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ABSTRACT: This paper presents a sensor-less haptic adaptive assistance scheme for
bilateral shared controlled in telerobotics. The paper focuses on the implementation
of an adaptive assistance scheme previously developed using force sensors at the
master’s side, extending it to the case where this measurement is no longer available.
The experimental setup was composed of a virtual slave robot and a real master
robot (a commercially-of-the-shelf, low-cost haptic device), namely the Novint Falcon
haptic device. Due to the lack of sensors to measure the contact force between the
human operator and the haptic control device i.e., only the position of the master
robot is measured, a data-driven Unknown Input Observer with disturbance estimation
augmentation is proposed, allowing the estimation of the (external) human force under
plant uncertainty and external disturbances. The proposed approach is tested via a
path tracking (known) with (unknown) obstacle avoidance task, and statistical analysis
regarding the scheme’s effectiveness is presented.

RESUMEN: Este artículo presenta un esquema de asistencia háptica sin sensor para
telerobótica controlada compartida bilateral, más específicamente se enfocará en la
implementación de un esquema de asistencia adaptativa desarrollado previamente por
uno de los autores. Para la aplicación del esquema de asistencia adaptativa, se establece
una configuración de teleoperación con un robot esclavo virtual y un robot maestro real
(dispositivo de control háptico) utilizando un dispositivo háptico comercial (de bajo costo),
a saber, el háptico Novint Falcon dispositivo. Un problema en la configuración de la
teleoperación es la falta de sensores para medir la fuerza de contacto entre el operador
humano y el dispositivo de control háptico (es decir, solo se mide la posición del robot
maestro), que es necesaria para la aplicación de la asistencia adaptativa. Se propone
un aumento de estimación de perturbación de un observador de entrada desconocido
con una red neuronal, que permite la estimación de la fuerza humana (externa) bajo
incertidumbre de la planta y perturbaciones externas. El documento presenta los
resultados de implementación de un problema de seguimiento de ruta (conocido) con
evitación de obstáculos (desconocidos), y se presenta un análisis estadístico sobre la
efectividad de los esquemas.

1. Introduction

Telerobotics is a special area of study within the field of
human-robot interaction.

The general teleoperation setup is composed of a robot
(slave robot) that is remotely controlled by a human
operator via a control device (master robot). Telerobotics
is useful in tasks that present themselves as difficult (or
even impossible) to perform by human operators (e.g.,
micro-manipulation), or which takes place in dangerous
environments (e.g., handling radioactive material). Robots
exceed human capacities in terms of precision and force.
On the other hand, humans are able to react quickly to new
situations and environmental changes. In human-robot
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interaction (HRI), the physical advantages of the robot are
united with the cognitive advantages of the human. This
type of cooperation can help in the execution of complex
robotic tasks which cannot be automated or demand a
high technological effort to be fully automated. Examples
of applied HRI can be found in manufacturing [1] and
medicine [2].

Telerobotics, as described in [3], is the control of a
robot by a human operator located at a remote site.
The human uses a control device (master robot) to send
control commands to the remote-controlled robot (slave
robot). That robot then executes those commands, while
the human operator is monitoring the execution via a
visual or audiovisual channel. Figure 1 illustrates a simple
teleoperation environment. In bilateral telerobotics,

 

 

Figure 1 Sketch of a teleoperation environment

the human operator not only sends commands to the
slave robot, but also receives information from it.
Such information comprises, for example, the existing
contact force between the slave robot and objects in its
environment. This information can then be displayed
haptically at the operator’s side and may be used to
enhance task performance. Depending on the application,
the robot can make autonomous decisions (supervisory
control) or can be programmed to follow the operator’s
commands directly (direct control). A control strategy that
is somewhere in between supervisory control and direct
control is shared control. In shared control, autonomous
trajectories may be modified by the human operator (e.g.,
to track unmodelled target motions), while trajectories of
the operator may also be modified autonomously by the
robot (e.g., compliance when the robot comes in contact
with unknown obstacles) [4]. Thus, bilateral shared control
is used when the human operator needs assistance during
a teleoperation task that requires sudden changes within
parts of the predefined task i.e., the master and the slave
actively change roles.

In many teleoperation tasks, it is helpful for the human
operator to be assisted by some teleoperation control
system. Assistance can be provided through audio,
visual and/or haptic channels. A common assistance
method in bilateral shared controlled teleoperation tasks
is the use of virtual fixtures. These are virtual elements
helping the operator to move the robot along a desired

path (guidance virtual fixtures, GVFs) and/or restricting
the slaves movements within certain areas (forbidden
region virtual fixtures, FRVFs) [5]. Virtual fixtures reduce
the mental load of the human operator and improve
precision and performance of a teleoperation task and
can be modeled as compliant and/or damped surfaces,
frictional contacts or potential fields. Virtual fixtures work
as follows: if the human operator controls the slave robot
away from the desired path, they receive an assistance
force

fa = k⊥ (yd − y)− d⊥ẏ

in the haptic control device, which pushes the user back to
the desired path. Here, y is the position of the slave robot,
yd is the desired position, k⊥ the stiffness of the GVF and
d⊥ its damping coefficient. The values for the parameters
k⊥, d⊥ have to be chosen depending on the teleoperation
setup and the task, and have generally been chosen as
fixed control gains.

If the environment where the teleoperation task takes
place is only partially known or unexpected things happen
during the task, constant assistance gains may not be
suitable or may even disturb the operator, leading to an
additional mental workload for the user and increasing
the risk of not executing the task correctly. In the case
of using virtual fixtures for assistance, changing their
properties (e.g., the impedance of a spring-damper virtual
fixture) due to an adaptation rule could lead to appropriate
assistance in unknown situations. Adaptive assistance
in telerobotics is a rather young field of research and
has been addressed in [6] and the references therein. It
has been shown that in contrast to constant (structured)
assistance, the operators may benefit from adaptive
schemes during unforeseen situations (e.g., unknown
obstacles on the desired path).

This work builds on the adaptive assistance scheme
developed by Corredor et al. [6]. The proposed assistance
is based on a decision-making model (DDM), which is
applied to a teleoperation task where control authority is
negotiated depending on the environmental conditions.
In order to allocate control authority, the stiffness of a
GVF is modulated continuously during the task execution.
Unfortunately, in order to apply the DDM adaptive
assistance scheme, information about the contact force
between the human operator and the haptic control device
is necessary. However, this is a restrictive requirement
since many commercial systems do not include such force
sensors and rely solely on the joint position for feedback
control

The main contribution of this paper is two-fold: first,
we propose a data-driven observer to estimate the
force exerted by the human operator in a novel adaptive
assistance scheme; second, we perform a detailed
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statistical analysis of experimental results, providing
evidence of the performance of the assistance scheme.
In the former, a regression model is proposed and a
Neural Network (NN) is used to estimate the output
of the unforced system (nominal dynamics). Our main
contribution is the analysis of two different training
architectures that seek to increase robustness in the
model identification process and hence produce better
estimations of the operator’s force induced on the master
device. In the later contribution, an experimental setup
was implemented using a commercially-off-the-shelf
master device and a set of tests were performed. This
work caters for a better understanding of bilateral shared
control schemes for teleoperation tasks and of what are
the effects of not having a direct measurement of the
operator’s exerted force. These results, in conjunction
with those presented in Corredor et al. [6], permit a
fair comparison of the task performance in both cases
and allow for “objective” conclusions (the effect of other
sources of uncertainty and complexity are removed) to be
drawn. This paper allows for a better understanding of
how the use of estimators affects the real-life application
of advanced, highly immersive, teleoperation schemes

