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Abstract

An alternative solution to the problem of power service continuity associated 
to fault location is presented in this paper, by using a methodology of 
statistical nature based on finite mixtures. A statistical model which helps 
to locate the faulted zone, is obtained from the extraction of the magnitude 
of the voltage sag registered during a fault event, along with the network 
parameters and topology. The objective is to offer an economic alternative of 
easy implementation for the development of strategies oriented to improve 
the reliability from the reduction of the restoration times in power distribution 
systems. As results presented for an application example in a 25kV system, 
the faulted zones were identified, having low error rates. 

----- Keywords: Power Quality, Fault Location, Finite Mixtures, Statistical 
Model, density mixture models.

Resumen

En este artículo, se presenta una solución alternativa para el problema de 
continuidad del servicio asociada a la localización de fallas. La metodología 
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propuesta es de naturaleza estadística y basada en las mezclas finitas. El modelo 
estadístico es obtenido a partir de la extracción de la magnitud del hueco de 
tensión registrado durante un evento de falla y de los parámetros de la red y de 
su topología. El objetivo esta asociado a ofrecer una alternativa económica y 
de fácil implementación para el desarrollo de estrategias orientadas a mejorar 
la confiabilidad a partir de la reducción de los tiempos de restauración de los 
sistemas de distribución. Como resultados más importantes, se presentan los 
obtenidos en un ejemplo de aplicación en un sistema de 25 kV, en el cual 
las zonas en falla fueron localizadas con un bajo error en el desempeño del 
localizador.

----- Palabras clave: Calidad de potencia, localización de fallas, mezclas 
finitas, modelos estadísticos, modelos de mezclas de densidad.

Introduction
The interest in improving quality of supplied 
power is due to the deregulation in the electri-
cal industry where quality is not only an indica-
tor of the participation in the open power market 
but also one of the most relevant aspects regard-
ing the requirements imposed to utilities. In most 
of the countries, and as a consequence of the new 
regulation, it is intended to strengthen the business 
of electricity distribution and the market from the 
viewpoint of power quality [1, 2]. The dependency 
of human activities in electricity demands that en-
ergy be supplied under several criteria of security, 
reliability and quality [3]. Such criteria have been 
promoted by fixed prices charged to final custom-
ers and by standards imposed to the service pro-
vided by utilities [4]. The continuity of supply is 
one of the most important aspects for the customer. 
This importance emerges from the social and eco-
nomic impacts of interruptions [5, 6]. Although it 
is not economically feasible to reach a 100% of re-
liability, utilities are making efforts to mitigate the 
problem of interruptions with an adequate plan-
ning and operation of the power system [7]. 

According to the statistics data, about 80% of in-
terruptions are caused by faults in the distribution 
system. The application of transmission system 
fault location algorithms to distribution networks 
is not a easy task due to the topology and opera-
ting principles of the latter (i.e. non homogeneous 
feeders, load taps, laterals, radial operation and the 

available measuring equipment) [8]. There exists a 
variety of methods for locating faults in power dis-
tribution systems. These methods may be classified 
in three broad categories. The first one comprises 
methods that detect components of high frequency 
in travelling waves, the second includes methods 
that compute fault impedance from the rms values 
of current and voltages measured at the fundamen-
tal frequency, and the last one is based on methods 
of visual inspection that consist of patrolling and 
checking the faulted feeder [8, 9]. 

This paper is aimed to propose an alternative so-
lution to the problems associated with interruptio-
ns by means of a statistical model of voltage sags 
database applied to determine the fault location in 
power distribution systems to reduce the time was-
ted in system restoration [10]. The achievement of 
this goal enables the improvement of reliability 
from the establishment of strategies which are both 
economic and easily applicable by utilities [11].

This paper consists of six sections. In section 2, the 
theory related to the method which the proposed 
approach is based and the requirements for obtai-
ning the statistical model are introduced. In section 
3, the methodology proposed to fault location in 
distribution systems is presented. Section 4 descri-
bes the algorithm. Section 5 presents an applica-
tion example by using a 25 kV distribution system, 
where the results obtained with the application of 
the proposed methodology are shown. Finally, the 
conclusions are highlighted in section 6.
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Basics of the multivariate analysis 

The multivariable analysis is used in the propo-
sed approach as kernel to obtain a representation 
of the distribution system. Multivariate analysis 
is here decomposed in two main levels. 

