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ABSTRACT: Some of the most important industries, such as aerospace, automotive, among
others, have stipulated new requirements for materials behavior that include high
specific, mechanical, and thermal properties. According to this, nanocomposites have
emerged to satisfy these requirements. However, manufacturing these nanocomposites
implies cost and time-consuming problems that do not allow their use in technological
applications; additionally, the lack of knowledge about the prediction of their mechanical
properties is an obstacle to its technological implementation. Therefore, several studies
have focused on the development of computational models to predict the mechanical
behavior of nano-reinforced composites. In the present work, a comparative assessment
of the main computational models for predicting the tensile strength of nanocomposites
is carried out. Firstly, a new taxonomy of these models is proposed, which allows
identifying the main experimental variables, model evolution, and precision. With the
categorization, computational algorithms are developed for these models for predicting
the tensile strength of nanocomposites, accomplishing a comparative analysis of
accuracy, robustness, and time-cost among them. The precision of these models is
evaluated by deeming benchmark experimental works focused on the tensile strength of
nanocomposites. The results obtained demonstrated a minimum relative error of 44.7%,
10.1%, and 10.6% for First-Generation, Second-Generation, and Third-Generation
models, respectively.

RESUMEN: Las industrias mas importantes reconocidas como la aeroespacial, automotriz,
entre otras, han estipulado nuevos requerimientos para el comportamiento de los
materiales que incluyen altas propiedades especificas, mecanicas, y térmicas. De
acuerdo con esto, los nanocompuestos han surgido como una solucién. Sin embargo, la
manufactura de estos materiales implica problemas de costo-tiempo que no permiten su
aplicacion industrial, ademas, el desconocimiento en la prediccion de sus propiedades
mecanicas es un obstaculo. Por esto mismo, importantes autores se han enfocado
en el desarrollo de modelos computacionales para la predicciéon del comportamiento
mecanico en compuestos nano-reforzados. En el presente trabajo, se realiza una
evaluacion comparativa de los principales modelos computacionales para la prediccion
de resistencia a traccion de nano-compuestos. En primer lugar, una nueva taxonomia
de estos modelos es propuesta, permitiendo identificar las principales variables
experimentales, evolucion de los modelos y precision.

computacionales para la prediccion de resistencia a
traccion en nanocompuestos, realizando un andlisis
comparativo de precision, robustez y costo-tiempo. La
precision de los modelos se evalua considerando trabajos
experimentales enfocados en la caracterizacion de la
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resistencia a traccion de nanocompuestos. Los resultados
obtenidos demostraron un error relativo minimo del 44.7%,
10.1% y 10.6% para los modelos de primera, segunda
y tercera generacién, respectivamente. Ademads, se
encontraron comportamiento lineales y no lineales, siendo
coherentes con el nUmero y tipo de parametros requeridos
para la evaluacion.

1. Infroduction

The 21st century has been characterized as one of the
greatest times for scientific innovation [1, 2], where
industries such as aerospace, nuclear, automotive, and
energy entail new research scenarios. Moreover, the
new engineering components demand requirements that
include high specific, mechanical, and thermal properties
for reducing fuel consumption and instrument weight,
and increasing the safety factor [3]. For these reasons,
nanocomposite materials arose as a viable solution,
allowing a new era for materials science.
Considering the above mentioned, several authors
proposed a new manufacturing technique for
nanocomposites materials known as the sandwich
process that includes intercalated layers of metal lamina
and polyvinyl alcohol with carbon nanotubes (PVA/CNT),
allowing an increase of 100% in the elastic modulus
regarding monolithic materials [4]. On the other hand,
some authors explore the manufacturing conditions in
the ball-milling process, demonstrating the possibility of
obtaining uniform dispersion and alignment of CNTs in an
aluminum matrix [5].

However, the lack of knowledge about the prediction
of the mechanical properties in composite materials
represents a challenging aspect of the component design,
manufacturing process optimization and the scaling of
experimental works to industrial applications. In general,
these problems involve a high cost and time consumption
to obtain specific mechanical properties in a composite
material [6]. Some of the solutions that have been
implemented are based on mathematical approaches
that include matrix and reinforcement parameters for the
determination of mechanical properties such as effective
tensile strength, elastic modulus and shear strength [7].

