
155

Rev. Fac. Ing. Univ. Antioquia N.º 47 pp. 155-163. Marzo, 2009

SIADBDD: An integrated tool to design
distributed databases

SIADBDD: Una herramienta integrada de ayuda
al diseño de bases de datos distribuidas

Abel Rodríguez Morffi1, Carlos Ernesto García González1, Wilfried Lemahieu2,
Luisa Manuela González González1

1 Universidad Central “Marta Abreu” de Las Villas Carretera a Camajuaní
km. 5.5. C.P. 54830. Santa Clara, Cuba
2 Katholieke Universiteit Leuven, Research Center for Management
Informatics (LIRIS) Faculteit ETEW, Room: 03.105, Naamsestraat 69 - bus
3500, 3000 Leuven, Belgium

(Recibido el 12 de Julio de 2007. Aceptado el 6 de noviembre de 2008)

Abstract

This paper addresses an architectural and functional overview of an
implemented tool that aids designers to design DDBs in a relational context.
Conceptual design and fragmentation issues are considered as well as the
allocation problem. The tool applies metaheuristics for solving many design
problems to obtain outputs in reasonable time. They use cost models and are
targeted at globally minimizing these costs.

----- Keywords: Distributed Database Design, CASE tools, global
conceptual schema, fragmentation, allocation.

Resumen

Este trabajo presenta un resumen sobre la arquitectura y las funciones de
SIADBDD, una herramienta integrada de ayudas al diseño de BDD en un
contexto de bases de datos relacionales. Estas ayudas consideran desde la
modelación conceptual de esquemas globales hasta la localización de los
fragmentos de datos a los sitios de procesamiento donde residirá la BDD
objeto de diseño.

----- Palabras clave: Diseño de bases de datos distribuidas, herramientas
CASE, modelación conceptual, fragmentación, ubicación.

* Autor de correspondencia: teléfono: + 53 + 42 + 281 5 15, fax: + 53 + 42 + 202 1 13, correo electrónico: luisagon@uclv.edu.cu (L.
González).

156

Rev. Fac. Ing. Univ. Antioquia N.° 47. Marzo, 2009

 Introduction

With the increasing demand of database applica-
tions that are accessed by users from different geo-
graphical locations, database distribution design
becomes an essential part of the database design,
which targets at increasing the overall system per-
formance. From the early 1980s, the problem of
database distribution design has attracted interest
from many researchers. It has first been discussed
in the context of the relational data model, then
in the object oriented data model. With the cu-
rrent popularity of web information systems, the-
re is an increasing need for Distributed Database
Systems (DDBS) to provide back-end support
for Web-based database applications. The aim of
database distribution design is to make applica-
tions that access the database more efficient and
effective. Therefore, the global queries have to be
analyzed in order to design an adequate distribu-
tion of the data. The design of DDBs enhances
application performance by reducing the amount
of irrelevant data accessed by the applications
[1], and the amount of data transferred unneces-
sarily between distributed sites during applica-
tion processing [2]. There are two ways by which
the performance of applications can be enhanced:
grouping sites and fragment allocation. Grouping
sites of distributed databases holds relevant data
accessed by an application into a group of sites.
It determines whether or not a set of sites is as-
signed to a certain cluster, and it considered as
a fast way to determine the data allocation to a
set of sites rather than site by site. Grouping sites
into clusters minimizes the communication costs
between the sites and improves the system per-
formance. On the other hand, fragment allocation
is the process of allocating the fragments to the
sites of distributed databases to minimize the data
transfer cost and the number of messages during
application processing. This work aims at divi-
ding entities into fragments, which are later dis-
tributed to the machines in a computer network
in such a way that the total cost is minimized as
much as possible [3]. This approach emphasizes
methods that minimize the transactions’ commu-
nication cost, increase data availability and inte-

grity by allocating database fragments replicated
over the sites where possible or necessary, and
minimize the transactions’ total response time.
In the study of DDBs, several key disciplines
are converging: databases, algorithms, operating
systems, networks, software engineering, etc.
Furthermore, the efficient implementation of a
design is an optimization problem that requires
solutions to several interrelated problems such as
data fragmentation and allocation. Each problem
phase can be solved with several different appro-
aches thereby making the DDB design a very
difficult task. Traditionally, database design has
been heuristic in nature.