The remainder of this work is organized as follows.
Section 2 provides an overview of recent research in
adaptive assistance in telerobotics and sensorless human
force estimation in HRI and telerobotics. Section 3
presents preliminary work in the field of (nonlinear)
estimation of external inputs (Unknown Input Observers
- UIO) in the field of robotics; an introduction for basic
robot kinematics and dynamics and a Neural Network
augmentation is introduced in order to take care of
system uncertainties and external disturbances that
are not of interest to the haptic feedback. In Section 4,
the established teleoperation setup is proposed. It is
important to highlight that communication delays are not
considered as of yet. Finally, in Section 5, the user study
is presented, followed by some concluding remarks on the
work and its results.

2. Preliminaries

This section gives an overview of recent research in
adaptive assistance in telerobotics and about sensorless
human force estimation in HRI. The state-of-the-art in
adaptive assistance reveals that the interaction force
between the human operator and the master robot
provides rich information about human’s behavior in
teleoperation tasks. However, force sensors are not the
standard for commercially available haptic control devices,
especially not for the low-cost devices such as the Novint
Falcon. This fact motivates the integration of an estimator

for the operator’s force within the HRI context.

2.1 Adaptive haptic assistance in
telerobotics

Adaptive haptic assistance in telerobotics still is a rather
young field of research. A study with different haptic
assistance policies in telerobotics is presented in [7].
In their teleoperation scenarios, a virtual box has to be
guided through a maze without and with obstacles that
have to be avoided, and GVFs are implemented to support
the user. In the study, one constant assistance policy and
two adapting policies (switching and linear continuously
adapting) are compared according to task performance,
disagreement, perceived workload by the users and
efficiency. One conclusion of that study is that adaptive
assistance policies have the potential to outperform
constant assistance when taking into account multiple
performance measures. For known environments with
obstacles in particular, adapting policies provide more
flexibility. However, the authors also conclude that it
cannot be said generally that continuously adapting
policies are better than switching policies or vice versa
according to their evaluation metrics.

The work in [8] also proposes a study to compare
constant and adaptive haptic assistance in telerobotics.
The focus of that study is the analysis of how the assistance
system behaves when unpredictable disturbances arise.
Therefore, scenarios with disturbances forces are
established; also, adapting the assistance is developed by
changing the stiffness of the GVF linearly with the user grip
force measured by force sensors. The authors conclude
that adaptive assistance achieves similar performance to
high gain (strong guidance) constant assistance. However,
adaptive assistance reduces the steering force necessary
to overcome situations with unpredictable disturbances.

Corredor et al. [6] developed a nonlinear continuously
adapting assistance policy with the intention to make
the assistance react more “human-like” in partially
known environments. The assistance system is based
on the drift-diffusion model (DDM), a decision-making
model from cognitive science. The DDM represents a
decision-making process as a Two-Alternative Force
Choice (TAFC) task depending on past decisions. In [6],
the DDM is integrated into the assistance system to
adapt the impedance of a spring-damper GVF in order to
improve the performance of the teleoperation task with
unknown obstacles. The adaptive assistance proposed
by Corredor et al. is more complex than systems with
linearly adapting policies, which makes it interesting
for further investigation. That study concludes that
adaptive strategies that preserve the transparency of the
interaction present better performance.

83



J. Sofrony et al., Revista Facultad de Ingeniería, Universidad de Antioquia, No. 108, pp. 81-97, 2023

2.2 Sensorless human force estimation for
HRI

In the field of sensorless external force estimation in
robotics, a lot of research has been done, where human
force estimation in HRI can be seen as a special case
of sensorless external force estimation. In [9], the
authors propose a neural network-based contact force
observer for haptic applications. They use an MLP neural
network to model the inverse dynamics of a 3-DOF Planar
Twin-Pantograph haptic device. However, only sensor
signals from the joint angles are available, so the velocities
and accelerations are obtained using derivative filters.
In [10], the problem of estimating human force, while
lifting heavy unknown masses with robotic assistance, is
tackled. The human force estimation is formulated as a
linear control problem where precise knowledge about the
robot dynamics is necessary. The work in [11] proposes a
twin robot system called shadow robot to estimate human
force. The system consists of two robots of the same type,
where one robot is constrained by the human, while the
other one can move freely. The robots are controlled in
position, velocity and acceleration via a control based on
a disturbance observer. By subtracting the disturbance
torque in the unconstrained robot from the constrained
one, the human force is extracted. In [12], the nonlinear
disturbance observer proposed by [13] is used for human
force estimation in a 1 DOF haptic device. To estimate
the human force, a parametric dynamic model (including
friction terms) of the device is required. This allows
the separation of the observed disturbance torque into
a friction term and the applied human force. In [14], a
Kalman filter disturbance observer was implemented
in order to estimate human force for a delta robot. The
disturbance torque is estimated by using measures of the
motor currents and the joint angles. That disturbance
torque observer is very similar to the one used in [11].
However, this work does not mention how to deal with
model uncertainties and unmodeled dynamics in order to
separate the torque caused by the operator from those
due to disturbances. A sensorless approach to estimate
human force for collision detection in HRI is proposed
in [15]. A collision torque observer, based on a nominal
dynamic model with generalized momentum, is used. The
use of the generalized momentum makes acceleration
information unnecessary, which is usually not directly
measured in robotic systems. Hence, only the joint angles,
angular velocities and motor torques are needed for the
proposed approach. Model uncertainties and friction
parameters are identified using a genetic algorithm.

In [16–18], model-based techniques are proposed in order
to estimate external forces under communication time
delays. Convergence proofs rely on Lyapunov methods and
these works concentrate mostly on enhancing robustness
against time-delays of the estimator. The approach we
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Figure 2 Coordinate frames for the N ovint Falcon kinematics

follow is somewhat different in the sense that we opt
for a data-driven approach, where the model is trained
a priori. In this sense, time delays are assumed to be
negligible. Although this assumption is strong, we prefer
to concentrate on the mechanics of shared control and the
effect that the lack of force sensors has on the overall task
execution performance.

3. Human interaction force
estimation

For the application of the adaptive assistance, it is
necessary to have information about the force that the
human operator exerts on the master robot. Because the
Novint Falcon is not equipped with any force (or velocity)
sensors, the so-called human force must be estimated.
In this paper, the human force is estimated in a similar
fashion to the approach in [12]. First, a simplified rigid body
dynamic model is derived for the master robot, namely the
nominal model. Then, a nonlinear disturbance observer
(NDOB) for robots is proposed and applied for the Novint
Falcon. The idea is that the observer estimates the sum
of all torques due to external forces, as well as model
uncertainties and unmodeled dynamics. Then, in order to
separate the torques due to external forces (in our case,
the human force) from remaining disturbances, a neural
network (NN) based estimator is proposed.