For these reasons, some authors propose using
mathematical relations named Rule of Mixtures, where
the effective strength of the nanocomposite material
can be determined as a volume-average of the tensile
strength of the constituent materials, namely, matrix
and reinforcement [8] Equation 1.  Moreover, other
works consider the effect of reinforcement orientation,
using a Shear Lag Model (Equation 2J; this model
considers a perfect interface bonding between matrix and

reinforcement where the aspect ratio and orientation of
the reinforcement generates a change in the composite
effective tensile strength [9]. Additionally, the Halpin
and Tsai model (Equation 3] has been used to explain
the nanocomposite materials’ behavior; this model
contemplates that the increase of aspect ratio of
reinforcement and the ratio between reinforcement
and matrix tensile strength leads to an increase in
nanocomposite effective tensile strength [10].

IM =9, x Vi + 9, x V, (1)
S—1L 1

v =0 §VRSeff + Vi (2)

9T = 9, hti:vw } §

Where 9FOM 9S—L and 9HT are the effective tensile
strength based on the Rule of Mixture, the Shear Lag
model and Halpin and Tsai model, respectively;V,. and
V., are the volume fractions of the reinforcement and the
matrix, respectively; 9, and ¥, are the tensile strength of
the reinforcement and matrix, respectively. Finally, Seys, &
and 7 are the effective aspect ratio of the reinforcement,
geometry relation determined as £ = 2[/d (land d are the
reinforcement length and diameter, respectively), and a
relation specified as n = [(9,/%m) — 1]/ [(F/Fm) + &].
For more details about the meaning of these parameters,
see [8-10].

On the other hand, Leidner and Woodhams Model
Equation 4 explains the effective tensile strength of
the nanocomposite material with the inclusion of the
interface interaction between matrix and reinforcement;
for this interaction, the interface thickness and the shear
modulus of the matrix have an important influence on
such mechanical property [11]. Furthermore, Kelly-Tyson
Model 5 and 6, considers the maximum stress transfer of
the reinforcement to the matrix, also, this characteristic
is compared with the reinforcement length at which
the fracture strength of the reinforcement is reached
[10]. Also, the Zhang Chen Model Equation 7 includes
information on the Burgers vector and shear modulus
of the matrix for the effective tensile strength; this
model explains that the manufacturing temperature
and the thermal expansion coefficients of matrix and
reinforcement imply an increase in nanocomposite
mechanical properties [9].

O
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m

Where 9L=W 9K-T and 9Z-¢ stand for the effective
tensile strength obtained by Leidner and Woodhams
model, Kelly-Tyson model and Zhang Chen model,
respectively; ¥;,C, S,l and [, are the tensile strength in
the composite interface, level of stress transfer between
matrix and reinforcement, the stress concentration
parameter, the reinforcement length and the critical
reinforcement length (reinforcement length at which
the fracture strength of the reinforcement is equal to
the maximum stress transferred to the reinforcement),
respectively: The coefficient “A” includes the effects of
manufacturing temperatures, test temperatures, and
thermal expansion coefficients, while coefficient “B”
introduces a relation between Burgers vector and shear
modulus of the matrix, and diameter and the volumetric
fraction of the reinforcement. For more details about the
meaning of these parameters, see [9-11].

The requirement of increasing the prediction accuracy
for effective tensile strength has led some authors to
consider the inclusion of all strengthening mechanisms
generated for the nano-reinforcement in the matrix. For
this reason, several authors define that the behavior of
the nanocomposite’s effective tensile strength depends
on the matrix tensile strength, maximum load transfer
between reinforcement and matrix, the interaction
between the reinforcement and matrix dislocation, and
thermal mismatch caused by the differences of thermal
expansion coefficients of constituent materials [12]. These
characteristics can be considered in several ways. For
example, the Arithmetic Summation Method (Equation 8]
presents the nanocomposite’s effective tensile strength
as the addition of the parameters mentioned above
(matrix tensile strength, maximum load transfer between
reinforcement and matrix, the interaction between
the reinforcement and matrix dislocation, and thermal
mismatch). On the other hand, the Quadratic Summation
Method (Equation 9) specifies that the summation of the
squares of the strengthening mechanism is proportional
to the square of the nanocomposite’s effective tensile
strength. The Compounding Method (Equation 10 and 11)
determines that all the strengthening mechanisms relate
to each other and with the yield strength.