In this article we concentrate on designing DDBs
in the context of the relational data model. Ha-
ving in mind the characteristics and complexity
of DDB design, we have been motivated to de-
velop a tool that addresses the problem of desig-
ning DDBs. The paper is organized as follows. In
section 2 we complete the introduction by briefly
reviewing previous work on DDB design. The
paper’s main contribution is in sections 3 and 4.
Section 3 provides the CASE tool’s architectu-
ral overview and section 4 contains a functional
overview. Section 5 draws conclusions about the
important features of this paper. Finally, section 6
suggests future research directions.

Related work

Several approaches have been proposed for da-
tabase partitioning and fragment allocation in
DDBs. Navathe et al [4] have proposed a mixed
fragmentation methodology, as well as the ne-
cessary components of a prototype of the mixed
fragmentation Distributed Database Design Tool
(D3T), which has been under development. It
allows the optimal partitioning of global relations
in a distributed database by using a grid appro-
ach, i.e. partitioning a single relation by simul-
taneously applying both horizontal and vertical
partitioning in the same algorithm and supports
the investigation of the effects of the different
sequences of partitioning. This report has moti-
vated our work, wherein the tool allows desig-
ners to make distribution design decisions using

157

SIADBDD: An integrated tool to design distributed databases

horizontal, vertical and/or mixed fragmentation.
They do not address allocation with or without
replication. Tamhankar et al. [5] have developed
a comprehensive methodology for fragmentation
and distribution of data across multiple sites such
that design objectives in terms of response time
and availability for transactions, and constraints
on storage space are adequately addressed. Dau-
dpota et al. [6] have constructed a formal model
of data allocation and have derived an algorithm
to fragment and allocate the relations. This model
is not applied to distributed applications in net-
works with different connectivity (LAN/WAN).
Peddemors et al. [7] have described the first pha-
se realization of a DDBS in which an iterative
process is used to build the DDBS. Each phase
has a set of objectives, spans a limited amount of
time, ads functionality, and the output of every
phase serves as input for the next phase. This pa-
per has motivated our work in the way that each
phase has a set of objectives and its outputs serve
as inputs for the next phase of the design process.
Bellatreche L. et al. [8] formulated the combined
methods and class allocation problem and deve-
loped a model to calculate the total data transfer
cost incurred. Their allocation algorithm genera-
tes near optimal solutions to the problem. Lee et
al. [9] have proposed a heuristic methodology for
determining file and workload allocation simul-
taneously on a LAN. This method minimizes the
response time for processing transactions. Only
transactions with the same properties are routed
to the same server, which does not guarantee the
minimization of the communication cost. Their
assumption of non-redundant allocation decrea-
ses the reliability of the system, and the impact of
storing fragment copies on the sites of the LAN
is not very well clarified. Huang et al. [10] have
proposed a heuristic algorithm that reflects tran-
saction behavior in distributed databases. Their
model determines the number of replicates for
each fragment and finds a near optimal alloca-
tion of all fragments in a WAN such that the total
communication cost is minimized. The fragments
accessed by a transaction are all assumed inde-
pendent, which is not the case in the real world.
This method neglects site information like storage

