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Abstract

This paper investigates a new way for modelling the nonlinear behavior 
present in pathological voice signals. The main idea is modelling the time-
delay reconstructed attractors, taking into account the spatial and temporal 
information of the trajectories by means of a discrete Hidden Markov 
model (HMM). When the attractors are modeled with HMM it is possible 
to compute a probabilistic kernel-based distance among models to construct 
a dissimilarity space. This approach enables the possibility of comparing 
attractor families by their profiles, rather than evaluating individual nonlinear 
features of each subject. Classification of dissimilarity space is carried out 
by using a naive 1-nearest neighbors rule and it is compared with another 
classification scheme that employs two conventional nonlinear statistics: 
largest Lyapunov exponent and correlation dimension. Results show that the 
maximum accuracy with the proposed scheme is a 18.71% greater than the 
maximum accuracy obtained from the classification based on the conventional 
nonlinear statistics.
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Resumen

En este trabajo se investiga una forma alternativa de modelar el comportamiento 
no lineal presente en las señales de voz patológicas. El método consiste en 
modelar atractores reconstruidos mediante la técnica de retardo de tiempo, 
teniendo en cuenta la información espacial y temporal de las trayectorias en 
el atractor a partir de modelos ocultos de Markov (HMM) discretos. A partir 
de modelos HMM entrenados para los espacios embebidos es posible calcular 
una medida de distancia basada en un kernel probabilístico, que posibilita 
la construcción de un espacio de disimilitud. Esta aproximación permite la 
comparación de familias de atractores a partir de la comparación de prototipos 
en lugar de evaluar características no lineales individuales de cada sujeto. La 
clasificación del espacio de disimilitud se lleva a cabo usando un clasificador 
por vecino más cercano y se compara con otro esquema de clasificación que 
emplea dos características convencionalmente empleadas en análisis no lineal: 
máximo exponente de Lyapunov y dimensión de correlación. Los resultados 
muestran que la máxima eficiencia alcanzada con el esquema propuesto es un 
18,71% más alta que la máxima exactitud obtenida a partir de clasificación 
basada en estadísticas no lineales convencionales.

----- Palabras clave: Análisis no lineal de voces patológicas, espacios 
de embebimiento, modelos ocultos de Markov, clasificación de 
espacios de disimilitud

Introduction
In the analysis of physiological signals there exist 
several approaches that attempt to characterize 
the non-linear behavior of the underlying system. 
Different investigations have shown that changes 
in nonlinear dynamic measures may indicate states 
of pathophysiological dysfunction [1]. This fact 
suggests that chaos theory and nonlinear dynamic 
methods might potentially be applied to diagnose 
physiological disorders and to evaluate the effects 
of clinical treatments [1]. For the particular case 
of automatic detection of voice disorders, it has 
been shown that there exist several factors that 
lead to nonlinear behavior in the speech signal [2, 
3]. Much of the work done in this area is based on 
the use of acoustic parameters, noise measurements 
and cepstral coefficients [4,5]. However, several 
researchers have shown that there is a physical 
phenomenon involved in the voice production 
process that can not be characterized by the above 
measures, termed Nonlinear Behavior. Such a 
behavior in speech is produced by some mechanics 
as: nonlinear pressure-flow relation in the glottis, 
nonlinear stress-strain curves of vocal fold tissues, 

and nonlinearities associated with vocal fold 
collision [1]. In reference [6], the authors introduced 
a classification for sustained vowel speech sounds, 
taking into account nonlinear dynamic concepts. 
Type I sounds are those that are nearly periodic. 
Type II sounds are those that are aperiodic or does 
not have dominant period. Type III sounds are those 
that appear to have no periodic pattern at all. From 
this classification, the problem is that normal voices 
can usually be classified as Type I and sometimes 
Type II, whereas voice disorders commonly lead 
to all three types of sounds [7]. Additionally, 
conventional parameters as Shimmer and Jitter are 
defined only for voice signals nearly periodic and 
thus their usefulness may break down for Type II 
and Type III signals [1].