The first one consists of the extraction of infor-
mation from available data, called Exploratory 
Data Analysis-EDA. In this case, the available 
data is composed by the fault registers of voltage 
measured at the power substation. These registers 
are characterized and as a result the voltage sag 
magnitude is obtained [12].

Second level is intended to represent knowledge 
from using the characteristics obtained at the first 
stage and relate it to the fault location. 

Considering the above proposed, two different 
techniques are used to develop the fault location 
model. The first one is the application k-means 
algorithm and the second one is the mixture of 
distributions-MD [13]. With the application of 
the first technique data exploration and definition 
of variables are achieved while in the last one the 
probability density function is estimated.

Visual exploration is a powerful tool that serves 
as a first step in the understanding of multivariate 
data and enables the information analysis. This 
process helps with the comprehension despite the 
complexity and volume of data [14, 15]. 

Clustering data allows the conformation of me-
aningful groups in an analytical way, with the ob-
jective of classifying data in a population accor-
ding to similarities or affinities [16]. Moreover, 
the use of relatively simple models for each local 
structure makes the implementation, analysis and 
computational simplification less difficult [17, 
18]. The clustering algorithms of are based in the 
use of metric differences for the calculation of the 
distance. The metrics are subjected to the cons-
traints in (1), where A, B and C are individuals 
of a group of data and d(A,B) is the distance bet-
ween individuals A and B.

There exists a great variety of metrics associa-
ted to the quantification of data variability. In 

this approach the Euclidean (2) and Mahalanobis 
(3) metrics are used for cluster analysis since the 
best results have been achieved with them [19]. 
Equations 2 and 3 are written in matrix format, 
where xi is the data vector which corresponds to 
observation i, x  is the mean magnitude vector, T 
indicates the transpose of a matrix and V is the 
covariance matrix. 

  (1)

 ( )( )
1

T 2

i i idE  = − − x x x x  (2)

 ( ) ( )
1

T 21
i i idM − = − − x x V x x  (3)

Two important aspects are evaluated by using the 
previous mentioned metrics. The first is concer-
ned with the proximity of between elements of 
the same group which indicates the how compact 
is a group of data (Internal homogeneity). The se-
cond is related to the distance between elements 
of different groups in order to guarantee that no 
overlap exists due to the relative proximity of 
groups (external heterogeneity) [19]. 

MD is a technique of statistical modelling which 
allows an estimation of the Probability Density 
Function – PDF of data in a random sample, re-
presented as a finite weighted sum of multivaria-
te density components [20]. This technique has 
been applied with several purposes such as the 
modelling of heterogeneity in a population (bio-
logy), management of outliers, PDF estimation 
and clustering (statistics), pattern recognition 
(image processing) and fraud detection (utilities). 
Within the principal features of MD, it is worth 
to mention that a smoothing parameter for PDF 
estimation is not required. The finite number of 
terms in the mixture can be defined according to 
the needs of the analyst. MD have less computa-
tional burden in comparison with other methods 
such as Kernel Estimation and Histograms since 
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less amount of information is stored for PDF es-
timation [19].

The main advantage of MD is due to the capability 
on analysis and modelling of clusters. The flexi-
bility of mixture models allows its application to 
the fault location problem in distribution systems 
[21]. In this particular application, concepts about 
multivariate data were used. These concepts are 
a characterization of a multidimensional random 
phenomenon. The multivariate density mixtures 
are expressed as shown in (4).

  (4)

MD taken from a random sample x of n observa-
tions of dimension d is comprised of G compo-
nents fg (x,θ) related to the selected multivariate 
density function. Each component gf  describes 
the behaviour of a group within the sample in 
which data related to such group have similar 
characteristics established in the estimation vec-
tor θ that corresponds to the parameters of each 
distribution (homogeneous). An estimator is a 
parameter that defines the behaviour of data in a 
group, so it also describes the shape. For exam-
ple, estimators for a normal PDF are: the mean 
vector µ and the covariance matrix V which de-
fine the central point of the distribution and how 
data are concentrated. The quantities pg, called 
weights or coefficients of mixture, provide infor-
mation about the importance of the group within 
the mixture. The conditions that coefficients must 
satisfy are given in (5). 
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The aim of MD is to identify an unknown quan-
tity of groups in which data of a given population 
are clustered. That is to say, MD seeks the homo-
geneity within an initially heterogeneous sample. 
To achieve this goal MD utilizes the Expectation-
Maximization-EM algorithm for parameter esti-
mation. 