and processing capacity and it is applied only on
a WAN network. They consider the CPU proces-
sing time and I/O access time as minor factors in
minimizing the total cost in a WAN environment.
Son et al. [11] have introduced an adaptable ver-
tical partitioning method in distributed systems.
Our previous work in this field dealt with com-
ponents and tools concerning DDB design [12-
18]. In the latter work [18], we have analyzed
and implemented diverse methods to tackle com-
binatorial optimization problems in distribution
design, which are very complex problems. These
methods include exact and heuristics approaches
which have been very useful in solving real life
problems. The main issue with exact methods is
their applicability to large problems, specifically
for the type of NP-complete problems for which
there is no guarantee to find an optimal solution
in a polynomial time [19]. A good alternative for
NP-complete combinatorial optimization proble-
ms of large size is to find a reasonable solution in
a reasonable time [20]. This is the idea of the heu-
ristic methods which are in general quite simple
and based on intuitive and common sense ideas
[21]. The general problem with many heuristics
is that they may get stuck in local optimal solu-
tions. More recently a number of metaheuristics
have evolved that define ways to escape local op-
tima. Metaheuristics are higher level heuristics
designed to guide other processes towards achie-
ving reasonable solutions, and do not guarantee
in general that one will finish with an optimal so-
lution, though some of them present convergence
theories. However they have been successfully
applied to many problems. Here we explore Ge-
netic Algorithms and a much more recent appro-
ach, Reinforcement Learning (RL) for solving
the harder problem, namely allocation. RL may
be interpreted as a conjunction between machine
learning and decision making problems.

Tool Architectural Overview

The problem of DDB design comprises first, the
fragmentation of database entities and second,
the allocation of these fragments to distributed
sites. Two approaches are possible in a DDB de-

158

Rev. Fac. Ing. Univ. Antioquia N.° 47. Marzo, 2009

sign: top-down and bottom-up. This paper uses
the top-down design approach where the input to
the design process is the global conceptual sche-
ma (GCS). Statistical information collected from
the design activities includes access patterns of
user applications, and information about sites and
the network. The output from the design process
is a set of local conceptual schemas (LCS) over
distributed sites [3]. The input to the design pro-
cess is obtained from system requirements analy-
sis which defines the system environment and
collects an approximation of both the data and
processing needs of all potential database users.
Providing an easy user interface for entering the
distribution requirements as well as facilitating
user control in driving the distribution process are
topics that we addressed when implementing an
integrated tool to support the entire DDB design
cycle. Ceri et al. [22] give an outline of the ove-
rall DDB design methodology that deviates from
conventional centralized database design only in
the distribution aspect (see figure 1).

Distribution Design

Data acquisition

Fragmentation

Allocation

Local optimization

Horizontal

Vertical

Hybrid

Figure 1 Distribution design activities. (Ceri et al.,
1983) [22]

The distribution design involves data acquisition
(ERECASE, APPWIZARD, NETWIZARD), da-
tabase partitioning (FRAGMENTER), allocation
and replication of fragments (ALLOCATOR,
DISTRIBUTOR), and local optimization (not
considered herein). As a result, we have created a
DDB design tool that integrates various methods
for each component of distribution design.

Application Integration

ERECASE

FRAGMENTER

Global Conceptual
Schema

APPWIZARD

Transactional
Information

NETWIZARD

Site and Network
Information

System Requirements
User Input

Logical Schemas

Physical Schemas

ALLOCATOR

Logical Partitions

DISTRIBUTOR

Design
Catalogue

User Input

Figure 2 Application integration through the design
process

Figure 2 shows an abstract representation of the
integrated design process for the tool where in-
formation is vehicled from one tool to another
by feeding the output of one application as input
to the next, but not exactly in a linear fashion.
Rather, the common information is stored into
a shared database, namely the design catalogue,
which can be accessed by each tool through one
common interface and is embedded within the
integrated tool. From the end-user’s perspective,
application integration has been successful, if the
user is not able to differentiate the sources of data
and functionality he accesses from the user inter-
face. Figure 3 depicts an architectural overview
of the proposed tool, namely SIADBDD.

Unfortunately, collecting the large amount of re-
quired information is a hard task and requires time
and effort. Some of the drawbacks of today’s inte-
gration technology at the user interface can be re-
duced through process-level integration. The idea
is to provide suitable data through a catalogue as
part of a workflow (see figure 2). Preceding steps

159

SIADBDD: An integrated tool to design distributed databases

in the workflow fetch data from the catalogue and
use them as inputs to the algorithms involved in the
design process. Outputs are placed back to the ca-
talogue, so that they can be used for further steps.
Unfortunately, the risks of application integration
are often discarded. Because integration means
to create dependencies between applications this
may reduce the ability to adapt to changes. On the
other hand, dependencies are good, because they
save time and effort to a great extent.