On the other hand, the conventional method used 
to perform an analysis over a time series based on 
nonlinear techniques, employs the Takens’ theorem 
to construct the embedding attractor of the signal 
[8]. From this attractor some nonlinear statistics 
as the correlation dimension and maximum 
Lyapunov exponent are estimated [8] in order to 
perform the automatic classification. However, 
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nonlinear statistics require the dynamics of speech 
to be purely deterministic (nonlinear statistics rely 
on a state space reconstruction and are likely to 
vary when the distribution of points in this state 
space changes), and this assumption is inadequate 
since randomness due to turbulence is an inherent 
part of speech production [7;9]. There are also 
numerical, theoretical and algorithmic problems 
associated with the calculation of nonlinear 
measures for real speech signals, casting doubt 
over the reliability of such tools [7]. In the last few 
years, a new measure called Approximate Entropy 
(ApEn) has been widely used. This measure can 
theoretically characterize the complexity of a large 
variety of systems [10]. ApEn is a measure of the 
rate of generation of new information, which can 
be applied to the typically short and noisy time 
series of clinical data. Nevertheless, in practice it 
has been shown that ApEn is heavily dependent 
on the record length and is uniformly lower than 
expected for short records [10]. Additionally, its 
calculation is expensive because it requires the 
evaluation of several trajectories for different 
embedding dimensions. In this work, a new way to 
characterize attractor trajectories is proposed. The 
main idea is modelling the embedding spaces taking 
into account the spatial and temporal information 
of the trajectories using a discrete Hidden Markov 
Model (HMM). A HMM is a stochastic model that 
models the variability of a time series allowing 
the comparison between sequences of different 
lengths with no obvious alignment principle 
across temporal observations [11]. By using this 
class of models it is possible to represent the 
dynamic behavior of the state space without any 
assumption about the nature of the underlying 
system (deterministic or stochastic). This approach 
enables the possibility of comparing attractor 
families by their profiles, rather than evaluating 
individual nonlinear features of each subject. In 
order to establish the discriminant capacities of the 
proposed approach in the problem of automatic 
detection of pathological voices, we carried out 
some experiments using conventional nonlinear 
statistics (correlation dimension and maximum 
Lyapunov exponent) as baseline in the framework 
of nonlinear analysis. The paper is organized 

as follow: section 2 describes the mathematical 
models and technique used to construct the patter 
recognition system. The section 3 presents the 
database, experiments and results. In the section 
4 conclusions and discussions are pointed out and 
finally, some acknowledgments are presented.

Methodology
Figure 1 shows a sequential scheme for the 
particular patter recognition system proposed in 
this work. Each of the stages in the scheme will 
be explained in the follow. 

Figure 1 Pattern recognition system for classifying 
nonlinear components of the normal/pathologic 
speech signals. The dashed box is equivalent to the 
extraction and selection stages in a conventional 
patter recognition system
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Attractor reconstruction

The state space reconstruction is based on the Time-
Delay Embedding Theorem [8], which can be 
written as follows: Given a dynamic system with 
a m-dimensional solution space and an evolving 
solution h(t), let x be some observation x(h(t)). Let 
us also define the lag vector (with dimension m 
and common time lag τ) x(t) ≡ (xt , xt-τ, xt-2 τ, xt-(m-1)τ). 
Then, under very general conditions, the space of 
vectors x(t) generated by the dynamics contains 
all the information of the space of solution 
vectors h(t). The mapping between them is 
smooth and invertible. This property is referred 
to as diffeomorphism and this kind of mapping 
is referred to as an embedding. Thus, the study 
of the time series x(t) is also the study of the 
solutions of the underlying dynamical system 
h(t) via a particular coordinate system given by 
the observable x.

The embedding theorem establishes that, when 
there is only a single sampled quantity from a 
dynamical system, it is possible to reconstruct 
a state space that is equivalent to the original 
(but unknown) state space composed of all 
the dynamical variables [8]. In this work the 
embedding dimension m was chosen by using the 
false neighbors method and time–delay τ by using 
the first minimum of the auto mutual information 
function [8]. For the case of pathological voices, 
it is known that if the laryngeal vibrations are 
stable, the energy in the system is constant and 
the orbits in the attractor are tightly wound. If 
laryngeal vibrations are unstable, the energy in 
the system can not be maintained at a constant 
level and trajectories will tend to deviate [12]. 
Figures 2 and 3 show the attractors for a normal 
and a pathologic signal respectively extracted of 
the database [13].