3.1 Nominal master robot dynamics

Kinematics

The vector of joint variables is defined as q ∈ Rnq , where
nq is the number of the actuated joints and the robot’s
position with respect to a fixed workspace coordinate
frame is described by the vector p ∈ Rnp , where np is the
number of DOF of the end-effector. The Novint Falcon has
three DOF and three actuated joints, thus, nq = np = 3
with parameters as presented in [19].
In [20], the inverse kinematics in the coordinate frames
Li (see Figures 2 and 3 for the position of the coordinate
frames) are derived. Because the end-effector’s position
is only known with respect to H , the coordinates are
transformed to Li. The position of the coordinate frameH
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Figure 3 Labeling of the links and joint angles

Table 1 Novint Falcon Parameters [19]

Link Length [mm] Rotation angles and
displacements

a 60.0 ϕ1 105 °
b 102.5 ϕ2 225 °
c 15.7 ϕ3 345 °
d 11.5 LirH,x -36.6mm
e 11.5 LirH,y 27.2mm
f 26.2 LirH,z 144.3mm
g 27.9

with respect to Li can be described by the homogeneous
transformation matrix (see Equation (1))

LiTH =

[
LiRH

LirH
0T 1

]
=


cos (ϕi) sin (ϕi) 0 LirH,x

− sin (ϕi) cos (ϕi) 0 LirH,y

0 0 1 LirH,z

0 0 0 1


(1)

with the rotation matrix LiRH and the displacement
vector LirH . The values for the rotation angles and
displacements are given in Table (1), [19]. Hence, the
coordinates of the end-effector’s position p with respect
toLi can be transformed using (2). From (3), (4) and (5) the
equations for the inverse kinematics can be obtained as

Lip = LiRH
Hp+ LirH (2)

from the known end-effector position Hp. Using
trigonometric relations, elements of Lip can be expressed
as functions of the joint angles θji as

Lipx = a cos (θ1i)− c+ (d+ e+ b sin (θ3i)) cos (θ2i) ,
(3)

Lipy = b cos (θ3i) + f, (4)

Lipz = a sin (θ1i) + (d+ e+ b sin (θ3i)) sin (θ2i) . (5)

The detailed steps for the derivation of the inverse
kinematics can be found in [20]. Due to the constructive
design of the Novint Falcon and the restrictions of the
joint angles, a unique solution, out of the four theoretical
possible solutions, can be obtained (see (6) - (8)), as:

θ3i = arccos

(
Lipy − f

b

)
, (6)

θ1i = 2arctan

(
−l1i −

√
l21i − 4l2il0i
2l2i

)
, (7)

θ2i = arccos

(
Lipx − a cos (θ1i) + c

d+ e+ b sin (θ3i)

)
(8)

l0i = Lip2z +
Lipx

(
Lipx + 2 (c− a)

)
+ a2 + c2

−d2−e2−(b sin (θ3i))2−2 (b sin (θ3i) (e+d)+de+ac)

l1i = −4a Lipz,

l2i = Lip2z +
Lipx

(
Lipx + 2 (c+ a)

)
+ a2 + c2

−d2−e2−(b sin (θ3i))2−2 (b sin (θ3i) (e+d)+de−ac)

Equation (7) may be used; as an alternative to (8), the
following equation may be used instead:

θ2i = arcsin

(
Lipz − a sin (θ1i)

d+ e+ b sin (θ3i)

)
The Jacobian matrix J for the Novint Falcon is derived.
With J, velocities and forces can be transformed from the
joint space to the workspace and vice versa [21] using the
relation in (9).

ṗ = J (q) q̇ τ = JT (q) f (9)

with f being the force vector at the end-effector and τ
being the torques at the actuated joints.

A derivation of J for the Novint Falcon can be found
in [22]. The inverse Jacobian matrix is given by:

J−1 =

 J−1
11 J−1

12 J−1
13

J−1
21 J−1

22 J−1
23

J−1
31 J−1

32 J−1
33


J−1
i1 =

cos (θ2i) sin (θ3i) cos (ϕi)− cos (θ3i) sin (ϕi)

a sin (θ2i − θ1i) sin (θ3i)
,

J−1
i2 =

cos (θ2i) sin (θ3i) sin (ϕi) + cos (θ3i) cos (ϕi)

a sin (θ2i − θ1i) sin (θ3i)

J−1
i3 =

sin (θ2i) sin (θ3i)

a sin (θ2i − θ1i) sin (θ3i)

Dynamics

The rigid body dynamics of a robot are described in the joint
space formulation by the differential Equation (10)

M (q) q̈+C (q, q̇) q̇+ g (q) = τ (10)

with M (q) ∈ Rnq×nq being the symmetric and positive
definite inertia matrix, C (q, q̇) ∈ Rnq×nq being the
Coriolis and centrifugal matrix and g (q) ∈ Rnq being the
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Table 2 Formular symbols for the nominal model

Parameter Explanation
Im Inertia of the drive
ma Mass of the link a
mb Mass of the rod b
mc Mass of the end effector
IA = Im + a2( 13ma +mb)
m = 3mb +mc

gravity vector [23]. Regarding the Novint Falcon, q is the
vector of the three joint angles for the actuated joints θ1i.
In [20], a simplified rigid body dynamic model for a
mechanism such as the Novint Falcon is proposed. With
the following simplifications

• The mass of each connecting rod, mb, is evenly
distributed and concentrated at the joints B and E.

• The masses of the linksme andmd are negligible.

• The inertia of link a is approximated by the inertia of
a thin rod (I = 1

12maa
2)

Define nominal matrices (11) and (12) :

Mno (q) = IAI+ JTmJ Cno (q, q̇) = JTmJ̇ (11)

gno (q) = aγ

(
1

2
ma +mb

)sin (θ11) cos (ϕ1)
sin (θ12) cos (ϕ2)
sin (θ13) cos (ϕ3)

+JTm

0γ
0


(12)

with I being the identity matrix and γ being the gravity
constant (see Table 2 for further formula symbols).
The parameters for that dynamic model have been
experimentally identified by Karbasizadeh et al. [24] and
are aγ

(
1
2ma +mb

)
= −0.0298, m = 0.8653, IA =

0.0004

3.2 Joint velocity estimation

For the application of theNDOB, information about the joint
velocities is necessary. However, those velocities cannot be
measured directly and thus, they have to be estimated from
the computed joint angles. A simple “dirty” differentiator
is used (see Equation (13)), i.e., velocities are obtained by
applying the low pass filter

Gf (s) =
sωc

s+ ωc
. (13)

Hence, the estimated joint velocities are declared as
filtered velocities q̇f . The cut-off frequency is chosen
as ωc = 100 rad/s. It is assumed that the Novint
Falcon end effector does not move with a higher frequency
because it is constrained by the human operator during
task execution and the maximum tremor frequency of
the human hand can be located at approximately 12Hz

[25]. The advantage of the joint velocity estimation with
(13) is its computational simplicity, which leads to a low
computational effort and thus, it is useful for real-time
applications at the expense of being less precise.

