the correlation between the pixels of the original image.
A random Markov process can be used to describe
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these correlation changes. In this case, the transition
probability matrix was applied to each of the thresholded
derivative matrices to characterize the Markov process.
The horizontal and vertical transition probability matrices
were calculated using Equation (8) and (9):

p {Th(u+ 1, v) = j | (Th(u, v) = i)} =(
ΣSu−2

u=1

∑Sv

v=1 δ (Th(u, v) = i, Th(u+ 1, v) = j)
)

∑Su−2
u=1 ΣSv

v=1δ (Th(u, v) = i)

(8)

p {Tv(u, v) = j | (Tv(u, v + 1) = i)} =(∑Su−2
u=1

∑Sv

v=1 δ (Tv(u, v) = i, Tv(u, v + 1) = j)
)

∑S−2
u=1

u=1

∑Sv

v=1 δ (Tv(u, v) = i)

(9)

Where:

δ(A = i, B = j) =

{
1 A = i, B = j
0 otherwise

(i, j) =∈ {−T,−T + 2, . . . , T + 2, T}

So, when applying (8) and (9) on horizontal and vertical
derived matrices on space (Eh(x,y),Eh(x,y)) and
the frequency (Fh(u, v), Fh(u, v)) a vector whose
characteristics were 4 × (T + 1)2 was generated. Figure
2 shows the TPM with a set threshold T = 4. Finally,
the TMP became a data vector that fed a support vector
machine (SVM) to be trained.

2.2 Copy-move detection

In case SVM has not detected any resampling alteration,
the algorithm proceeds to perform copy-move detection.
For this, the algorithm presented by Amerini et al. [36] was
used to detect key points with the SIFT algorithm, and the
library VLFeat 0.9.21 [37] was employed.

Key point detection with SIFT

The SIFT feature extraction algorithm on the altered image
was used; this way, a descriptor vector of 128 features was
obtained S = {si, . . . , sn}.

Matching features through g2NN

Because two copied regions within the image have the
same descriptors, the g2NN algorithm was used, which
calculates the ratio between the Euclidean distance
between a pair of candidate points and the nextnearest
neighbor [38]. If the condition presented in Equation (10) is
met, a pair ofmatching points is createdP = {pi, . . . , pn};
where each pi is each pair of (si, sj).

Where di is the Euclidean distance between the candidate
point and the point to verify, di+1 is the Euclidean distance
between the candidate point and the next nearest neighbor,
and τ is a defined threshold that allows the rejection of
pairs with very different descriptors. If two or more pairs
of matching points are not found, the algorithm identifies
the image as authentic.

τ =
di

di + 1
(10)

J-linkage grouping

To identify the areas where the alteration occurs, the
J-Linkage cluster, also called Hierarchical Agglomerative
Clustering, (HAC) was used [39]. This procedure was
performed with the pair of coinciding points coordinates
but not with the Euclidean distance value. First, we
proceeded with a random sampling of the pairs of
coincident points p to generate m hypothesis of related
transformations T = {T1, . . . , Tm}. For each pair, a set
of related transformations called ”preference set vector”:
PS = {PS1 (pi) , . . . , PSm (pi)} where each PSm (pi)
was defined in Equation (11).

PSm (pi) =

{
1 if β < 0.05
0 otherwise

(11)

In other words, β is the distance between the Tm model
and the pair of points p. If this value is less than 0.05,
the pair of primary points and the pair of points of the
copied region have similar transformations [38]. The
preference set vector is used in the HAC algorithm to find
the transformations of both the original points and the
copied points. After establishing the preference set vector,
these were assigned to a cluster; then, for each iteration,
each pair of clusters wasmerged with the smaller distance
in space. The preference set vector of a cluster was
calculated as the intersection of the preference sets of the
matched pair, and the distance between the paired clusters
was determined with the Jaccard distance (Jδ) between
the corresponding preference sets using Equation (12).