79?81\/[ = 19m + ﬁload + ﬂorowan + ﬁCTE [8]

(ﬁ?SAj)Q = ﬁ?n + ﬁlzoad + Q9growan + ﬁzCTE [9]

ﬂm ﬁload
=11 1
=) (0 52)
ﬁorowan ﬁCTE
1+ —— 1+ ——
(155) (0 75)

ITM =9, (0 — 1) (11)

(10)

Where 945M 9Q5M and 9CM are the effective tensile
strength obtained by Arithmetic Summation Method,
Quadratic Summation Method, and Compounding Method;
respectively; Yiad ; Jorowan and Yorg are the maximum
load transfer between reinforcement and matrix, the
interaction factor between matrix dislocations and
reinforcement, and the thermal mismatch caused by the
difference on thermal expansion coefficients, respectively
[12].

With the objective to implement a comparative assessment
between the mathematical models abovementioned, this
work develops a new taxonomy that allows classifying
the models taking into account the following factors:
required parameters, necessities of experimental tests,
mathematical robustness, among others. The taxonomy
proposes to classify the models into three generations,
which are evaluated and compared in the present
work considering precision, computational cost and
the demands on material characterization. Finally, the
comparative assessment provides relevant information
about the accuracy of the models in predicting tensile
strength. Additionally, it is observed how the inclusion
of geometric variables of the reinforcement (diameter,
length, aspect ratio), and stretching mechanisms, among
others, affect the response of the effective tensile strength
in nanocomposite materials.

2. Materials and methods

2.1 Taxonomy for the effective tensile

strength models

The classification of analytical models provides the
possibility to compare each other following the next
criteria: physical phenomena, input variables, and the
requirements of material characterization; precision and
computational cost are other relevant criteria. The
developed taxonomy suggests the classification of the
existing models into three families: First Generation,
Second Generation, and Third Generation, as can be
observed in Figure 1. The flowchart specifies the
main features (conditions, modifications, phenomena
analysis, strengthening mechanism) and some examples
of analytical models for each family. Accordingly,
the First-Generation family comprises the models that
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provide the basis to describe the mechanical behavior of
nanocomposites and the starting points of calculation of
effective properties in material science, such as the Rule
of Mixtures, Shear Lag model, and Halpin and Tsai model.
Models of the Second Generation include modifications
of the First-Generation models to improve the prediction
accuracy by using other additional mechanical properties,
phenomenological variables, and fitting constants, such as
the shear modulus, interface interactions factors between
matrix and reinforcement, and reinforcement geometry,
among others; Zhang Chen, Leidner and Woodhams
and Kelly-Tyson models are incorporated in this second
family. Finally, Third Generation models account for other
aspects such as manufacturing characteristics (process
temperatures, reinforcement concentration, and test
conditions), a combination of stretching mechanisms, and
additional phenomenological factors accounting for the
interaction between matrix and reinforcement [(difference
of thermal expansion coefficients, load transfer from
reinforcement to the matrix, among others); models
like Arithmetic Summation Method, Quadratic Summation
Method and Compounding Method take place in this third
family.

2.2 Assessment of analytical models

For the development of the computational algorithms
and the comparative assessment between the analytical
models, three analysis phases are considered, see Figure
2. The flowchart explains the interaction between the
phases, the taxonomy developed, and the importance
of computational models in the determination of
nanocomposites’ effective tensile strength. The first
phase is the identification of the main models of each
generation, for which they are determined the input
variables, reinforcement concentration ranges, model
assumptions and different physical phenomena that
explain the changes in the nanocomposites’ effective
tensile strength. The second phase is the selection of
benchmark works for comparison purposes where it
is important the search for experimental studies that
contain the input variables identified in phase one and
the effective tensile strength of the nanocomposite;
also, it is relevant that the selected researches include
a phenomenological analysis about the increase of
tensile strength in nanocomposites since this information
allows a comprehensive examination of the model input
parameters and the relative error obtained. Finally,
the last phase is the comparative assessment of the
results obtained by the analytical models and results of
experimental benchmark works.