3.3 Nonlinear disturbance observer

In this section, the NDOB for robots proposed in [13, 26]
is revisited. Define a new variable that sums the gravity,
Coriolis and centrifugal terms as in Equation (14),

N (q, q̇) = C (q, q̇) q̇+ g (q) (14)

The nominal model is not exact, hence the robot dynamics
(see Equation (15)) consist of the nominalmodel andmodel
uncertainties:

M (q)= Mno (q)+Mu N (q, q̇)= Nno (q, q̇)+Nu

(15)
Furthermore, τ c are the actuation torques (control
torques). Rigid body movements of a robot are usually
described by the ordinary differential Equation (10).
Besides rigid body movements, no exogenous excitations
such as friction are considered in the model. Inserting (14)
into (10), inserting (15) into the resulting equation and then
adding a friction τ f and external forces τ ext term, leads to
the extended model:

(Mno (q) +Mu) q̈+Nno (q, q̇) +Nu + τ f=τ c+τ ext

The uncertainties of the extended models are lumped in a
disturbance torque (16)

τ d = τ ext −Muq̈−Nu − τ f . (16)

Thus, the extended model has the form

Mno (q) q̈+Nno (q, q̇) = τ c + τ d

Chen et al. propose in [13] a NDOB for an estimation of the
disturbance torque τ̂ d. Based on the observer (17)

˙̂τ d= −L (q, q̇) τ̂ d+L (q, q̇) (Mno (q) q̈+Nno (q, q̇)−τ c) ,
(17)

where L (q, q̇) is the observer gain matrix. Alternatively,
the auxiliary variable z = τ̂ d − h (q, q̇), where h (q, q̇)
is a user-defined function and may be used for estimation.
Taking the time derivative of z as in Equation (18)

ż = ˙̂τ d −
dh (q, q̇)

dt
(18)

and defining (19)

dh (q, q̇)

dt
= L (q, q̇)Mno (q) q̈. (19)

the time derivative (18) may be rewritten as

ż = −L (q, q̇) z+ L (q, q̇) (Nno (q, q̇)− τ c − h (q, q̇))

τ̂ d = z+ h (q, q̇)
(20)
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In contrast to the observer (17), the new observer (20) does
not need information about the joint acceleration (see [13]).
Mohammadi et al. [26] generalize the observer (20) and the
way to obtain an observer gain matrix. They define

L (q) = X−1M−1
no (q) (21)

withX being a constant, invertible n× nmatrix andMno

being symmetric and positive definite. By inserting (21) into
(19), it can be shown that h (q̇) = X−1q̇. The convergence
may be established (see [26]) via Lyapunov analysis. The
disturbance tracking error converges exponentially to zero
if there exists positive definite and symmetric matrix X
and positive semi-definite matrixΓ such that Equation (22)

X+XT −XTṀno (q)X ≥ Γ. (22)

Furthermore, Mohammadi et al. show that the minimum
convergence rate of the disturbance tracking error is
λmin(Γ)
2σ∥X∥2

, where λmin (·) denotes the minimum eigenvalue
of a matrix with parameters as in Equation (23)

σ = max{∥Mno (q)∥2} ζ = max{∥Ṁno (q)∥2} (23)

Using the upper bound on Ṁno (q), inequality (22) can
then be rewritten as the linear matrix inequality (24) (with
a specific choice of parameters (25))[

Y +YT − ζI YT

Y Γ−1

]
≥ 0 (24)

with Y = X−1. An explicit analytical solution of the LMI
(24) is obtained for the case

Y = yI Γ = κI (25)

with y and κ being constant scalars. It can be shown that
the case (25) leads to κ = 2βσ

y2 with β being the minimum
convergence rate of the tracking error. As a trade-off
between fast convergence and noise sensitivity, a suitable
choice, as in Equation (26) is proposed as

Y =
1

2
(ζ + 2βσ) I (26)

as an analytical solution of the LMI.
Regarding (23), the upper bounds ofMno (q) and Ṁno (q)
are necessary. However, the 2-norm of those matrices
is hardly feasible in analytical form. Using (11) and the
triangle inequality,

∥Mno (q)∥2 = ∥IAI+ JTmJ∥2
≤ ∥IAI∥2 + |m|max{∥J∥2}2 (27)

where the identity ∥JT∥2 = ∥J∥2 has been used. With
(27), a conservative estimation for σ can be obtained.
However, the problem of how to obtain max{∥J∥2} still
remains. Due to this, it has been decided to approximate
max{∥J∥2} by computing ∥J∥2 for a set of 106 uniformly

distributed end effector positions. Thus, σ ≤ 0.1116 is
computed from (27).

The time derivative of the inertia matrix

Ṁ (q) = C (q, q̇) +CT (q, q̇)

can be obtained from the skew-symmetric property of the
matrix Ṁ (q) − 2C (q, q̇) [23] and by taking (11) for the
Coriolis and centrifugal matrix of the nominal model, the
2-norm can be upper bounded by

∥Ṁno (q)∥2 = |m|∥JTJ̇+ J̇TJ∥2
≤ 2|m|max{∥J∥2}max{∥J̇∥2}

The bound is obtained by using the identity ∥J̇T∥2 = ∥J̇∥2.
Obtaining an approximation of max{∥J̇∥2} is not as
trivial as with max{∥J∥2} because the dimension of the
search space for the upper bound increases from three
to six dimensions due to the additional independent joint
velocities θ̇1i in J̇. Hence, the assumptionmax{∥J̇∥2} = 1
is made which leads to ζ ≤ 0.6024.

Besides information about the upper bounds of Mno (q)
and Ṁno (q), also a minimum convergence rate must
be determined for (26). Wang et al. [27] determined
the minimum convergence rate of an observer for an
automotive steering wheel according to the maximum
input frequency fmax of the system. They analyzed the
step response of the observer and chose a convergence
rate, so that within a time of 1

fmax
the threshold value

is reached close enough. Taking ωc from (13) as the
maximum angular frequency input ωmax. Now β is chosen
high enough, so that the observer reaches 95% of the
threshold value within 2π

ωmax
seconds. The value for β

is found by trial and error via simulation of (20). With
β ≥ 2.8, a sufficiently high convergence rate is found.
Finally, with the values for σ, ζ and β the gain matrix
Y = 0.6137 I is obtained.

3.4 Neural network-based estimation of
model uncertainties and unmodeled
dynamics

According to (16), the model uncertainties and unmodeled
dynamics of the master robot are

τu = −Muq̈−Nu − τ f .

The idea is now to estimate τu with a NN in order
to separate τ ext from the τ d. For the generation of
training and test data, the Novint Falcon end-effector
tracks a reference position trajectory under closed-loop
control, where the end-effector positions and control
forces are recorded and transformed into joint space
using the already proposed kinematic relations. The joint
velocities are then estimated from the joint angles using
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Nominal model

NN

q, q̇f , q̈f

q, q̇f
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−

τ c

τ̂u

−

Figure 4 NN training scheme for Method 1.