SIADBDD Integrated User Interface

Transactional Information
APPWIZARD

Sites and Communication Network
NETWIZARD

Logical Partitioning
FRAGMENTER

Horizontal
Fragmentation

Mixed
Fragmentation

Vertical
Fragmentation

Logical Allocation and Replication
ALLOCATOR

Physical Allocation with Replication
DISTRIBUTOR

Conceptual Design
ERECASE

Schema
Validation

Global Schemas

Figure 3 Architectural overview of the integrated tool

Tool Functional Overview

SIADBDD architecture is built up of the fo-
llowing seven main modules: Integrated user
interface, Conceptual design, Transactional in-
formation, Sites and communication network
information, Partitioning, Logical Allocation and
Physical Allocation.

Integrated user interface

This is the central component of the tool. The inte-
grated user interface is responsible for activating any
needed tool through the design process workflow. It
provides appropriate modules for configuring any
aspect of the integrated tool (see figure 4).

Figure 4 Integrated user interface of SIADBDD

Conceptual design
The design process is logically iterative and ex-
ploratory. ERECASE is the implemented tool that
helps us characterizing global conceptual sche-
mas [12, 16]. This component provides appro-
priate features for the definition and redefinition
of global conceptual schemas with a variety of
constructs from the Extended Entity-Relations-
hip Model [23] It uses the notation from [24].
Additionally, this component can check schemas
for correctness by means of structural validatio-
ns, uniqueness of names, use of identifiers, etc.
When the conceptual schema is correct, a visuali-
zation of the logical schema by means of relatio-
ns [25] and a script for relations creation is gene-
rated. ERECASE was implemented with an easy
user interface for collecting schema information
as well as user control in driving the design pro-
cess (see figure 5).

Figure 5 Sample view of ERECASE tool

Transaction information

APPWIZARD is a tool for collecting applicatio-
ns (transactions) access patterns. The tool was
implemented with an easy user interface for co-
llecting the distribution requirements as well as
user control in driving the design process (see
figure 6a).

This tool provides the user with advanced features
for getting supplementary information of transac-
tions relevant to the distribution. It is not necessary

160

Rev. Fac. Ing. Univ. Antioquia N.° 47. Marzo, 2009

to collect information on 100% of the expected
transactions (that would of course be impossible).
Since the 80-20 rule [22] applies to most practical
situations, it is adequate to supply the 20% of the
heavily used transactions which account for about
80% of the activity against the database.

 (a)

(b)

Figure 6 Sample views of (a) APPWIZARD and (b)
NETWIZARD

Sites and communication network
information

NETWIZARD is the tool that collects information
about sites and communication network required
for the DDB design process. This tool provides a
number of reports presenting required parameters
values of the node in any given simulation. The
tool was implemented with an easy user interfa-
ce for collecting the distribution requirements as
well as user control in driving the design process.
Figure 6b displays an example view of NETWI-
ZARD. Because of space restrictions, more detai-
led views are not given.

Partitioning
FRAGMENTER is the tool that allows designers
to make distribution design decisions using hori-
zontal, vertical and hybrid fragmentation. Rela-
tion instances are essentially tables, so the issue
is one of finding alternative ways of dividing a
table into smaller ones named fragments.

Three fragment types are defined on a database
entity. Horizontal fragmentation is the breaking
up of a table into a set of horizontal fragments
with only subsets of its tuples [3, 22, 26]. Vertical
fragmentation is the breaking up of a table into a
set of vertical fragments with only subsets of its
attributes [5, 27, 28, 29, 30]. Hybrid (also called
mixed) fragmentation is the breaking up of a table
into a set of hybrid fragments with both subsets
of its tuples as well as subsets of their attributes
[4]. A lot of research work has been published
on fragmentation and allocation in the relational
data model [3, 4, 27, 31] (see figure 7).