3. Results and discussions

3.1 Accuracy and robustness assessment of
analytical models

The analytical models considered in the present work
are run with data from Table 1. The comparative
assessment uses the experimental research of Feijoo
et al. [13], where the nanocomposite is a Metal Matrix
Composite (MMC) of 7075 aluminum alloy reinforced with
multiwall carbon nanotubes [MWCNTs). The selected work
presents the main characteristics of the manufacturing
process, properties of the matrix and reinforcement,
and test conditions, allowing the identification of the
input variables that each model requires (Table 1). In
such a work, nano-reinforcement weight content ranges
between 0.5 wt% and 1 wt%; also, nanocomposites were
developed by powder metallurgy assisted with high energy
ball milling (HEBM) to improve the nano-reinforcements
dispersion, and additionally, hot powder extrusion (HPE)
at 500°C was employed for mechanical consolidation.
The Microstructural characterization was carried out
by X-Ray diffraction and Scanning Electron Microscopy
(SEM]. The mechanical characterization included Vickers
micro-hardness measurements (HV0.2) and tensile tests
performed at room temperature with an MTS tensile
testing machine.

Table 1 Values of main parameters for effective tensile strength
analytical models [9, 13, 14]

Parameter Value Units
¥, matrix tensile strength 228 MPa
4, reinforcement tensile strength 2.9 GPa
G'm, matrix shear modulus 26.9 GPa
b, matrix Burgers vector magnitude 0.286 nm
d, reinforcement diameter 20 nm
[, reinforcement length 2 pgm
AT, temperature change 480 °C

CTFEp,, thermal expansion
coefficient of matrix
CTE,, thermal expansion
coefficient of reinforcement 4x107° Kt
YS, matrix yield strength 103 MPa

229x%x107% K!

For the accuracy assessment of the analytical models,
the range between 0 wt% of MWCNTs to 2 wt% MWCNT
was used; additionally, the analysis was performed
considering the classification described in section 2.1.
The experimental results were used in two nanocomposite
compositions as presented in the research of Feijoo
et al.  [13], where the samples of AA7075-0.5 wt%
MWCNTs and AA7075-1 wt% MWCNTs were tested. The
comparative assessment is represented in Figure 3,
with the First-Generation Models represented in Figure
3a, Second-Generation Models in Figure 3b, and Third-
Generation Models in Figure 3c. To understand the
accuracy difference between the generation models, the
results are included in Table 2.
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Figure 1 Developed taxonomy for effective tensile strength models for nanocomposites
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In Figure 3a, it is observed that the differences between
experimental results and analytical results of First
Generation models are remarkable, where the relative
erroris in the range of 44.7% to 47.2% and 38.5% to 44.5%
for 0.5 wt% MWCNTs and 1 wt% MWCNTSs, respectively.
This behavior can be caused by the high dependency
of input variables on wt% MWCNTs; additionally, it
is correct to say that, under these First-Generation
models, it is necessary a high amount of reinforcement
for a high increase in the effective tensile strength. The
Second-Generation models (Figure 3b) have relative errors
between 10.1% to 44.9% and 11.3% to 39% for 0.5 wt%
MWCNT and 1 wt% MWCNT, respectively. Particularly,
the Zhang Chen model is the most accurate one of the
Second-Generation family; this model includes input
parameters accounting for the manufacturing conditions,
mechanical properties of the matrix, and other geometric

Figure 2 Comparative assessment flowchart

characteristics.  On the other hand, the Kelly-Tyson
and Leidner-Woodhams analytical models have similar
accuracy to the First-Generation models.

For the Third-Generation models represented in Figure
3c, the relative error ranges are between 24% to 47% for
0.5 wt% MWCNT, and 10.6% to 103.8% for 1 wt% MWCNTs.
From this family, the Arithmetic Summation Method is the
most accurate model, whereas the Compounding Method
is the least accurate one. With this accuracy assessment,
it is observed that in the Third Generation Models the
inclusion of the stretching mechanism, as presented in the
Arithmetic Summation Method or Quadratic Summation
Method, leads to results close to reality.

