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Abstract

This paper presents a hybrid alternative to obtain a low computational cost 
strategy used to adjust the parameters of a Support Vector Machine based fault 
locator. The proposed strategy to determine the best parameters is based on 
the Chu Beasley Genetic Algorithm. The fault locator is tested in the IEEE 34 
bus feeder, using a database of 2,180 registers of single phase, phase to phase, 
double phase to ground and three phase faults, obtained from simulation in 
ATP and Matlab. As results, the best alternatives for all of these four types of 
faults give an average cross validation error of 0.3%. 

----- Keywords: Classification, fault location, genetic algorithms, 
power distribution systems and support vector machines

Resumen

En este artículo se presenta la selección de los parámetros de un localizador 
de fallas basado en máquinas de soporte vectorial, utilizando una estrategia 
híbrida de bajo costo computacional fundamentada en el algoritmo 
genético de Chu Beasley. El localizador propuesto se prueba en el sistema 
de distribución IEEE de 34 nodos, donde los resultados muestran errores 
de validación cruzada promedio para las mejores alternativas de 0,3%, 
considerando los casos analizados con una base de datos de 2.180 registros de 
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fallas monofásicas, bifásicas, bifásicas a tierra y trifásicas. La base de datos 
de prueba se obtiene mediante simulación con ATP y Matlab.

----- Palabras clave: Algoritmos genéticos, clasificación, localización 
de fallas, máquinas de soporte vectorial y sistemas de distribución de 
energía eléctrica

Introduction
Frequent shunt faults cause supply interruptions 
that are responsible of poor continuity indexes 
affecting the quality of power. Fault locators help 
to reduce the effect on the frequency and duration 
indexes in three ways: First, fault location helps 
to speed up the restoration process; second, 
by locating the fault it is possible to perform 
switching operations to reduce the faulted area, 
and finally, location of non permanent faults 
possibilities scheduled maintenance tasks to 
avoid future faults [1, 2, 3].

Very good approaches have been proposed for 
locating faults in power transmission systems, but 
these algorithms are not useful in radial systems, 
specifically in distribution systems due to some 
distinctive characteristics of the last, such as: a) 
single end measurements; b) presence of single 
and double phase laterals; c) variable tapped 
loads; and d) lines with heterogeneous sections 
(different conductor gauges, overhead lines and 
underground cables, among others) [1, 3, 4].

Fault location in power distribution systems is 
mainly based on methods which use the impedance 
calculation during fault situation, as seen from the 
substation. The main disadvantages are associated 
to the multiple estimation of the fault location and 
the high model dependency [4, 5, 6]. On the other 
hand, many researchers have recently addressed 
the fault location problem using knowledge-
discovering techniques, based on exploiting the 
existence of previous experiences and contextual 
information. In Mescal et al. [7] an approach to 
locate faults in power distribution systems using 
Neuronal Networks (NN) is proposed but, the 
multiple estimation problem is not analyzed. 
Additionally, an approach which uses Support 
Vector Machines (SVM) and NN to determine 

the fault distance is proposed by Thukaram et 
al. [8], where the multiple estimation problem is 
considered by patrolling the protective devices 
located along the feeders. Finally, G.Morales et 
al. [9] use a learning algorithm based on SVM 
to locate faults, but despite of the good results, 
the setting process depends of an extensive test 
which is computationally expensive, considering 
the search space given by the infinite interval of 
the classifier parameters (two real and positive 
numbers). 

According to the above described, this paper is 
oriented to use the fault databases to determine the 
zone of the fault, avoiding the multiple estimation 
problem. The fundamental idea is to use the 
SVM as a classification technique (SVM-c) to 
obtain the zone at the power system where a 
fault is located. Additionally, the Chu Beasley 
Genetic Algorithm (CBGA) is used to determine 
the optimal set of configuration parameters 
of the SVM-c, for 15 possible combinations 
of descriptors used as inputs. The proposed 
descriptors are the variations of voltage, current, 
apparent power and system reactance, obtained 
from measurements of voltage and current in the 
fault database.

Basic fundamental aspects 

One of the learning algorithms to data analysis 
is the SVM, which is based on quadratic 
programming, several clearly defined constrains 
and kernel transformations. The setting 
parameters of the SVM could be selected based 
on the prior knowledge of the user, but normally, 
it is not an optimal solution, and it is the main 
reason why the Genetic Algorithms (GA) are 
here also used. Considering the previoully 
explained, this section is devoted to present the 
basis of these two techniques, where several 
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bibliographical references are used, because a 
detailed explanation about such techniques is out 
of the scope of this paper. Useful references for 
SVM and GA are presented in [10, 11, 12, 13].