Stochastic modelling

The technique used at this stage was chosen 
on the basis of the modelling capabilities that 
it presents. The HMMs are stochastic models 
that allow the representation of time series. The 
use of hidden states makes the model generic 

enough to handle a variety of complex real-
world time series, while the relatively simple 
prior dependence structure still allows the use of 
efficient computational procedures [14]. A HMM 
is a Markov chain whose outputs are random 
variables generated from probability functions 
associated to each state. Let x = {x0,..., xT} be an 
ordered multivariate sequence of length T and q 
= {qo,..., qT} a particular state sequence. A first-
order discrete HMM can be denoted by: 

  (1)

where { }ija=A  is the matrix of state transition 
probabilities in which ( )1|ij t ta p q j q i−= = = .

( ){ } ( ) ( ), |j j t t tb b x p x q j= ⋅ = =B  is the 
emission matrix. The xt takes values of a finite set 
of symbols  called codebook, 
where M is the number of symbols. The 
models with this output structure are referred 
as discrete HMMs. π is the column vector 
of initial state probabilities. The number 
of states of the model is denoted by qn .

The parameters of the model were estimated in 
a standard procedure employing the maximum 
likelihood criterion by means of a Baum-Welch 
algorithm.

Figure 2 Three-dimensional phase portrait of the 
normal register AXH1NAL.wav of the database [13]
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Figure 3 Three-dimensional phase portrait of the 
pathological register LB18AN.wav of the database [13]

Kernel between HMMs

The similarity measure based on probability 
product kernel (PPK) used in this work was 
proposed in [11]. The Kernel function computes a 
generalized inner product between two probability 
distributions and allows integrating generative 
models as HMMs within a discriminative learning 
paradigm. The PPK between distributions p and 
p’ is defined as

( ) ( ) ( )
2

, ,
L

K p p p x p x dx p p
ρ ρ ρ ρ

ρ ′ ′ ′= =∫X
 (2)

where normally { }1/ 2,2,3,...ρ ∈ . For HMMs, 
the PPK is considered as the statistical average 
of similarities of all possible co-state sequences 
drawn from the two HMMs [15]. Based on eq. 
(2), the PPK of two different emission matrices 
is given by [11]:

 ( ) ( ),
1

t t t t

M

q q q i q i
i

b bρ ρυ υ′ ′
=

′ψ = ∑  (3)

For HMM with discrete emissions, given the 
observations sequence x  and the model λ, the 
likelihood is [14]:

 ( ) ( ) ( )
0 0 1

0

0
,..., 2

|
t t t

T

T

q q q t q q
q q t

p b x b x aλ π
−

=

= ∑ ∏x  (4)

When 1ρ = , the PPK of two HMMs with 
discrete emissions is given by

( ) ( ) ( )

0 0 0 0 1 1

0 0
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X

 (5)

In this work the forward procedure described in 
[15] was used for the calculation of PPK, but the 
computing time for the induction step in such 
algorithm was decreased by using a Hadamard 
product into a matricial scheme (see algorithm 1).

Algorithm 1: Probability product kernel for 
HMM

Require: 1λ , 2λ  and T {T is the profile observation 
sequence}

 Initialization

 ( )0 1 2
Tα π π= ⋅ ψo

 Induction

 for 1 Tτ≤ ≤

 ( )1 1 2
T

T τα α −= ψA A o

 Termination

 ( ) ( )1 2, ,T
i j

K i jρ λ λ α= ∑∑
Ensure: Kρ value.