To evaluate the consistency of the abovementioned results,
some works devoted to the validation of analytical models

119



120

M. Duarte-Garcia et al., Revista Facultad de Ingenieria, Universidad de Antioquia, No. 108, pp. 115-123, 2023

—-+-— Rule of Mixture
~-#-— Shear-Lag Model

* Halphin-Tsai
100 # 7075-0.5 wi% MWCNTs
# 7075-1 wt.% MWCNTs

300

Effective Tensile Strength (MPa)

200

0 0.2 04 06 08 1 12 14 16 18
Weight percentage of Carbon Nanotubes (%)

Effective Tensile Strength (MPa)

o 02 04 06 08 1 12 14 16 18
Weight percentage of Carbon Nanotubes (%)

(a) (b)

1200

1100

1000

00

700

600

Effective Tensile Strength (MPa)

500

a0

— = Arithmetic Summation Method
- ation Method

04 06 08

1 12 L4 e 18

Weight percentage of Carbon Nanotubes (%)

(c)

Figure 3 Computational models results, a) First-generation models, b) Second-generation models, C) Third-generation models

Table 2 Effective tensile strength for computational models and experimental research (MPa Units)[13]

Composite Research
samples Data YROM 93T 9HT 9L=W  gK-T  yz—c 9ASM 9@SM 9&M
AA7075-0.5 wt% MWCNTs 436 241 230 230 240 240 392 331 239 641
AA7075-1 wt% MWCNTs 415 255 232 230 253 253 468 371 249 846

are briefly mentioned. For the First-Generation models,
some authors such as Law et al. [15] demonstrated
that applying the Rule of Mixtures into a composite of
polycarbonate matrix reinforced with short carbon fiber (0
wt% to 20 wt%) can generate a relative error of around 67%
regarding experimental results. Additionally, the Halpin
and Tsai model was applied by Zhou et al. [16] in an MMC of
AZ31B magnesium alloy reinforced with carbon nanotubes
(0 wt% to 4 wt%], obtaining a relative error of up to 43%.
These results confirm that First-Generation models can
lead to important sub-prediction of the tensile strength of
nanocomposites for the weight contents considered here.
In the Second-Generation models, the application of the
Kelly Tyson model by Gusev et al. [17] for an MMC of A356
aluminum alloy reinforced with nanofibers (0 wt% to 1.1
wt%) led to relative errors up to 31%, which is in the same

order of magnitude as the results achieved here for such
a model. Finally, Zhang et al. [18] used Third Generation
models for an MMC of an aluminum matrix reinforced with
CNTs (1 wt% to 8 wt%) and obtained maximum relative
errors of 8%, confirming that models of this family can be
very accurate.

A discussion about the robustness of the models
can be built considering the required input variables,
which are summarized in Table 3. Some variables
correspond to physical, mechanical, or thermal properties
of the constituent materials, which are determined by
experiments having different kinds of errors; therefore,
the larger the number of input parameters required, the
higher the error carried on the model. According to Table
3, Third Generation models (ASM, QSM, and CM) and Z-C
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model imply almost the same number of input parameters
(CM requires an additional parameter, namely, yield
strength of the matrix), whereas the remaining models
demand a smaller number of parameters, however, in
general, these models are less accurate than the former
ones. Accordingly, considering a trade-off between the
number of parameters required and the relative errors
previously obtained, ASM and Z-C remain the most
appropriate models in accordance with the experimental
work considered here. At this point, it is important to
emphasize that all models considered in the present
work have relevant assumptions directly affecting their
robustness, such as the homogeneous dispersion and the
nano-reinforcement orientation parallel to the applied
force.

To compare the computational time of the evaluated
models, considering that this can be short for one run,
twenty successive runs are deemed for each model,
obtaining the results shown in Table 4. In general, models
requiring more parameters demand more computational
time; however, this increment is justified, even for a large
number of runs, considering the improvement in accuracy.