Support vector machines used for 
classification (SVM-c)

SVM-c are based in the statistical learning theory 
and can be viewed as a binary classification 
technique, resulting from the development of NN 
and its combination with the optimization, kernel 
and generalization theories [10, 11]. 

Linear case

Having n training elements xi in a N dimensional 
space, each element has its respective label y to 
designate members of the same class (+1 or -1) as 
it is presented in (1).

	 N
i R∈x  and { }1,1 −+∈iy 	 (1)

The goal is to find an optimal separation 
hyperplane (OSH) H:y=w.x+b=0, which has the 
maximum margin to the training nearest pattern, 
forcing the generalization of the learning machine 
as in figure 1 [11]. Weight (w) and bias (b) control 
the function and those data points that the margin 
pushes up against are called “support vectors” (k, 
l, m and n). 

Margin

H wx + b1 = = -1

H wx + b= = 0

H wx + b2 = = -1

m

n

k

l

Figure 1 Separating hyperplanes

To find the OSH is necessary to solve the 
optimization problem presented in (2), 

considering that margin is inversely proportional 
to (w.w)1/2.

	 	 (2)

Soft margin

The previously presented is based on the non 
existence of mixed classes. To cope with this 
circunstance, the strategy is reformulated by 
considering relaxation variables (ξ) in the 
optimization problem to define what is known as 
a “soft margin”. Thus, the optimization problem 
presented in (2) is now given as (3), where C is 
the error penalization constant.

	 	 (3)

Kernel based SVM-c

In the case of non-linear separable feature sets, 
it is possible to transform the input into a new 
higher dimension space, where the data is linearly 
separable. The transformation function F(.) is 
defined in terms of inner products of the input 
data in the original classification space. Thus, it is 
not necessary to specify F(.); instead of it, kernel 
functions are used to perform the transformation 
and the inner product in the transformed space 
in a single step. Linear classification algorithms 
can be extended to non-linear cases by using 
an appropriate kernel function [10]. When a 
Radial Basis Function (RBF) is chosen as kernel 
function, two SVM-c parameters (constant C and 
kernel parameter s) have to be determined.

Chu Beasley Genetic Algorithms (CBGA) 

A GA is a well known technique used to find 
exact or approximate solutions to optimization 
and searching problems. These algorithms are 
categorized as global hyper-heuristics search and 
are a particular class of evolutionary algorithms 
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that use techniques inspired by biology such as 
inheritance, mutation, selection and crossover 
[12]. 

GAs are implemented as a computer simulation 
in which a population of abstract representations 
(chromosomes or the genotype of the genome) 
of solution candidates (individuals) to an 
optimization problem evolves toward better 
solutions. The evolution usually starts from a 
population of randomly generated individuals 
and happens in periods which are called as 
generations. In each generation, the fitness of 
every individual in the population is evaluated; 
multiple individuals are stochastically selected 
from the current population based on their fitness, 
and modified to obtain a new population. This last 
population is then used in the next iteration of the 
algorithm. Commonly, the algorithm terminates 
when either a maximum number of generations 
has been produced, or a satisfactory fitness level 
has been reached for the population.

The CBGA is a modified version of the basic 
GA oriented to maintain the diversity among the 
population individuals. It is an elitist algorithm 
considering that a parent is replaced by a 
descendent if and only if the last has a better 
objective function. In addition, each one of the 
population individuals have to be different from 
the other individuals (diversity), avoiding the 
premature convergences to local suboptimal 
solutions. Figure 2 shows a basic representation 
of the CBGA functioning [13].

Additionally an aspiration criterion is considered 
for including an individual which did not met the 
diversity, if and only if this objective function is 
better than the best of the population. In this case, 
all the individuals which not meet the diversity 
criterion, considering the new member included 
by the aspiration criterion, have to be removed. 
All of the removed members have to be replaced 
in the next generation, to maintain constant the 
population size. CBGA only changes a single 
individual in each generation while the basic 
approach modifies the entire population.

Figure 2 Chu-Beasley algorithm basic functioning

Proposed hybrid fault location approach 

Most of the power distribution utilities have 
installed event recorders but do not have 
enough of automatic strategies to handle the 
stored information and as a consequence it is 
not adequately used causing a not effective 
improvement process [14]. The basic structure of 
the proposed approach is oriented to use all of 
the information stored in databases for locating 
the faulted zone. The core of the locator is the 
SVM-c, the inputs are usually called descriptors 
which corresponds to the information obtained 
from the currents and voltages stored in the fault 
database, and finally, the configuration parameters 
are selected by using a searching technique as the 
CBGA.