The EM algorithm is an application of the Maxi-
mum Likelihood Method-MLM to find missing 
parameters. In this sense, it allows the determina-
tion of maximum likelihood estimators θ for each 
distribution fg (x, θ)from initial values [13]. L 
in the algorithm is the likelihood function of the 
sample, finding the expected value of the func-
tions of missing values Z from the calculation 
of its density function with initial values  and 
observed values Y. The result of this operation is 
called the E-step (Expectation) given in (6).

  (6)

In the M-step (Maximization) the function 
 is maximized in θ to find the maximum 

likelihood estimators from the replacement of 
missing with estimated values. 

Let  be the value of the estimator obtained 
in the M-step. Then we return to the E-step in an 
iterative procedure until convergence is reached 
as presented in (7).

  (7)

Where ε is the accepted tolerance, and k is the 
iteration number [22]. 

The MLM selects a good value of the estimator 
the one that maximizes the probability of genera-
ting the observed sample from the model to esti-
mate [13, 21]. 

Proposed methodology

To obtain the fault location, a characterization 
of the system response under fault conditions is 
proposed. The response of the system is reflected 
in voltage signals measured at the distribution 
substation (single end measurements). In what 
follows, a description of the research done in five 
stages proposed methodology will be given. 

In the first stage, a power distribution system is 
considered and voltage waveforms from faults 
are recorded at the substation. The most common 
type of faults in distribution systems are short 
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circuits. This work takes into account single line-
to-ground, line-to-line, double line-to-ground, 
three phase and three phase-to-ground faults with 
different values of fault resistance between 0 and 
50 Ohms [23].

In the second stage, signals are pre-processed to 
obtain rms and per-unit values. 

In the third stage the system was characterized 
in two different ways. The first is a deterministic 
one based on the calculation of single-phase fea-
tures or “descriptors” of voltage signals [12]. The 
second of statistical nature is based on an appli-
cation of EDA which results in descriptors that 
characterize system behaviour. 

In the fourth stage the information of included 
descriptors is analyzed by setting rules and con-
ditions for creating characteristic zones and re-
lations of homogeneity between groups. This is 
achieved with the application of techniques for 
the analysis of clusters. 

Finally, in the fifth stage, the model of mixtures is 
conformed and fault data are classified obtaining 
the most probable fault location zone.

Structure of the fault locator 

The description of the algorithms that allow a step 
by step construction of the model, which is based 
on clustering and MD theory, is presented in this 
section. The idea for the implementation of the 
algorithm is to progressively adjust the model of 
each cluster extracted from the information of the 
system under fault conditions. The initial values 
of model parameters are calculated in an iterative 
procedure. A summary-type scheme of the algori-
thms known as k-means is next presented: 

a. Specify the number of groups by a prelimi-
nary analysis or considering suggestions of 
the maintenance crew.

b. Determine the centres of these groups. This 
can be done a priori or in a random way.

c. Take each data and calculate the distance 
from each cluster by using Euclidean or Ma-

halanobis approaches as presented in equa-
tions (2) and (3).

d. Aggregate each data into the cluster whose 
distance is a minimum and compute the new 
centres.

e. Repeat steps b, c and d until no further chan-
ges occur in groups.

The idea is to minimize the sum of squared dis-
tance from points to centres within each group. 
Once the clustering is done, the method proceeds 
with the identification of predominant characte-
ristics in each group with the aim of inferring and 
relating new data.

From the information about the groups from the 
k-means algorithm, initial values for the centres 
are calculated. The initial value of covariance ma-
trix is taken as the identity matrix and the mixtu-
re coefficients are calculated with the proportion 
of data in each group, in relation to the sample. 
Once initial parameters have been obtained, the 
estimation of the mixture model parameters is 
initiated by the EM algorithm in an iterative pro-
cedure until desired convergence is reached. The 
results are the final values of parameters µ, V and 
p of each group. These parameters are used by 
the multivariable density of mixtures presented 
in equation (4), in order to classify other possible 
observations. The steps of the EM algorithm are 
as follows:

a. Determine the number of components of the 
mixture by using the k-mean algorithm.

b. Determine initial values of parameters of 
each component. ( , ( )0V̂  and ( )0p̂ ).

c. Calculate the posterior probability for each 
observation (E-step) as shown in (8) and (9).