Dissimilarity-based classification

In this step, suppose a set of prototype objects:

 { }1 2: , ,..., rp p p=R:  (6)

Called the representation set, and suppose a 
dissimilarity measure ( ),d ⋅ ⋅ , computed or 
derived from the objects. Such a dissimilarity 
measure must be nonnegative and obey the 
reflexivity condition, ( ), 0d x x = , but it might 
be non-metric.

An object x is represented as a vector of the 
dissimilarities computed between x and the 
prototypes from R :
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( ) ( ) ( ) ( )1 2, , , , ,..., , rD x d x p d x p d x p=   R  (7)

Then, for a training set T  of n objects, a classifier 
can be built on the n r×  dissimilarity matrix 

( ),D T R  relating all training objects to all 
prototypes [16].

Prototype selection

There exists a number of ways to select the 
representation set R . One method that has 
achieved good results is Linear Programming 
(LP) [17]. In this method, the selection of 
prototypes is done automatically by training a 
properly formulated separating hyperplane:

( )( ) ( ) ( )0 0
1

, , ,
r

T
j j

j

f D x w d x p w w D x w
=

= + = +∑R R  (8)

In a dissimilarity space ( ),D T R . In this 
approach, a sparse solution w is obtained, which 
means that many weights jw  become zero. The 
objects from the initial set R  ( =R T , for 
instance), corresponding to nonzero weights are 
the selected prototypes, so the representation set 

LPR .

Classifier

In the classification stage a naive 1-nearest 
neighbor classifier was used [18]. The classifier 
was designed to compute the ratio between the 
distances to the closest samples of each class. 
This measure is called score. The scores given 
by the detector stage for normal and pathological 
voices are used to plot the true and false score 
curves. The decision about presence or absence 
of pathology is taken by establishing a decision 
boundary that ensures the minimum classification 
error. In this work, it is used the threshold that 
corresponds to the minimum average error rate: 
the Minimum Cost Point (MCP) [18]. According 
to the Bayes decision theory, this point could be 
calculated by taking into account that the risk of 
the two possible errors (false acceptance or false 
positive, and false rejection or false negative) is 
different [18]. However, throughout this paper, it 
is considered that the risk corresponding to both 

errors is equal. When a threshold H is chosen, 
the samples with scores greater or equal to H, are 
labeled as class 1 (by convention the pathological 
class) whereas the samples with scores lower 
than H are labeled as class 2 (normal).

 Experiments and results

Corpus of speakers database

The used database was developed by The 
Massachusetts Eye and Ear Infirmary Voice 
Laboratory (MEEIVL) [13]. Due to the different 
sampling rates of the recordings stored in this 
database, a downsampling with a previous half 
band filtering was carried out, when needed, 
in order to adjust every utterance to a 25 kHz 
sampling rate. 16 bits of resolution were used 
for all the recordings. The registers contain the 
sustained phonation of the /ah/ vowel from 
patients with a variety of voice pathologies: 
organic, neurological, and traumatic disorders. 
The registers were previously edited to remove 
the beginning and ending of each utterance, 
removing the onset and offset effects in these 
parts of each utterance. A subset of 173 registers 
of pathological and 53 normal speakers was 
selected according to those enumerated in [19]. 
The larger number of recordings belonging to 
the pathological set allows a better modelling 
of a class that has a larger inherent variability. 
This fact does not imply a slant of the system 
towards the pathological class, because 
typically, the dispersion in the feature space of 
the pathological voices is greater than in the 
normal class.

Experimental setup
To assess the performance of the proposed 
approach, we performed tests in which we 
compare the behavior of the system changing 
the number of the states in the model in the grid 
{ }10,15,20 , the size of the codebook in the grid 
{32,64,128,256} . Additionally, due to the fact 
that embedding dimension (ED) changes in each 
voice signal, the size of the space to be modeled 
changes too. Due to this, there were established 
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several criteria for choosing an ED for all signals 
that henceforth will be called overall embedding 
dimension (OED). In a first try, was estimated 
OED as the average of the ED’s for all voices, but 
in this case, the information used to reconstruct 
the attractor of the some registers is not enough. 
In the second scheme, the OED was established 
as the maximum ED present in the database, 
for insuring that in all embedding spaces the 
minimum dimension necessary is used. In the 
third scheme the OED was established as 30% 
bigger than the maximum ED in order to have 
a high tolerance interval for new registers with 
more complex dynamics. For training the HMMs, 
the points of the attractor on the embedding space 
were grouped by means of the k-means clustering 
algorithm into a set of 200 points. Next, the 
HMMs obtained from the attractors are used 
as prototypes to construct a dissimilarity space 
using a probability product kernel as similarity 
measure between two HMMs. The construction 
of dissimilarity spaces from HMM was proposed 
in [20], and it showed better classification results 
than conventional method using maximum a 
posteriori rule.