Figure 7 Sample view of FRAGMENTER

Allocation
While fragmentation is an important issue, our
main concern in this section is with how the data
should be allocated around the network once it
has been partitioned by whatever criteria. Data
allocation is a critical aspect of DDBSs: a poor-
ly designed data allocation can lead to inefficient
computation, high access costs and high network
loads [3, 32] whereas a well designed data alloca-

161

SIADBDD: An integrated tool to design distributed databases

tion can enhance data availability, diminish access
time, and minimize overall usage of resources [3,
33]. It is thus very important to provide DDBSs
that find a good solution in a reasonable amount
of time, achieving data allocations that minimize
the cost of answering the given queries. This sec-
tion addresses the problem of determining where
to place a given set of fragments on a network in
order to minimize the cost of answering a given
set of queries Q. We assume that fragmentation of
the original relations has been carried out before
the data allocation phase. ALLOCATOR is a tool
that supports allocation with replication (see figure
8). Since the allocation problem is pretty complex
and involves combinatorial optimization proble-
ms, the tool implements Genetic Algorithms and
a Q-Learning method for mapping fragments to
sites. Outputs of these methods can be compared
and then selected for materialization.

Figure 8 Logical fragments allocation by
ALLOCATOR

Physical allocation

DISTRIBUTOR materializes physical designs
by allocating distribution partitions obtained by
ALLOCATOR to sites on the network by means
of replication under the publish-distribute-subs-
cribe model. Data replication is a key technology
in distributed systems that enables higher avai-
lability and performance. Physical designs are
completed over the generation of script using ca-
lls to Transact-SQL store procedures.

Figura 9 Scripts that materialize physical designs

Conclusions
This paper outlines issues involved in the con-
ceptual design, fragmentation and allocation in
a DDBS. The paper proposes a novel integrated
tool for aiding designers in initial distributed da-
tabase designs. The contribution of this work is
the implementation of the integrated tool, built
up of a variety of applications and methods for
performing distributed database designs. This
enables designers to easily design and validate
designs with minor time and effort consumption.
The algorithms necessary to support the design
process are implemented and their complexities
are polynomial. A description of the architectu-
re and functions is also provided. The utility of
this tool is clear cut. Unfortunately, many design
parameters need to be entered by designers, and
their estimation is sometimes difficult.

Future work
Further research could study the tuning of the para-
meters involved in algorithms for allocating frag-
ments within ALLOCATOR. At this moment we
work on the integration of several algorithms for
this allocation problem, specifically Q-Learning,
Genetic Algorithms, Bird Flocks and some other
tools developed by our research group. The main
goal is to help in the design of Distributed Databases
in a more efficient way by using less effort and time.
Furthermore, we are working on semantic schema
validation, and improving algorithms for distribu-
ting data over sites within DISTRIBUTOR.

162

Rev. Fac. Ing. Univ. Antioquia N.° 47. Marzo, 2009

Acknowledgements
The authors would like to thank to the Flemish
Interuniversity Council (Vlaamse InterUniver-
sitaire Raad) for their support through the IUC
VLIR-UCLV Program. We would like to express
our gratitude to William Abel Álvarez Martínez
de la Cotera, Norma Elisa Cabrera González,
Alain Cárdenas Castillo, Darien Rosa Paz and
Marisela Mainegra Hing for their helpful contri-
butions to the implementation and tuning of the
software that supports the present work.

References
1. C. I. Ezeife, K. Barker. “Distributed Object Based

Design: Vertical Fragmentation of Classes”. Distributed
and Parallel Databases. Vol. 6. 1998. pp. 317-350

2. K. Karlapalem, S. B. Navathe, M.M.A. Morsi. Issues
in distribution design of object-oriented databases. M.
T. Özsu, U. Dayal, P. Valduriez (editors.) Distributed
Object Management. Ed. Morgan Kaufmann. San
Mateo, California, USA.1994. pp. 148-164

3. M. T. Őzsu, P. Valduriez. Principles of Distributed
Database Systems, 2nd ed. Ed. Prentice-Hall. Upper
Saddle River, New Jersey. 1999. pp. 80-166.