  (8)

  (9)
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îjτ represents the posterior probability of xj co-
rresponding to the i term,  is the normal 
multivariate density and  corresponds to the 
estimated MD for the i terms evaluated in xj. j is a 
index which indicate the total amount of data.

d. Update , V̂  and p̂ of each component (M-
step) by using (10), (11) (12). ( ˆ ip ,  y

ˆ
iV are 

the updated estimations of the parameters).

  (10)

  (11)

  (12)

e. Repeat steps c and d until desired convergen-
ce is obtained.

Subsequently, the organization of groups in clas-
ses associated to faults is based in the probability 
of appearance in each group as given by the mix-
ture model (13). 

  (13)

Proposed tests for locating faults 

From the statistical model as presented before, 
fault location within the system according to its 
response is expected. Recorded voltage wavefor-
ms are the basis to find the solution. Each recor-
ded event has relevant information that enables 
data classification within certain type of class es-
tablished in the model. Each class corresponds to 
a zone within the distribution network. 

All the information used in this approach corres-
ponds to magnitudes of voltage (not angles were 
used). That is because this approach is aimed to 
obtain a low economical cost tool due to constra-
ins imposed in several distribution utilities.

A 25 kV power distribution system is proposed 
for tests. This system is taken from Saskatown 
Power and Light, Canada, and it is presented in 
figure 1 [8, 24]. 
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Figure 1 25 kV power distribution system used to test

For the discrimination of zone visually, detecta-
ble groups were taken into account in a prelimi-
nary data analysis. Also, the zone division of the 
power system has to consider the suggestions of 
the maintenance crew, according to their expe-
rience in fault recovering. The goal to be achie-
ved by associating groups to zones is to establish 
the correspondence between fault location and 
data classification within groups. Three descrip-
tors were used to represent distribution system 
information: maximum sag magnitude in each 
phase of a three phase system [12].

In this case, data for training and validation are 
short-circuit faults simulated in each bus of the 
power distribution system by using different fault 
resistances from 0,05Ω to 50Ω according to [23]. In 
table 1, fault resistance values used in the training 
(T) and validating (V) processes are presented.

In table 2 data used in training (T) and validation 
(V), for each fault type are presented.

Before classification process, a verification of 
training data is performed to previously identify 
and divide the distribution network in several zo-
nes. The objective is to estimate the initial centres 
of each group. Figure 2 shows each of the power 
system zones obtained previous grouping of vol-
tage sag descriptors for single-phase faults. 
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Table 1 Fault resistance values

Fault 
resistance 

[Ω]
Process

Fault 
resistance 

[Ω]
Process

0.05 T 25 T

5 T 30 V
10 V 35 T
15 T 40 V
20 V 50 T
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Figure 2 Zones previously determined by visual 
analysis of data

The proposed model is ordered in several steps 
of classification, the first one (SC1), determines 
the faulted phase; the second (SC2), finds fault 
resistance value and the third (SC3), finds fault 
location. SC1 step is only applicable to single-
phase and phase-to-phase faults while SC2 and 
SC3 steps are applicable to all fault types. Fi-
gures 3, 4 and 5 show the distribution of trai-
ning data corresponding to three types of faul-
ts. Besides, three clearly defined groups which 
correspond to each one of the three phases are 
observed.

Figure 3 Distribution of training sag data for single-
phase fault (SC1)

Table 2 Data used in training and validating processes

Fault type Simulations by fault type
Process

Training (T) Validation (V)
A B C

Line to ground 132 187 176 315 180

AB BC CA

Line to line 132 132 132 252 144

Double line to ground 132 132 132 252 144

ABC

Three phase 132 84 48

Three phase to ground 132 84 48

Total 1551 987 564
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Figure 4 Distribution of training sag data for phase-
to-phase fault (SC1) 

Figure 5 Distribution of training sag data for double-
phase-to-ground fault (SC1) 

Having the initial definition of groups and by 
applying the k-means algorithm, centers of 
groups are estimated to allow initialization of the 
method. Then, the shape and final proportion of 
groups within the distribution is defined utilizing 
EM algorithm and the initial estimation. In this 
step, a heterocedastic model is used to determine 
the shape of the covariance matrices for each dis-
tribution and also the shape of each group. Mo-
reover, by using the same initial values for mixtu-
re coefficients of each group, it assumes that the 
occurrence of a fault within the group is equally 
probable.