In order to design the dissimilarity based 
classifier, an initial representation set R  of 
158 signals (121 pathologic and 37 normal, 
corresponding to 70% of the samples of 
each class) was extracted from the database. 
Then, the distances among all objects in 
the representation set were calculated by 
constructing the 158 158×  dissimilarity matrix 

( ),D R R . The linear programming method 
described in section 2.4.1 was then applied 
over the dissimilarity space, obtaining a final 
representation set LPR  of r prototypes. The 
remaining objects in each case were returned to 
the training set T  for the classification stage. 
Using the dissimilarity matrices ( ), LPD T R , a 
naive 1-nearest neighbors classifier was trained 
and validated using the leave one out schema. 
In order to compare the performance of the 

proposed approach, a classification procedure 
employing conventional non linear statistics 
was realized. From each signal the Largest 
Lyapunov exponent (LLE) and the correlation 
dimension (CD) were estimated [8], and a 
1-nearest neighbors classifier was trained. The 
algorithm for computing LLE was based on [12] 
and the algorithm for computing the CD was 
based on [21]. The results are presented by means 
of confusion matrices [5], giving the following 
rates: true positive rate (tp) (also called sensitivity, 
is the ratio between pathological files correctly 
classified and the total number of pathological 
voices); false negative rate (fn) (ratio between 
pathological files wrongly classified and the total 
number of pathological files); true negative rate 
(tn) (also called specificity, is the ratio between 
normal files correctly classified and the total 
number of normal files); false positive rate 
(fp), (is the ratio between normal files wrongly 
classified and the total number of normal files). 
Thus 1tp fn+ = 00%, and 1tn fp+ = 00%. The 
final accuracy of the system is the ratio between 
all the hits obtained by the system and the total 
number of files. 

As a figure of merit the Receiver Operating 
Characteristic (ROC) curve may be plotted 
using the scores given by each classifier 
to show the performance of the proposed 
architecture. The ROC is a popular tool 
in medical decision-making [5]. It reveals 
diagnostic accuracy expressed in terms of 
sensitivity and 1-specificity or fp. In additions, 
in this work the Area Under the ROC Curve 
(AUC) was considered. The AUC is a single 
scalar representing an estimation of the 
expected performance of the system

The tables 1, 2 and 3, show the accuracy obtained 
for the 1-nearest neighbors rule in the dissimilarity 
space. Each table corresponds to different OEDs 
used for the reconstruction of the attractors.
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Table 1 Accuracy for the 1-nearest neighbor classifier for 5-dimensional attractors

Number of states

10 15 20

M Acc[%] r Acc[%] r Acc[%] r

32 92.70 89 87.10 87 89.21 87

64 86.43 86 88.97 90 90.58 88

128 91.00 93 88.24 90 85.40 89

256 90.44 90 89.71 90 90.71 86

Table 2 Accuracy for the 1-nearest neighbor classifier for 7-dimensional attractors

Number of states

10 15 20

M Acc[%] r Acc[%] r Acc[%] r

32 89.20 78 88.36 80 91.03 81

64 86.21 81 86.90 81 91.03 81

128 89.04 80 83.22 83 87.32 84

256 87.41 83 84.72 82 87.59 81

Table 3 Accuracy for the 1-nearest neighbor classifier for 10-dimensional attractors

Number of states

10 15 20

M Acc[%] r Acc[%] r Acc[%] r

32 90.21 83 87.77 87 89.93 87

64 91.84 79 91.67 82 91.89 78

128 89.66 81 90.54 78 91.95 77

256 93.75 82 94.48 81 93.88 79

From the tables 1, 2 and 3, can be observed that 
the best performance is obtained for OED = 10, 
which shows that the representation of voice sig-
nals was better in the embedding space of high 
dimension. Table 4 shows the matrix confusion 
for the best result obtained form the dissimilarity 
space.