Jδ(A,B) =
|A ∪B| − |A ∩B|

|A ∪B|
(12)

The sets without similarities have a value of 1, while similar
sets have a value of 0. According to these parameters,
Amerini et al. [36] set a value of 1 as the cut-off
grouping value. As a result, each cluster obtained at
least one matching transformation among all its pairs. If
more transformations are shared among all the elements
of the cluster, they should be similar; for this reason,
an estimation of the final transformation is determined
by least-squares fitting. To dismiss outliers in cluster
transformations, the fixed threshold N was used. Finally, if
eight ormore transformations (ind) are detected, or if there
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Figure 2 TPM result with a set threshold T = 4

are four or more clusters (Cluster), the method alleges the
image as falsified. Otherwise, it assumes that the image
does not contain any modifications.

2.3 Algorithm adjustment

Given that the algorithm must identify different types
of alterations, an adjustment was made for the final
algorithm output. In the Markov preprocessing phase,
an SVM was trained with authentic, resampling, and
splicing images. If the SVM detected that the image had
resampling, the algorithm indicated this. On the other
hand, if the SVM identified the image as authentic or
having splicing, the algorithm executed the copy-move
detection process. If during this process, the copy-move
block found the image to be free of copy-move alterations,
the algorithm considered the image authentic. Table
1 presents the algorithm response depending on the
SVM response and the copy-move algorithm. Because
copy-move is a particular case of resampling, where
there is no scaling or rotation, once the algorithm detects
resampling, the output of the copy-move block is always
resampling. Future work is expected to locate the region
affected by copy-move or resampling.

3. Methodology

In this section, we present a brief description of the
experimentation process with which the proposed method
was evaluated. The first part shows the datasets used
for the algorithm evaluation. Next, the metrics used to
evaluate the performance of the algorithms are presented.
Then, an estimate of the optimal threshold T for the
evaluation of the algorithm is shown. Finally, the

Table 1 Truth table of algorithm output

SVM Result Copy-move result Algorithm output
Authentic Authentic Authentic
(SVM=1) (CM = 0)
Authentic Copy-move Copy-move
( SVM=1) (CM = 1)
Splicing Authentic Splicing
(SVM=0) (CM = 0)
Splicing Copy-move Copy-move
(SVM=0) (CM = 1)

Resampling Authentic Resampling
(SVM=2) (CM = 0)

Resampling Copy-move
(SVM=2) (CM = 1) Resampling

methodology used to evaluate the proposed algorithm is
presented. All tests were performed on MATLAB 2017b, on
a 64-bit Dell computer, 8GB RAM with Windows 10, and an
Intel Xenon processor.

3.1 Databases

In order to evaluate the algorithm, the most well-known
forgery image evaluation datasets for splicing, resampling,
and copy-move were selected. The datasets selected
for evaluating splicing were CVLAB [40], CASIA V1
[41], Columbia [42] and Uncompressed Columbia [43].
Ardizzone-dataset [44], Coverage [45], MIC-F2000 [38] and
CMFDdb-grip [46] datasets were used for the evaluation
of copy-move and resampling. A selection of datasets
rich in formats, sizes, and quantities of images with
different types of alteration were used. Table 2 shows
the main characteristics of all the datasets that were
used to evaluate the proposed algorithm, such as format,
number of original images, number of altered images, and
resolution. Taking into consideration all the datasets used
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for the study, a total of 7100 images were evaluated, of
which 3666 were unaltered, 791 had resampling, 2213 had
splicing, and 430 had copy-move alterations.

3.2 CVLAB forgery database

For this study, a new database called CVLAB forgery
database was created and published in [40] This dataset
contains 650 jpg format images that are 720 × 480. It
contains 200 authentic images, 200 spliced images, and
250 copy-move images. The dataset has 50 images of
animals, 40 of landscapes, 35 of flowers, 50 of buildings,
25 of people, and 50 of common objects. Figure 3 shows a
sample of the images of the dataset.

3.3 Classifier performance

To demonstrate the detection performance, the classifier
was evaluated by using the confusion matrix resulting in a
4 × 4 matrix that shows the classifier performance through
the known values and predictions of the trained model.
To determine the degree of reliability of the model, we
calculated the accuracy (Acc), true positive rate (TPR), true
negative rate (TNR), positive predictive value (PPV), the
false positive rate (FPR), and the false-negative rate (FNR)
using Equations (13-18) respectively. Alternative metrics
that considered class imbalance were used, such as
F1-score per class and weighted F1-score using Equation
(19) and (20).