In step SC2, the information about fault resis-
tance allows the creation of possible scenarios 
where groups representing intervals of fault re-
sistance values are conformed. In this particular 
case, five representative groups were establis-
hed, as shown in figure 6. The idea presented 

above is related to the capability of predicting 
what caused the fault. This information can be 
relevant to establishing the procedure to solve 
the problem [23].

The shape and final size of the five groups ob-
tained at this application is shown in figure 6 
(ellipses). Centres and mixture coefficients are 
represented by stars. Fault resistance value grows 
advancing to the right in the figure. The elliptic 
shape of each group is related to the values of 
the covariance matrix [16]. At step SC3 all data 
are grouped, and each one represents a probable 
faulted zone.

FIGURE 4 

FIGURE 5 

FIGURE 6 

Figure 6 Distribution of groups in training sag data in 
case of single-phase faults (SC2) 

In SC3 step, data are clustered and used as zo-
nes of fault occurrence. Each defined zone is as-
sociated to a given number of buses within the 
distribution network as shown in figure 2. These 
zones are established with the information about 
the number of groups obtained in SC2 step. Hen-
ce in step SC3 we have “r” groups corresponding 
to fault resistance groups determined in SC2 and 
these contain “z” groups corresponding to each 
one of system zones. In the case of the prototype 
system, there is a MD that consists of five groups 
(SC2) and each group contains four subgroups 
that represent system zones. Figure 7 illustrates 
the construction of groups associated to zones. 

The EM algorithm is able to modify the elements 
of the covariance matrix in each one of the itera-
tions until the best estimation is obtained. If the 
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covariance matrices remained without change 
from the initial estimation, circular shaped groups 
would be obtained [19]. Finally, the mixture mo-
del is applied with the aim of comparing initially 
assumed zones (see figure 2), with those determi-
ned by the algorithm. In the current application 
case, the initial estimate of zones corresponds to 
the result obtained with the algorithms. An aspect 
to remark is the incidence of the initial values, as-
sumed by the analyst, in the improvement of the 
model during its construction. Once established 
the model, validation was done with sag data not 
used in the training process. 

FIGURE 7 

Figure 7 Distribution of zones associated to group 
1 in SC2 step

Table 3 Results of SC1 Validation Step

Fault type Phase (s) Subtotals

A B C

Line to ground 48/48 : 100 68/68 :100 64/64 : 100 180/180 : 100

AB BC CA

Line to line 48/48 : 100 48/48 : 100 48/48 : 100 144/144 : 100

Double line to 
ground

39/48 : 81.25 37/48 : 79.16 37/48 : 77.08 114/144 : 79.16

The observations contain voltage sags with fault 
resistance values of 10, 20, 30 and 40 Ω. Having 
established the data model, validation stage is 
performed by using data not previously used in 
training. The validation results are presented as 
the ratio between the well classified data and all 
the testing data. To evaluate the fist classification 
stage (SC1), 468 faults were used. In table 2 all 
data used in validation are presented. In table 
3 the results in case of single and double phase 
faults are presented.

In Table 4, validation results obtained with SC2 
classifier are presented (564 observations).

The results in table 5 reflect the good performan-
ce of SC3 classifier (564 observations).

Classification problems are found in further po-
ints along the distribution feeder. In these cases 
there exists a wrong assignation of the zone due 
to a classification error in the previous step SC2. 
Another possible cause of this inadequate beha-
viour is the location of data in the intersection of 
two or more groups. In this situation, the zone 
is assigned depending on its higher probability a 
posteriori. 