NDOB

NN

q, q̇f
τ̂d

τ c

τ̂u

−

Figure 5 NN training scheme for Method 2.

the filter (13). It should be mentioned that during the data
generation, no human interaction with the robot takes
place; thus, τ ext = 0.

For the training of the NN, two different methods are
proposed and compared. The first method is inspired
by the work of Hu and Xiong [28]. In this approach, a
semiparametric model is proposed to identify the robot
dynamics. The training scheme for Method 1 is shown
in Figure 4. The nominal model is simulated with
the recorded motion data as input. Additionally to the
joint angles and velocities, joint accelerations are also
necessary, which are estimated from q̇f using (13). The
difference between τ c and τno is τu, is the training target
for a multilayer perceptron (MLP) NN.

The second method assumes that no human interaction
with the master robot leads to τ d = τu. That means that
the NDOB (20) can be used to produce the target data for
the NN. The training scheme for Method 2 is shown in
Figure 5.

For bothmethods, the NN has six inputs: three joint angles
θ1i and their respective joint velocities θ̇1i. The output is
the three-dimensional vector τ̂u. The NN itself contains,
in each case, one hidden layer with five neurons. Although
that configuration is rather simple, no improvements in
the estimation with more complex NNs (more hidden
layers and/or neurons) were observed. As activation
functions, hyperbolic tangent sigmoid functions are used,
while the neurons in the output layer have linear activation
functions. A set of 10,000 samples is used for training

and the NNs are trained with the Levenberg-Marquardt
backpropagation algorithm, while 10% of the training data
is used for training validation.

The resulting NN’s do not approximate fast varying
disturbances and peaks very well. Peaks in the torques
arise on the one hand, due to peaks in joint velocities,
on the other hand due to inauspicious combinations of
joint positions and velocities in the computation of J̇. Due
to noticeably lower RMSE and MAE, the NN trained by
Method 2 is used in the human force estimation in this
work.

4. Teleoperation setup

In this section, the teleoperation setup of this work is
presented. The setup, which has been implemented in
MATLAB/Simulink, is shown in Figure 6. The general idea
is to control a virtual mobile robot as a slave robot with
the Novint Falcon as a master robot. The block Human
force estimation in Figure 6 contains the nominal model
of the Novint Falcon with its kinematics, the joint velocity
estimation, the NDOB and the NN. The teleoperation task
takes place in a virtual environment and is visualized with a
MATLAB plot window (see Figure 7), which is updated with
a rate of 25Hz. The virtual mobile robot is presented as a
proxy in the plot window. The obstacle is designed as a red
square and the desired path as a solid black line.

4.1 Master robot

The Novint Falcon is a low-cost haptic control device for
video games, developed by the former company Novint
Technologies, Inc. It is capable to produce forces of
up to 2 lbs and its workspace is roughly 4 × 4 ×
4 inches. The control torques are updated with a
frequency of 1 kHz, which is a typical value for a realistic
haptic sensation [29]. In the teleoperation setup, the

Master
robot

Slave
robot
control

Visualization

Human
force

estimation

Adaptive
assistance

fext

Hpmaster
Wpslave

f̂ext

Wpdesired

−fa

Figure 6 Teleoperation setup
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Figure 7 Visualization of the teleoperation task

Novint Falcon communicates with MATLAB/Simulink via
the Haptik Library [30].

4.2 Slave robot control

The virtual mobile robot is simplified to a holonomic
point moving in a 2D workspace. The human operator
controls the velocity of the slave robot bymoving the Novint
Falcon end-effector. There, the x-y-elements of Hp are
proportional to the velocity vector of the slave robot. By
integrating the slave robot’s velocity with respect to time,
the actual position of the mobile robot is obtained.

4.3 Adaptive assistance

In this subsection, the adaptive haptic assistance proposed
in [6] is revisited. The idea of the adaptive assistance is
to schedule the level of assistance depending on the task
objective, which can change over time due to uncertain
environments. A decision-making model decides between
two different objectives: to improve task performance or
interaction performance. Depending on the decisions, the
properties of the GVF are changed. The GVF in this work is
designed as a system that forces the robot to return to the
desired path with a control action given by

fa⊥ = d⊥ϵ̇+ k⊥ϵ

with fa⊥ being the assistance force perpendicular to the
desired path, d⊥ the damping coefficient, k⊥ the stiffness
and the deviation of the slave robot from the desired path
defined as

ϵ = Wp⊥desired − Wp⊥slave.

The stiffness of the GVF, which is the only parameter varied
by the adaptive assistance here, is mapped as a linear
homotopy function k⊥ = αklow + (1 − α)khigh, with
assistance level α ∈ [0; 1] and upper and the lower bounds
for the stiffness khigh and klow. It can be seen that a low α
leads to a more stiff GVF and a high α to a less stiff GVF.

The performance of the teleoperation task is evaluated
by two different metrics: Task performance TP and
interaction performance IP . TP is based on the position
error ϵ and is normalized by

TP,n =
mean (∥ϵ∥)
max (∥ϵ∥)

.

In this work, the position error is only the deviation from
the desired path in y-direction and thus, ϵ is a scalar. For
mean (|ϵ|), the RMS value is given by (28)

mean (|ϵ|) =

√∑N
i=1 ϵ

2
i

N
(28)

IP is calculated using the internal force fi between the
human operator and the assistance. According to [31], the
internal force is defined in Equations (29) and (30)

fi =


f⊥ if sign(f⊥) ̸= sign(fa⊥) ∧ ∥f⊥∥ ≤ ∥fa⊥∥
−fa⊥ if sign(f⊥) ̸= sign(fa⊥) ∧ ∥f⊥∥ > ∥fa⊥∥
0 otherwise

(29)
with f⊥ being the human force and fa⊥ the assistance force.
For the performance metric, fi is normalized by

fi,n =
mean (∥fi∥)
max (∥fi∥)

. (30)

The forces perpendicular to the desired path are assumed
one-dimensional, hencemean (|fi|)may be defined as the
RMS value. A high internal force indicates a low agreement
with the assistance; hence the interaction performance is
defined as IP,n = 1 − fi,n. The idea of the DDM is that
every choice z of the TAFC task is rewarded according to
the function,

r(t) =

{
rI(IP,n) if z(t) = I

rT (TP,n) if z(t) = T
.