ACC =
(TP + TN)

(TP + TN + FN + FP )
(13)

TPR =
TP

(TP + FN)
(14)

TNR =
TN

(TN + FP )
(15)

PPV =
TP

(TP + FP )
(16)

FPR =
FP

(FP + TN)
(17)

FNR =
FN

(FN + TP )
(18)

F1− score =
2TP

(2TP + FP + FN)
(19)

weighted − F1 =

∑n
i=1 F1− score (i) ∗ class inst (i)

total inst
(20)

Where TP is the number of values predicted as positive that
is indeed positive, TN is the number of values predicted
as negative that is indeed negative, FP is the number of

values predicted as positive that are negative, and FN is the
number of values predicted as negative that are positive.
F1 − score(i) is F1-score of each class, class inst (i) are
the total of instances of each class and total inst are the
total of instances used for classification.

3.4 Threshold T selection

As mentioned before, the selection of a threshold T is
essential since this allows adjusting the robustness of the
method together with the computational cost. At a higher
value of T, a better sensitivity with a higher computational
cost is obtained, and, conversely, a lower value of T loses
sensitivity with a lower computational cost. Therefore, to
identify the selection of the ideal threshold T, the splicing
and resampling datasets mentioned above were trained
with values of T equal to 4, 6, 8, and 10. Subsequently,
the accuracy and precision of each model were estimated.
All evaluations were performed with cross-validation of
10 folds. Finally, with the best value of the threshold T
obtained, amodel with an SVMwith a Radial Basis Function
(RBF) kernel was trained as a classifier to identify splicing
and resampling alterations with the CASIA V1, Columbia,
Columbia Uncompressed, CVLAB, and MICC-F2000 for a
total of 7100 images. Only 161 random images of the
Ardizzone-dataset were evaluated because this dataset
only has 50 original images; therefore, imbalanced classes
may affect the results of the evaluation.

4. Experimental results

This section presents the results of the SVM trained with
different T thresholds and the results of the evaluation of
the proposed algorithm.

4.1 Detection performance for SVM model

Table 3 shows the results of the evaluation carried out
for the Resampling and Splicing detection with different T
thresholds with multiple databases.
As is evidenced in Table 3, a threshold of T = 4 obtained
an accuracy of 90%, while T = 10 obtained an accuracy of
89%.

4.2 Performance of the proposed method

The confusion matrix that presents the result of evaluating
all the datasets with the proposed methodology for the
identification of splicing, resampling, and copy-move is
presented in Fig. 4. For this evaluation, a trained model
with an SVM was selected with an RBF kernel with a
threshold of T = 4 since it obtained an outstanding result
with a lower computational cost. The confusion matrix,
shown below, was adjusted with the following color code:
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Table 2 Databases

Database Format
Total
images

Authentic
Altered
images

Used
images

Resolution

CASIA V1 jpg 1721 800 921 1721 384 × 256
COLUMBIA bmp 1845 933 912 1845 128 × 128

UMCOMPRESSED COLUMBIA tiff 363 183 180 363 757 × 568 and 1152 × 768
Ardizzone-dataset bmp 1040 50 990 161 768 × 1024

COVERAGE tif 200 100 100 200 386 × 431 and 768 × 1024
MIC-2000 jpg 2000 1300 700 2000 2048 × 1536

CMFDdb-grip png 160 80 80 160 768 × 1024
CVLAB jpg 650 200 450 650 720 × 480

 

 

Figure 3 CVLAB Forgery Database images

Table 3 Results of SVM model with different T value

Threshold T/
Characteristics

Accuracy

T=4 (100) 0.90
T=6 (196) 0.90
T=8 (324) 0.90
T=10 (484) 0.89

green represents true positives, purple represents false
authentic positives, red represents false splicing positives,
blue represents false resampling positives, and orange
represents false copy-move positives.

As presented in Figure 4, the proposed method obtained a
general accuracy of 91% and weighted-F1 of 92%. Where
its true positive rate for authentic images was 91%, 89%
for images altered by splicing, 99% for images altered by
resampling, and 79% for images altered by copy-move,
Table 4 illustrates the results of the algorithm in greater
detail.