Each observation is evaluated respect to each one 
of the groups by computing the probability of per-
taining to the same groups through all the steps. 
The observation is classified within the group in 
which it has the higher probability. 
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Table 4 Results of SC2 Validation Step

Fault type
Fault resistant range

Subtotals
R1 R2 R3 R4

Line to ground 27/45 : 60 36/45 : 80 36/45 : 80 45/45 : 100 144/180 : 80

Line to line 27/36 : 75 30/36 : 83.33 36/36 : 100 36/36 : 100 129/144 : 89.58

Double line to 
ground

28/36 : 77.77 30/36 : 83.33 36/36 : 100 36/36 : 100 130/144 : 79.16

Three phase 20/24 : 83.33 24/24 : 100 24/24 : 100 24/24 : 100 90/96 : 93.75

Table 5 Validation results in stage SC3

Fault type Zones Subtotals

Z1 Z2 Z3 Z4

Line to ground 48/48 : 100 48/48 : 100 48/48 : 100 28/36 : 77.77 172/180 : 95.55

Line to line 48/48 : 100 48/48 : 100 48/48 : 100 - 144/144 : 100

Double line to 
ground

34/48 : 70.08 43/48 : 89.58 36/48 : 75.00 - 113/144 : 78.87

Three phase 32/32 : 100 32/32 : 100 32/32 : 100 - 96/96 : 100

Table 6 presents results of data classification ac-
cording to calculated probabilities in each group. 
Eight data are presented as an example due to 
the great amount of processed information (468 
observations). Data shown corresponds to eight 
single-phase faults located in the four zones of 
the system in figure 2. Each fault belongs to a 
real zone of occurrence and presents an estima-
ted zone which is determined from its probability 
of occurrence calculated in the classification per-
formed in stage SC3. No information is included 
about three phase and phase-to-phase faults be-
cause only the main three phase feeder is shown 
and divided in three zones. On the other hand, 
single phase feeders pertaining to the fourth zone 
of the system are not included.

Conclusions
The proposed statistic based methodology for 
fault location in distribution systems has been 
presented and tested. This approach is based in 

the statistical modelling and extraction of the sag 
magnitude from voltage measurements stored in 
fault data bases. The fault locator here proposed 
contributes to satisfy actual needs of utilities in 
preserving and improving service quality, promo-
ting the consolidation of strategies oriented to de-
crease the number and duration of interruptions. 
The total time of interruption can be associated 
to the time taken in several actions during system 
restoration such as alarm time, detection time, ac-
cess time and sectioning time among others. 

Potential limitations for the proposed methodolo-
gy are the selection of the number of groups, the 
proportion of samples in each group and initial 
values required by algorithms. These difficulties 
overcome by introducing theoretical and heuris-
tic criteria, the latter being more influential in the 
structure of the model. 

One of the advantages in the construction of the 
model is the determination of groups of well de-
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fined characteristics which allow an optimization 
in the classification of data thus ensuring good 
model accuracy. Moreover, the initial approxima-
tion of system zones is useful in the estimation of 

Software requirements for the implementation 
of a tool with the proposed methodology are su-
pplied by statistical packages of commercial use 
and low license costs. This fact enables the easy 
and simple implementation of the model. Hard-
ware requirements are basic and economical sin-
ce they only depend of a data acquisition system 
with the capability of continuously monitoring 
power system magnitudes at the power distribu-
tion substation.

The proposed model takes into account techni-
cal, economical and operational issues existing 
in power distribution networks. A remarkable as-
pect is the low investment cost for the implemen-
tation of the fault detection system based in the 
proposed method.

References
1.  J. Mora, G. Carrillo, B. Barrera. “Fault Location 

in Power distribution Systems using a Learning 
Algorithm for Multivariable Data Analysis”. IEEE 
Trans. on Power Delivery. Vol. 22. 2007. pp. 1715-
1721.

2.  J. Driesen, T. Green, T. Van Craenenbroeck, R. Belmans. 
“The Development of Power Quality Markets”. IEEE 
Power Engineering Society General Meeting. Vol. 1. 
2004. pp. 963-967. 

3.  J. Martinez, J. Martin. “Voltage Sag Stochastic Prediction 
Using an Electromagnetic Transients Program”. IEEE 
Transactions on power delivery. Vol. 19. 2004. pp. 596-
602.

4.  C. Crozier, W. Wisdom. “A power quality and 
reliability index based on customer interruption costs”. 
Power Engineering Review, IEEE. Vol. 19. 1999. pp. 
59 – 61.

5.  M. Bollen. Understanding power quality problems: 
voltages sags and interruptions. Ed. IEEE Press. New 
York,. 2000. pp. 35 – 116. 

6.  A. Girgis, C. Fallon, D. Lubkeman. “A fault location 
technique for rural distribution feeders”. IEEE Trans. 
Industry applications. Vol. 29. 1993. pp. 1170-1175.