4. S. B. Navathe, K. Karlapalem, M. Ra. A mixed
fragmentation methodology for initial distributed
database design. College of Computing. Georgia
Institute of Technology. Atlanta, Georgia. USA. 1995.
pp. 1-34.

5. A. M. Tamhankar, S. Ram. “Database fragmentation
and allocation: an integrated methodology and case
study”. IEEE Transactions on Systems, Man, and
Cybernetic Part A. Vol. 28. 1998. pp. 288-305.

6. N. H. Daudpota. “Five Steps to Construct a Model of
Data Allocation for Distributed Database Systems”. J.
Intell. Inf. Syst. Vol. 11. 1998. 153-168.

7. A. J. H. Peddemors, L. O. Hertzberger. “A High
Performance Distributed Database System for
Enhanced Internet Services”. P. M. A. Sloot, M.
Bubak, L.O. Hertzberger (editors.) Proceedings of
the International Conference and Exhibition on High-
Performance Computing and Networking, Europe
1998. Ed.Springer. Amsterdam. 1998. pp.469-478.

8. L. Bellatreche, K. Karlapalem, Q. Li. “Complex
Methods and Class Allocation in Distributed Object-
Oriented Database Systems”. International Conference
on Object Oriented Information Systems. 1998. pp.
239-256.

9. H. Lee, Y. K. Park, G. Jang, S. Y. Huh. “Designing
a distributed database on a local area network: a
methodology and decision support system”. Information
& Software Technology. Vol. 42. 2000. pp. 171-184.

10. Y. F. Huang, J. H. Chen. “Fragment Allocation in
Distributed Database Design”. Journal of Information
Science and Engineering. Vol. 17. 2001. pp. 491-506.

11. J. H. Son, M. H. Kim. “An adaptable vertical
partitioning method in distributed systems”. Journal
of Systems and Software. Vol. 73. 2004. pp. 551-561.

12. C. E. García, A. Rodríguez, L. M. González, W. A.
Álvarez. ERECASE, una herramienta con validación
de diagramas entidad relación. 6to. Simposium
Iberoamericano de Computación e Informática SISI
2005. Instituto Tecnológico de Nuevo León, Monterrey.
NL. México. 2005. pp. 1-10.

13. A. Morell, L. M. González, A. Rodríguez. Un
enfoque a la fragmentación vertical en bases de datos
distribuidas.: Congreso Internacional Informática
2000. Nuevas Tecnologías Informáticas. La Habana.
Cuba. 2000. pp. 1-10.

14. A. Morell, L.M. González, A. Rodríguez. “Algoritmos
para la fragmentación vertical en bases de datos
distribuidas”. COMPUMAT 2000. 7mo Congreso de
la Sociedad Cubana de Matemática y Computación.
Manzanillo. Cuba. 2000.

15. A. Rodríguez, L. M. González, L. S. Águila.
“Asignación de fragmentos en Bases de Datos
Distribuidas mediante la aplicación de Algoritmos
Genéticos”. Boletín de la Sociedad Cubana de
Matemática y Computación. Vol. 3. 2005. pp. 1-6.

16. A. Rodríguez, L. M. González, L. Cabrera, A. Morell.
“ERECASE:Una herramienta de ayuda a la modelación
de esquemas conceptuales globales”. I Workshop de
Bases de Datos, Jornadas Chilenas de Computación
JCC 2002. Cámara Chilena del Libro A.G. Universidad
de Atacama. Copiapó. Chile. 2002. pp. 49-58.

17. A. Rodríguez, L. M. González, A. Morell, L. Cabrera,
M. Artiles, L. S. Águila, Á. Valdés. Integración de
herramientas de ayuda al diseño de bases de datos
distribuidas. I Workshop de Bases de Datos, Jornadas
Chilenas de Computación JCC 2002. Cámara Chilena
del Libro A.G., Universidad de Atacama. Copiapó.
Chile. 2002. pp. 111-120.