The high TPR values for each of the classes indicate
that the algorithm is effective at identifying each type of
alteration, with resampling identification being the highest
with 0.99 and copy-move being the lowest with 0.79. The
highest PPV value was 0.98, while the lowest accuracy
was copy-move with 0.46. On the other hand, the highest

Table 4 Performance of the proposed method

Authentic Splicing Resampling Copy-move
ACC 0.91 0.95 0.99 0.99
PPV 0.98 0.95 0.90 0.46
TPR 0.91 0.89 0.99 0.79
TNR 0.98 0.98 0.99 0.94
FPR 0.02 0.02 0.01 0.06
FNR 0.09 0.11 0.01 0.21

accuracy corresponded to the resampling class with 0.99
and the lowest to authentic images with 0.91.

A comparison of our proposed algorithm with other
techniques for the identification of various types of
alterations [47–49] is presented in Table 5.

Table 5 Performance evaluation of different methods

Prakash et al.
[47]

Sharma and
Ghanekar [48]

Hema Rajni
[49]

Proposed

ACC - 0.97 0.99 0.91
TPR Splicing 0.99 0.95 0.98 0.89
TNR Splicing 0.99 - 0.99 0.98

TPR Resampling - 0.95 0.99
TNR Resampling - - 0.99
TPR Copy-move 0.93 0.99 0.98 0.79
TNR Copy-move 0.64 - 0.99 0.94

Evaluated Databases 3 4 3 8

Table 5 shows a 97% and 99% overall accuracy for
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Figure 4 Confusion matrix of the proposed method

the algorithm proposed by Sharma and Hema [48, 49],
respectively, while the proposed algorithm’s accuracy in
this study is 91%. It is important to note that Prakash
[47] only used three, Sharma, and Ghanekar [48] four,
Hema Rajni [49] three, and the proposed technique eight
datasets.

5. Discussion

In [47], splicing and copy-move alterations from Markov
and the Zernike moment were identified. However,
a resampling alteration can be considered a case of
copy-move when there is scaling and rotation. This might
have increased the computational cost of the results of the
proposed algorithm since the estimation of both forgeries
is more challenging. Additionally, the datasets used by
the researchers have the same size and format; therefore,
there are no considerable variations in the evaluation. [48]
used a camera-based method in which they employed the
Bayer matrix of the camera sensor to identify whether the
image contained splicing, so they did not use a pixel-based
methodology for the estimation. Additionally, the authors
proposed a different equation from the one presented in
Equation (14) to estimate the sensitivity of the copy-move
alterations, which may vary the results of the comparison.
[49] estimated the copy-move and resampling forgery
using neural networks. The Markov process was used
initially to feed a CNN that detected whether the image
had been doctored. If it had been altered, the algorithm
would transfer the image to a new CNN that classified
whether it was a copy-move or splicing forgery. If the
image had been altered using copy-move, the combined
process of the circular harmonic transform (CHT) and

the Zernike moments would be adopted to locate the
copied region. Like Prakash, the author only classified
copy-move and splicing alterations, while our proposed
algorithm also recognized resampling forgery, making the
challenge even greater. Further, it is well known that one
of themain drawbacks of CNNs is their high computational
cost due to their complex models and the limitations of
datasets quantity for copy-move, resampling, and splicing
due to deep learning requires much data, especially for
training and testing [13]. In our proposal, we estimated
the most remarkable types of forgery in the state of the
art. Additionally, we evaluated our algorithm with eight
different datasets to assess the robustness to the format
and the resolution, in contrast with the authors previously
introduced.

6. Conclusion

In this study, a hybrid algorithm was presented for
the identification of copy-move, splicing, and resampling
alterations from the Markov and SIFT process, which we
call HA-MS (hybrid Algorithm - Markov and SIFT). Initially,
a grayscale image was converted, then Markov features
in space and frequency were extracted to train a model
with an RBF-kernel SVM. The SVM was used to classify
whether the image was altered by splicing or resampling
or if the image was authentic. If it was suspected that the
image was authentic or had copy-move alterations, SIFT
was carried out to verify if the image had similar regions.
The algorithm can identify several types of alterations with
a general accuracy of 91. Some of the principal novelties of
this proposal are the reduced number of features needed
to carry out detection, in contrast to the method, and the
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algorithm robustness to variations in image format and
resolution. [50].
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