The rewards depend on the performancemeasures and are
computed by reward functions. As a reward structure, a
matching shoulder with the linear reward functions

rI = kIIP + IP0 rT = kTTP + TP0

is used. There, kI and kT are the slopes of the reward
functions, IP0 is the minimum reward for interaction
performance and TP0 is the maximum reward for
task performance. Reward functions can be designed
with or without any preference for task or interaction
performance, depending on the teleoperation task. For
a neutral reward structure, the intersection point of both
reward functions is in the middle of the performance
measures, which is 0.5 for normalized performance
measures. By moving the intersection point to the right
or left half, either preference on interaction or task
performance is obtained.
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An elementary part of the DDM is taking into account
the actual and past rewards in order to accumulate
evidence for future decisions. The evidence in favor of one
decision is computed as

wz(t+ 1)=wz(t) + λ (rz(t)−wz(t)) wz̄(t+ 1) = λrz̄(t)

with wz being the evidence for the actual choice z, wz̄

being the evidence for the option which was not chosen z̄,
and λ being the learning rate with λ ∈ [0; 1]. If λ is low,
past decisions are takenmore into account, and vice-versa.
With the accumulated evidence, the probability of decision
making in order to improve interaction performance pI is
computed using the soft-max model

pI(t+ 1) =
1

1 + e−µ(wI−wT )
.

For a large value for µ, the usermight feel sudden changes
in the stiffness of the GVF. If pI exceeds a certain value
(0.5 in this work), future decisions are made in favor of
improving interaction performance (see Equation (31)),

z(t+ 1) =

{
I if pI > 0.5

T otherwise
(31)

This means that more authority is given to the human
operator by increasing α. It is now possible to define the
adaptation rule as α(pI) = pI .
Tests with adaptive assistance have shown that some
modifications in the task performance measure and the
reward structure are necessary. It has been observed that
TP,n increases rapidly for very small path errors, therefore
TP,n is weighted with

v = tanh

(
∥ϵ∥
ρ

)
(32)

In (32), ρ is a design variable that must be determined
individually for a teleoperation task. For large ρ, small
path errors have less impact on the task performance
measure.

Furthermore, it has been observed that reward functions
with an intersection point at TP,n = IP,n = 0.5 do
not practically lead to a neutral reward structure in this
teleoperation setup, but lead to a reward structure with
preference on task performance. The parameters for that
neutral reward structure are defined as kI = 1, IP0 = 0,
kT = −0.5, TP0 = 0.5

Figure 8 shows the DDM response using the parameters
of neutral reward structure for a path following task with
an obstacle avoidance event. It can be observed that the
stiffness is high when following the path and decreases
when moving around the obstacle.

 

 

Figure 8 DDM response for the reward structure of Neutral
Reward Structure. The slightly red-colored area indicates the

obstacle avoidance maneuver

Besides the adapting assistance force, which acts in the
perpendicular direction of the desired path (y-direction), a
virtual fixture for the x and z-direction of the Novint Falcon
is also considered. The virtual fixture for the x-direction
has a spring model fa,x = −kx

Hpx,master. For the
z-direction, a virtual fixture with the damper model fa,z =
−dz

H ṗz,master is used. Finally, the assistance force
vector fa, which is the force vector sent to themaster robot,
consists of fa = [fa,x fa⊥ fa,z]

T .

5. User study

The goal of the study is to address the following questions:

1. Is adaptive assistance more comfortable for the user
than constant assistance when moving around an
unknown obstacle?

2. How does the learning rate λ in the adaptive
assistance influence the performance of the
teleoperation task?

5.1 Experiment

The teleoperation task is to follow a desired horizontal
path from left to right and to avoid the unknown obstacle
during task execution (see Figure 7). The experimental
setup does not include communications or any other
sources of time delays. As soon as the x-coordinate of
the desired end position is reached, the task ends. Five
subjects (one female and four male) have participated in
the experiment as human operators. Four of them did
not have any experience in telerobotics, while one person
already had some experience. Each person was allowed to
do a trial run without obstacle or assistance in order to get
familiar with the control of the virtual slave robot by the
Novint Falcon before the experiment started. The users
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were told to complete the task within 15 seconds, but the
task completion time was not considered in the evaluation
of the experiment.

The user study is executed in two sessions. In the
first session, the users perform the task with four different
constant assistance levels (one assistance level per
run). These assistance levels are classified as no, low,
medium and high assistance. For every assistance level,
two runs are performed, but in a random order. As a
result, eight runs in total are performed for the first
session. The second session is executed with adaptive
assistance. There are three different reward structures
(no preference, preference on task performance and
preference on interaction performance) and two different
values for the learning rate λ (high and low). This leads
to six different configurations for the adaptive assistance.
In addition, in the second session, the users perform the
teleoperation task twice for each configuration ( in random
order). The parameters for each assistance configuration
are given in Table 3.

A decision in the DDM is made every 100ms; a
measurement of the path tracking error, as well as
an estimation of the human force, is made every 10ms.
The experiment has been executed with MATLAB R2015b
(32-bit) on a computer running with Windows 7 Ultimate.
The computer is equipped with 12GB RAM, an Intel Core
i5-3330 (4×3GHz) and an Intel HD Graphics graphic board.
The teleoperation task was visualized on a 19-inch screen
for the human operator.

5.2 Evaluation metrics

Due to the presence of obstacles that must be avoided
during the task execution, the workspace of the slave
robot is divided into different evaluation regions. While
moving on the path, the mobile robot stays in the on-path
region. That obstacle-free region is divided into two
segments: one in front of and one behind the obstacle.
The area between these two on-path regions is the off-path
region, where the obstacle is located. In order to prevent
learning effects during the experiment, the obstacle size
and position are randomly chosen for every run and thus,
the threshold value is determined as 25% of the obstacle
edge length.The obstacle size varies between 20 and 40
length units.

Position tracking error

The position tracking error is only evaluated in the on-path
region because no reference tracking for the off-path
region exists. As a metric for the position tracking error,
the RMS error (28) is used.

Internal force

The internal force is computed according to (29). Themean
absolute internal force is used to evaluate separately the
on-path and off-path motions.

Physical dominance

In a task where two partners exert forces on the same
object, physical dominance is a measure to evaluate which
partner is controlling the object’s movement on a higher
degree [31]. The individual physical dominance of partner
1 over partner 2 is defined as

PD12 =
∥fext,1∥
∥fsum∥

(33)

where fext,1 is the external force of partner 1, fext,1 =
f1 − fi,1 and fsum is the sum of the external forces of
partner 1 and partner 2, fsum = fext,1 + fext,2 =
f1 + f2 with f1 being the total force exerted by partner
1 and f2 the total force exerted by partner 2. In the
experiment, partner 1 is the human operator and partner
2 the master robot. The individual physical dominance is
bounded by PD12 ∈ [0; 1], where a value of unity means
that partner 1 is absolutely dominant and for a value of zero
absolute non-dominant. For the individual dominance of
both partners, the relationPD12+PD21 = 1 is proposed.
This means that for a value PD12 > 0.5, partner 1 is more
dominant than partner 2 . The physical dominance (33) is
computed for every sample and mean physical dominance
is computed as

PD12 =

∑N
i=1 PD12,i

N
,

separately for the on-path and off-path regions. Besides
the physical dominance of partner 1 over partner 2, the
dominance differencePDdiff ,PDdiff = |PD12−PD21|
is analyzed. PDdiff quantifies how much one partner
dominates the other one. For a value of zero, no dominant
partner exists.