18. A. Rodríguez, D. Rosa, M. Mainegra, L. M. González.
An Intelligent Agent using Reinforcement Learning to
Solve the Allocation Problem in a Distributed Database
with Replication. Technical Report. Universidad
Central de Las Villas. Santa Clara. 2007. pp. 1-10

163

SIADBDD: An integrated tool to design distributed databases

19. X. Lin, M. E. Orlowska, Y. Zhang. “On Data Allocation
with the Minimum Overall Communication Costs
in Distributed Database Design”. O. Abou-Rabia,
C.K. Chang, W.W. Koczkodaj (eds.): Proceedings
of the Fifth International Conference on Computing
and Information - ICCI’93. IEEE Computer Society,
Sudbury. Ontario. Canada. 1993. pp. 539-544.

20. C. H. Papadimitriou, N. P. Completeness, A.
Retrospective. P. Degano, R. Gorrieri, A. Marchetti
(eds.). Proceedings of the 24th International
Colloquium on Automata, Languages and
Programming, ICALP’97. Springer. Bologna. Italy.
1997. pp. 2-6.

21. X. Lin, M. E. Orlowska. “An Integer Linear
Programming Approach to Data Allocation with the
Minimum Total Communication Cost in Distributed
Database Systems”. Inf. Sci. Vol. 85. 1995. pp. 1-10.

22. S. Ceri, S. B. Navathe, G. Wiederhold. “Distribution
Design of Logical Database Schemas”. IEEE Trans.
Software Eng. Vol. 9. 1983. pp. 487-504.

23. P. P. Chen. “The Entity-Relationship Model - Toward
a Unified View of Data”. ACM Trans. Database Syst.
Vol. 1. 1976. pp. 9-36.

24. R. Elmasri, S. B. Navathe. Fundamentals of Database
Systems. 2nd ed. Ed. Benjamin-Cummings. Menlo Park.
CA. 1994. pp. 28-107

25. E. F. Codd. The Relational Model for Database
Management. Version 2. Ed. Addison-Wesley 1990.
pp. 1-89.

26. S. Ceri, G. Pelagatti. Distributed Databases: Principles
and Systems. Ed. McGraw-Hill. New York. 1984. pp.
128-136.

27. F. A. Baião, M. Mattoso, J. W. Shavlik, G. Zaverucha.
“Applying Theory Revision to the Design of
Distributed Databases”. T. Horváth (ed.): Inductive
Logic Programming: 13th International Conference.
ILP 2003, LNAI 2835. Ed. Springer. Szeged. Hungary.
2003. pp. 57-74.

28. J. Pérez, R. A. Pazos, J. F. Solís, D. Romero, L. Cruz.
“Vertical Fragmentation and Allocation in Distributed
Databases with Site Capacity Restrictions Using the
Threshold Accepting Algorithm”. O. Cairó Battistutti,
L. E. Sucar, F. J. Cantu (eds.): MICAI 2000: Advances
in Artificial Intelligence, Mexican International
Conference on Artificial Intelligence. Ed. Springer.
Acapulco. 2000. pp. 75-81.

29. L. Bellatreche, A. Simonet, M. Simonet. Vertical
Fragmentation in Distributed Object Database
Systems with Complex Attributes and Methods. 8. th.
Inter. Conf. on Database and Expert Systems. 1996.
pp. 15-21

30. S. B. Navathe, M. Ra. “Vertical Partitioning for
Database Design: A Graphical Algorithm”. Proceedings
of the 1989 ACM SIGMOD International Conference
on Management of Data, Portland, Oregon. 1989.
ACM Press. 1989. pp. 440-450

31. S. Ceri, B. Pernici, G. Wiederhold. “Distributed
Database Design Methodologies”. IEEE Database
Eng. Bull. Vol. 75. 1987. pp. 533-546.

32. D. Saccà, G. Wiederhold. “Database Partitioning in
a Cluster of Processors”. ACM Trans. Database Syst.
Vol. 10. 1985. pp. 29-56.

33. P. M. G. Apers. “Data Allocation in Distributed
Database Systems”. ACM Trans. Database Syst.Vol.
13. 1988. pp. 263-304.