7.  R. Brown. Electric power distribution reliability. New 
York. Marcel Dekker. 2002. pp. 24-42.

8.  R. Das. “Determining the Locations of Faults in 
Distribution Systems”. Ph.D dissertation. Saskatchewan 
Univ. Canada. 1998. pp. 15 – 48.

the real number and size of zones in the distribu-
tion system. Besides, detailed characterization of 
the system, model performance depends on the 
quality of information extraction and processing.

Table 6 Examples of results of data classification

Data Real
Zone

Probability in each group [%] Estimated
ZoneZ1 Z2 Z3 Z4

1 1 98.98 0.42 0.35 0.25 1

2 1 99.88 0.08 0.03 0.01 1

3 2 0.99 95.4 1.98 1.63 2

4 2 2.89 94.94 1.62 0.55 2

5 3 2.92 0.61 82.35 14.1 3

6 3 0.79 8.29 82.88 8.04 3

7 4 2.35 5.28 38.27 54.51 4

8 4 0.26 15.42 25.85 58.47 4



208

Rev. Fac. Ing. Univ. Antioquia N.° 47. Marzo, 2009

9.  J. Zhu, D. Lubkeman, A. Girgis. “Automated fault 
location and diagnosis on electric power distribution 
feeders”. IEEE Trans. Power delivery. Vol. 12. 1997. 
pp. 801-809.

10.  A. Girgis, C. Fallon, D. Lubkeman. “A fault location 
technique for rural distribution feeders”. IEEE Trans. 
Industry applications. Vol. 29. 1993. pp. 1170-1175. 

11.  H. Willis. Power distribution planning reference book. 
New York. Marcel Dekker. 2004. pp. 47 – 59.

12.  L. D. Zhang, M. H. J. Bollen. “Characteristics of voltage 
dips (sags) in power systems”. IEEE Transactions on 
Power Delivery. Vol. 15. 2000. pp.827-832.

13.  A. Rencher. “Methods of Multivariable Analysis”. 
Ed. John Wiley and Sons. New York. Brigham Young 
University. Utath. 1995. Chapter 12. pp. 415-443.

14.  Y. Wang, L. Luo, M. Freedman, S. Kung. “Probabilistic 
principal component subspaces: A hierarchical finite 
mixture model for data visualization”. IEEE Trans. 
Neural Networks. Vol. 11. 2000. pp. 625-636.

15.  R. Johnson, D. Wichern. Applied Multivariate 
Statistical Analysis. Ed. Prentice Hall, New York. 
1998. pp. 124-168.

16.  J. Hair, R. Anderson, R. Tatham, W. Black. 
Multivariable Data Analysis. Ed. Prentice Hall. 
Madrid.1999. pp. 85-97.

17.  Y. Wang, S. Lin, H. Li, S. Kung. “Data mapping 
by probabilistic modular networks and information 
theoretic criteria”. IEEE Trans. Signal processing. 
Vol. 46. 1998. pp. 3378-3397. 

18.  M. Jordan, R. Jacobs. “Hierarchical mixture of 
experts and the EM algorithm”. IEEE Trans. Neural 
Computing. Vol. 6. 1994. pp. 181-214.

19.  W. Martínez, A. Martínez. Computational statistics 
Handbook whit MatLab. Ed. Chapman & Hall New 
York. 2002. pp. 90-124.

20.  E. Dalla Jonson. Métodos multivariados aplicados al 
análisis de datos. Ed. Thompson. México. 2000. pp. 
53-86.

21. G. Mclachlan, D. Peel. Finite mixture models. Ed. 
Wiley and Sons. Montreal. 2000. pp. 46-72.

22  M. Figueiredo. “Unsupervised Learning of Finite 
Mixture Models”. IEEE Trans. Pattern analysis and 
Machine intelligence. Vol. 24. 2002. pp. 135-143. 

23.  J. B. Dagenhart. “The 40-Ground-Fault Phenomenon”. 
IEEE Trans. on Industry Applications. Vol. 36. 2000. 
pp. 30-32.

24.  S. Lee, M. Choi, S. Kang, B. Jin, D. Lee, B. Ahn, N. 
Yoon, H. Kim, S. Wee. “An intelligent and efficient fault 
location and diagnosis scheme for radial distribution 
systems”. IEEE Trans. Power Delivery. Vol. 19. 2004. 
pp. 524-532.