Power-based effort

The power measurement describes the energy flow
between an interacting partner and its environment. The
power of a partner is defined (for the one dimensional
case) as P∗ = f∗ẏ∗ with f∗ being the force applied by
partner (*) and ẏ∗ being the velocity of the interaction point.
Groten [31] argues that both positive and negative energy
flows cause physical effort for the operator and thus, the
absolute mean powerMAP∗,

MAP∗ =

∑N
i=1|P∗,i|
N

,

is taken as a measure of the physical effort. The absolute
mean power of the interaction between the two partners
(dyadic interaction) is based on the power of each partner
and is computed asMAPd = MAP1 +MAP2.
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Table 3 Assistance configurations for the user study (lu = length unit)

Acronym Meaning Parameter configuration
NA No assistance k⊥ = 0 N

lu

LA Low assistance k⊥ = 0.05 N
lu

MA Medium assistance k⊥ = 2.525 N
lu

HA High assistance k⊥ = 5 N
lu

nPH No preference,
high λ

kI = 1 IP0 = 0
kT = −0.5 TP0 = 0.5

λ = 0.9

nPL No preference,
low λ

kI = 1 IP0 = 0
kT = −0.5 TP0 = 0.5

λ = 0.1

TkH
Preference on

task performance,
high λ

kI = 0.5 IP0 = 0
kT = −0.5 TP0 = 0.5

λ = 0.9

TkL
Preference on

task performance,
low λ

kI = 0.5 IP0 = 0
kT = −0.5 TP0 = 0.5

λ = 0.1

InH Preference on interaction
performance, high λ

kI = 1 IP0 = 0
kT = −0.1 TP0 = 0.5

λ = 0.9

InL Preference on interaction
performance, low λ

kI = 1 IP0 = 0
kT = −0.1 TP0 = 0.5

λ = 0.1

5.3 Results

A Kolmogorov-Smirnov test with a significance level of 5%
is applied to the data sets in order to check if the data has a
normal distribution. Next, an ANOVA test is made in order
to check if the data of at least two assistance configurations
differ significantly from each other in a statistical sense.
If the p-value from the ANOVA is lower than 0.05, the null
hypothesis (i.e., all assistance configurations are the same)
is rejected. If this is the case, Tukey’s HSD test is applied
in order to find the assistance configurations which differ
from each other.

Position tracking error

Figure 9 shows the boxplot for the on-path position error.
Mauchly’s test did not indicate a violation of sphericity
(W (9) = 11.922 · 10−5, p = 0.379) and the ANOVA test
revealed a significant difference between the assistance
configurations (F (9, 36) = 2.162, p = 0.049). The results
of the post hoc test are shown in Table 4.

Internal force

The configuration NA is not considered in the statistical
analysis of internal forces. Figure 10 shows the
boxplot for the on-path internal force. Mauchly’s test
indicated a violation of sphericity (W (8) = 1.01 ·
10−6, p = 2.933 · 10−5) and therefore, the degrees
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Figure 9 Boxplot for |ϵ| (on-path)

of freedom were corrected using the Greenhouse-Geisser
estimation (ε = 0.267). The ANOVA test did not
reveal a significant difference between the assistance
configurations (F (2.13, 8.54) = 1.641, p = 0.250)
for the on-path internal force. Figure 10 shows the
boxplot for the off-path internal force. Mauchly’s test
indicated a violation of sphericity (W (8) = 6.01 · 10−6,
p = 5.985 · 10−4) for the off-path internal force and
therefore, the degrees of freedom were corrected using
the Greenhouse-Geisser estimation (ε = 0.467). The
ANOVA test revealed a significant difference between the
assistance configurations (F (3.73, 14.94) = 4.747, p =
0.012) for the off-path internal force. The results of the
post hoc test are shown in Table 5.
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Table 4 p-values of Tukey’s HSD test for |ϵ| (bold values indicate significant differences)

NA LA MA HA nPH nPL TkH TkL InH
LA 0.9994 - - - - - - - -
MA 0.9996 0.9242 - - - - - - -
HA 0.9988 0.8909 1.0000 - - - - - -
nPH 0.9759 0.6704 1.0000 1.0000 - - - - -
nPL 0.7994 0.3163 0.9921 0.9962 1.0000 - - - -
TkH 0.2618 0.0406 0.7211 0.7795 0.9456 0.9983 - - -
TkL 0.3055 0.0511 0.7701 0.8230 0.9629 0.9992 1.0000 - -
InH 0.7825 0.2996 0.9903 0.9952 0.9999 1.0000 0.9987 0.9995 -
InL 1.0000 0.9766 1.0000 1.0000 0.9993 0.9653 0.5545 0.6106 0.9598

Table 5 p-values of Tukey’s HSD test for the off-path fi (bold values indicate significant differences)

LA MA HA nPH nPL TkH TkL InH
MA 0.0268 - - - - - - -
HA < 0.01 1.0000 - - - - - -
nPH 0.1997 0.9982 0.9791 - - - - -
nPL 0.3041 0.9904 0.9396 1.0000 - - - -
TkH < 0.01 0.9998 1.0000 0.9359 0.8598 - - -
TkL < 0.01 0.9992 1.0000 0.9001 0.8045 1.0000 - -
InH 0.9999 0.1108 0.0443 0.4896 0.6342 0.0220 0.0152 -
InL 0.9979 0.2087 0.0946 0.6745 0.8021 0.0507 0.0359 1.0000
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Figure 10 Boxplots for fi

Physical dominance

The configuration NA is not considered in the statistical
analysis of the physical dominance. Figure 11 shows
the boxplot for the on-path PD12. Mauchly’s test
indicated a violation of sphericity (W (8) = 1.175 · 10−4,
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Figure 11 Boxplots for PD12

p = 0.039). Therefore, the degrees of freedom were
corrected using the Greenhouse-Geisser estimation (ε =
0.397). The ANOVA did not reveal a significant difference
between the assistance configurations (F (3.18, 12.70) =
3.316, p = 0.053) for the on-path physical dominance.
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Figure 11 shows the boxplot for the off-path PD12.
Mauchly’s test did not indicate a violation of sphericity
(W (8) = 2.736 · 10−4, p = 0.099) and the ANOVA
revealed a significant difference between the assistance
configurations (F (8, 32) = 4.001, p = 0.002) for the
off-path physical dominance. The results of the post hoc
test are shown in Table 6.
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Figure 12 Boxplots for PDdiff

Figure 12 shows the boxplot for the on-path PDdiff .
Mauchly’s test did not indicate a violation of sphericity
(W (8) = 9.753 · 10−3, p = 0.881) and the ANOVA test
revealed a significant difference between the assistance
configurations (F (8, 32) = 2.564, p = 0.028) for the
on-path PDdiff . The results of the post hoc test are
shown in Table 7. Figure 12 shows the boxplot for the
off-pathPDdiff . Mauchly’s test did not indicate a violation
of sphericity (W (8) = 1.847 · 10−3, p = 0.467) and the
ANOVA test did not reveal a significant difference between
the assistance configurations (F (8, 32) = 0.306, p =
0.958) for the off-path PDdiff .