3.2 Behavior of effective tensile strength with
nanotube weight content

For the comparative assessment of the analytical models,
the range between 0 wt% MWCNTs to 5 wt% MWCNTs
was used. A comprehensive analysis was performed
considering the classification proposed above and the
methodology of sections 2.1 and 2.2. The results of
the relation between the weight percentage of carbon
nanotubes [(axis x) and the effective tensile strength
of the nanocomposite (axis y) are shown in Figure
4, with the First-Generation Models represented in
Figure 4a, Second-Generation Models in Figure 4b and
Third-Generation Models in Figure 4c.

For the First-Generation Models, a linear increase of
the effective tensile strength with the weight content of
nano-reinforcements (wt%) can be observed, being the
slope different for each model, with the most aggressive
increase in the tensile strength occurring for the Rule
of Mixtures (simplest analytical modell. On the other
hand, the Shear Lag and Halpin and Tsai models predict
considerably smaller tensile strengths than ROM.

Kelly-Tyson, Leidner-Woodhams and Zhang Chen models
conform to the Second-Generation models (Figure 4b).
For the Zhang Chen model, a non-linear increase of
the effective tensile strength with wt% can be noticed.
However, Kelly-Tyson and Leidner-Woodhams models
keep a similar behavior of tensile strength to the one

obtained for First Generation models, namely, a linear
increase with wt%. It is important to mention that the
results of the last two models are very close to each other.

Finally, Figure 4c shows the behavior of the Arithmetic
Summation Method, Quadratic Summation Method, and
Compounding Method or Third Generation models family.
The results show that the three analytical models have
a non-linear behavior, with the Arithmetic Summation
Method and Quadratic Summation Method presenting
asymptotic tendencies. These two models consider the
influence of stretching mechanisms on the effective
tensile strength of nanocomposite. On the other hand,
the Compounding Method proposes an interaction
between the stretching mechanism and the matrix yield
strength, where the second one can cause the exponential
increase of the effective tensile strength in nanocomposite
materials.

4. Conclusions

The proposed taxonomy demonstrated versatility for the
classification, comparison, and selection of the main
analytical models in the prediction of the effective
tensile strength in nanocomposite materials. In
addition, the identification of the input parameters,
assumptions, and main physical phenomena allowed
the development of a comparative assessment between
the three families of analytical models. Similarly, the
accuracy assessment through the experimental research
determined a minimum relative error of 44.7%, 10.1%,
and 10.6% for First-Generation, Second-Generation, and
Third-Generation models, respectively. Furthermore,
the analysis of robustness demonstrates the importance
of the required parameters and their obtention for
the characterization of the analytical models, also
validating the influence of the experimental variables
and adjustment variables in the evaluation of the model’s
behavior. Finally, it was observed that the number of
input variables, their interactions, and their dependence
cause linear and non-linear behaviors. However, the
main difference in accuracy in the three generations of
analytical models has been caused for the assumptions
such as the homogeneous dispersion and idealization of
the nano-reinforcement orientation parallel to the applied
force. These considerations can be modified in future
research.
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Table 3 Required parameters for the analytical models used in the prediction of the effective tensile
strength in Nanocomposites)

First Generation Second Generation Third Generation
ROM S-L H-T K-T LW Z-C ASM (QSM CM
Matrix tensile strength, ¢, X X X X X
Reinforcement tensile strength, 9, X
Matrix volume fraction, Vi, X
Reinforcement volume fraction, V- X
Matrix shear modulus, G
Magnitude of Burgers vector of matrix, b
Reinforcement diameter, d
Reinforcement length, ( X X X
Temperature change, AT

Model / Parameter

>
>

X X X

X X X
X X X
X X X

>
>
>
XX X X X X X X X

XX X X X X X X
XX X X X X X X
XX X X X X X X X

Thermal expansion coefficient
of the matrix, CT E,,
Thermal expansion coefficient
of reinforcement,Cor g

>
>
>
>

X X X X

Matrix yield strength, YS X

Note: ROM, S-L, H-T, K-T, L-W, Z-C, ASM, QSM, and CM are the Rule of Mixtures model, Shear lag model, Halpin
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Table 4 Execution time for each model after twenty successive

runs
Generation Model Execution
identification | time (s)

ROM 23
First Generation S-L 29
H-T 30
K-T 32
Second Generation L-W 29
Z-C 38
ASM 39
Third Generation 6 QSM 38
CM 40
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