Table 4 Confusion matrix for the best result by using 
1-nearest neighbor classifier of dissimilarity space

Pathologic Normal

Pathologic 95.35% 4.65%

Normal 12.50% 87.50%
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On the other hand, the number of selected proto-
types was almost constant through the different 
experiments. However, it is important to notice 
that in all cases, the strategy used for prototype 
selection, did not exclude any normal sample. Fi-
gure 4 shows the feature space obtained from two 
nonlinear statistics over the database [13].

It can be observed that the pathological voices are 
more sparse distributed than the normal voices in 
the feature space. Also, it is clear that features used 
are not discriminant because both classes are over-
lapped. From the point of view of the nonlinear 
analysis, since many voice signals have a positive 
LLE, this fact implies that the trajectories in the 
embedding space diverge exponentially fast (i.e. 
there is presence of chaos) and many other are clo-
se of this behavior. Table 5 shows some statistical 
moments for the nonlinear features of the figure 4.

Figure 4 Feature space obtained from two nonlinear 
statistics: Largest Lyapunov exponent and Correlation 
dimension for the database [13]. The distributions of 
both classes in the feature space are highly overlapped

Figure 5 shows ROC curves for the best accuracy 
for the two different schemes and their AUCs. It is 
clear that the performance of the system by using 
dissimilarities is much better than using conven-
tional nonlinear statistics. However, the proposed 
approach attempts to improve the nonlinear be-
havior characterization of the speech signals and 
this one can be combined with schemes that em-
ploy acoustical and noise features (systems using 

these measures have been employed with success 
[4;5]) in order to obtain better results.

Table 6 shows the confusion matrix obtained for 
the classification performed. It can be observed 
that the maximum accuracy with this method is 
18.71% lower than the maximum accuracy ob-
tained from the dissimilarity based classification.

Table 5 Attributes of the nonlinear statistics

LLE CD
Samples mean std mean std

Normal -0.007 0.0012 2.1492 0.2637
Pathologic -0.0018 0.0034 1.8514 0.6086

Table 6 Confusion matrix for 1-nearest neighbor 
classifier by using nonlinear features

Pathologic Normal
Pathologic 82.76% 17.24%

Normal 47.17% 52.83%
Accuracy 75.77%

Figure 5 ROC curve for the best accuracy obtained 
by using dissimilarity space and nonlinear features. 
The AUC for the dissimilarity space is 0.9845 and 
for the nonlinear statistics is 0.7150. The difference 
between both schemes is clear
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Conclusions
The proposed scheme for nonlinear analysis does 
not depend on the signal length, because for all 
samples the same number of points was taken 
into account for training the attractor model. The 
study shows that the time analysis of the nonli-
near component from the signal, allows extrac-
ting more discriminant information to carry out 
an accurate detection of the presence of voice pa-
thology. Although the HMMs used in this work 
are of first order, the methodology followed has 
shown its capability of modelling the represen-
tations of the voices in the embedding space. In-
creasing the order of the HMMs could improve 
the attractor modelling capabilities, but also in-
crease the computational complexity, so it is ne-
cessary to explore the feasibility and limitations 
of using higher order models. The methodology 
presented in this work does not attempt to repla-
ce the more classical acoustic parameters-based 
analysis, but proportionate a different alternative 
for the nonlinear analysis of voice signals, that 
can be used in conjunction with traditional me-
thods. Additionally, the dissimilarity based clas-
sification scheme allows the comparison among 
different pathological voices with respect to 
some prototypes. This fact, opens the possibility 
of building dissimilarity spaces that could help 
identify grades of pathology (levels of voice qua-
lity), by using the distance between a sample to 
the normal prototypes as rate of disease.
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