Power-based effort

Figure 13 shows the boxplot for the on-path MAP1.
Mauchly’s test indicated a violation of sphericity (W (9) =
1.304·10−5, p = 5.312·10−6) for the on-path power-based
effort of the human and therefore, the degrees of
freedom were corrected using the Greenhouse-Geisser
estimation (ε = 0.317). The ANOVA test did not
reveal a significant difference between the assistance
configurations (F (2.85, 11.41) = 1.051, p = 0.404)
for the on-path MAP1. Figure 13 shows the boxplot for
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Figure 13 Boxplots forMAP1

the off-path MAP1. Mauchly’s test indicated a violation
of sphericity (W (9) = 9.303 · 10−8, p = 1.218 ·
10−4) for the off-path power-based effort of the human.
Therefore, the degrees of freedom were corrected using
the Greenhouse-Geisser estimation (ε = 0.419). The
ANOVA test did not reveal a significant difference between
the assistance configurations (F (3.76, 15.04) = 0.868,
p = 0.500) for the off-pathMAP1.
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Figure 14 shows the boxplot for the on-path MAPd.
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Table 6 p-values of Tukey’s HSD test for the off-path PD12 (bold values indicate significant differences)

LA MA HA nPH nPL TkH TkL InH
MA 0.0228 - - - - - - -
HA 0.0449 1.0000 - - - - - -
nPH 0.7406 0.7845 0.8865 - - - - -
nPL 0.6234 0.8737 0.9443 1.0000 - - - -
TkH 0.0036 0.9999 0.9984 0.4335 0.5570 - - -
TkL 0.0184 1.0000 1.0000 0.7436 0.8419 1.0000 - -
InH 1.0000 0.0393 0.0726 0.8347 0.7345 0.0068 0.0323 -
InL 0.7603 0.7657 0.8731 1.0000 1.0000 0.4124 0.7231 0.8506

Table 7 p-values of Tukey’s HSD test for the on-path PDdiff (bold values indicate significant differences)

LA MA HA nPH nPL TkH TkL InH
MA 0.9624 - - - - - - -
HA 0.1533 0.8495 - - - - - -
nPH 0.2222 0.9168 1.0000 - - - - -
nPL 0.0395 0.5408 0.9999 0.9993 - - - -
TkH 0.1901 0.8906 1.0000 1.0000 0.9997 - - -
TkL 0.0777 0.6976 1.0000 1.0000 1.0000 1.0000 - -
InH 0.0739 0.6867 1.0000 1.0000 1.0000 1.0000 1.0000 -
InL 0.0073 0.2290 0.9867 0.9648 0.9999 0.9763 0.9984 0.9986

Mauchly’s test indicated a violation of sphericity
(W (9) = 5.706 · 10−10, p = 2.186 · 10−8) for the
on-path power-based effort of the complete dyad and
therefore, the degrees of freedom were corrected using
the Greenhouse-Geisser estimation (ε = 0.311). The
ANOVA test did not reveal a significant difference between
the assistance configurations (F (2.80, 11.20) = 1.823,
p = 0.202) for the on-path MAPd. Figure 14 shows
the boxplot for the off-path MAPd. Mauchly’s test
indicated a violation of sphericity (W (9) = 5.022 · 10−9,
p = 1.056 · 10−6) for the off-path power-based effort of
the complete dyad and therefore, the degrees of freedom
were corrected using the Greenhouse-Geisser estimation
(ε = 0.364). The ANOVA test did not reveal a significant
difference between the assistance configurations
(F (3.36, 13.05) = 1.871, p = 0.182) for the off-path
MAPd.

5.4 Discussion

In this subsection, the results of the user study are
discussed referring to the questions which have been
formulated in the introduction of this section.

Assistance policies during obstacle avoidance

In order to evaluate if the use of adaptive assistance is
more comfortable when moving around an obstacle, the
results for the internal forces, physical dominance and
power-based effort were analyzed in the off-path region.
Figure 10 and Table 5 show that LA, InH and InL lead
to very similar internal forces. Also for the comparisons

LA ↔ nPH and LA ↔ nPL no statistically significant
difference was found. Due to the high scattering within
the assistance policies, no significant difference between
MA, HA, nPH , nPL, TkH , TkL was found either.
However, the boxplot (Figure 10) permits to conclude that
for TkH , TkL the internal force is rather high and nPH ,
nPL are somewhere between TkH , TkL and InH , InL.

In terms of PD12, the result of the post-hoc test is
very similar to fi (see Table 6). From the boxplot (see
Figure 11), it can be concluded that LA, InH and InL
make the human more dominant when moving around
the obstacle. TkH , TkL make the master robot more
dominant and nPH , nPL can be seen somewhere
between TkH , TkL and InH , InL.

For the analysis of the power-based effort, no clear
conclusions can be made. The statistical analysis
of MAP1 and MAPd does not indicate significant
differences between the assistance policies. Regarding
the boxplots (see Figure 13), it can be observed that
high constant assistance policies demand more power.
For the adaptive assistance policies, however, such a
tendency is not observed. Finally, it can be concluded that
adaptive assistance can be as comfortable as LA in terms
of internal force and physical dominance when moving
around the obstacle if a reward structure with preference
on interaction performance is used. The power-based
effort of the human operator, however, is similar for all
assistance policies.
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Influence of the learning rate

The statistical analysis of the results of the user study
does not reveal a significant difference in the comparisons
nPL ↔ nPH , TkL ↔ TkH and InL ↔ InH for any of
the evaluationmetrics. Also, just having a look at themean
values of the boxplots does not show a clear tendency of
how the learning rate might affect the teleoperation task.
No clear statement about the influence of the learning rate
in the teleoperation task can be made.

6. Conclusion

This paper has proposed a sensorless Drift-Diffusion
adaptive haptic assistance scheme for bilateral
teleoperation tasks. A data-driven Neural-Network
based observer is proposed and a method to train the
NDOB is recommended. The main objective of this
paper is to study the effect of adding adaptation to the
assistance scheme, hence no communication delays
were considered. An interesting feature of the proposed
estimation method is that the data-driven approach is
used only to estimate the user’s exerted force, while the
master device’s dynamics are estimated using the NDOB,
which is model based. This allows us to cater for different
uncertainties while still retaining some knowledge about
the system.

The necessity of an appropriate parametrization of
the adaptive assistance for every particular application
has been stated in [6]. In general, the data of this type
of user study suffers from high scattering and thus, only
very limited conclusions can be made. The high scattering
is a consequence of the marked differences that exist
between human operators, which translates into very
different behaviors for the same teleoperation task. This
highlights a challenging problem designing appropriate
assistance schemes for human operators in telerobotics.
Although this study does not allow for strong conclusions
to be drawn with respect to the benefit of having adaptive
assistance, it was observed that some benefits (e.g., lower
interaction forces and less variability) can be obtained over
static assistance.

Regarding the sensorless human force estimation,
future work may be carried out to obtain a more accurate
estimation. One influencing factor of the estimation is
the accuracy of the velocity, which may be improved by
more accurate online differentiation techniques. The
other factor is having a model of the master robot which
covers all its dynamics, including disturbing effects such
as friction.
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