Methodology
The proposed strategy consists on four stages 
which are presented in figure 3. It is devoted 
to iteratively test several SVM-c configuration 
parameters proposed by the CBGA until the 
optimal configuration is obtained. The SVM-c 
configuration parameters are two, the penalization 
constant C and the parameter s considering a 
RBF kernel.
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Figure 3 Four stages strategy to develop a SVM-c 
based fault locator

Stage I. Input data adjustment

This stage is subdivided in three steps and it is 
mainly devoted to adjust the measurements of 
voltage and current at the power substation.

Step one. Data handling

It is oriented to subdivide the power distribution 
system to determine which nodes belong to each 
class (zone). This helps the assignation process 
which relates the faults and the zones. 

Having correlated the fault registers with 
the respective zone, a characterization of the 
measurements of voltage and current is proposed 
to obtain descriptors used as input training set 
of the fault locator. A set of descriptors based on 
the variations of the fundamental component of 
current and voltage are then obtained. Variations 
of the fundamental component of phase current 
(DI), phase voltage (DV), phase reactance (DX) and 
apparent power (DS) are proposed as descriptors. 
These are defined as the subtraction of rms values 
during the fault and pre-fault steady states [9]. As 
basic information, variations at the three phases 
are used as descriptors, to consider the distance 
of the fault, fault type, mutual coupling and the 
fault resistance influences. 

Step two. Normalization of descriptors

The training set is normalized to avoid miss 
adjustments caused by high variations on the 

descriptor values. This normalization is in the 
interval [0, 1] as proposed in (4).

	
minmax

min
norm XX

XXX
−
−

= 	 (4)

Step three. Diversification

This step is oriented to distribute adequately the 
training data (descriptors) and then subdivide it 
in v subsets. These subsets are later used in v-fold 
cross validation and that is the reason of why 
each of the subsets requires information related to 
faults located in each one of the zones proposed 
for the analyzed power system. 

Stage II. Genetic algorithm for 
adjustment the SVM-c parameters

The proposed CBGA has a similar structure of 
a basic GA. The main differences are two: a) 
only one of the individuals is changed on each 
iteration, and b) all the individuals have to 
maintain a diversity degree to assure a correct 
coverage of the solution space. The steps to 
develop the proposed algorithm are following 
presented.

Step one. Coding and scaling

The proposed genetic algorithm possibilities 
a coding strategy using binary, integer real 
variables, depending on the problem needs. In 
this specific case where the parameter values 
are real numbers, the codification is performed 
by the definition of an interval of E and F real 
and positive numbers, uniformly distributed 
in the solution space for C and s parameters, 
respectively. 

According to previous studies, the solution space 
in this type of problems is defined by the interval 
24< C < 230 and 2-6 < s < 26 [15]. Finally, the 
population or solution alternatives is then given 
by each one of the individuals, defined by the 
ordered pair of SVM-c parameters (C, s). 
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Step two. Initial population

In most of the cases, the CBGA starts an iterative 
process by generation of an initial population 
using random approaches. In the proposed 
approach, this strategy is complemented by 
the deterministic addition of some individuals 
considered as feasible and quasi optimal solutions.

Step three. Selection

Although in the classical references there are 
proposed several parent selection alternatives, in 
this approach the tournament selection is picked 
[13]. This basically consists in a selection of the 
alternative which has the best objective function 
from the k individuals randomly selected. The 
value of k could varies depending on the size of 
the population and then according to the problem 
of fault location a value of k=2 is selected. Then 
two tournaments are used to select the two parents 
which are used in the following step.

Step four. Crossover

Having selected two parents, the following step 
is combining them to obtain two descendents. In 
the crossover process, it is necessary to define the 
gen where it is performed and considering that the 
individual has only two positions (C and s), the 
process is simple by the randomly selection of one 
them. Although normally it is defined a crossover 
probability rate, in this specific approach it is not 
defined, due the reduced size of the individual (two 
gens). As results, two descendents are obtained 
and only one is randomly selected and next used. 

Step five. Mutation

In this approach, the mutation is defined by 
the variation in one of the two gens randomly 
selected. This variation consist in the addition or 
subtraction of a randomly quantity which is in the 
interval determined by a predefined percentage of 
the maximum possible value of the gen. 

Step six. Decision criterion 

Considering the proposed coding strategy used 
in the approach, the new descendent could 

substitute the individual which has the worst 
objective function if and only if the descendent 
has better objective function and meets the 
diversity criterion.

Stage III. Training the SVM-c

Defined structure of the SVM-c

As presented in section two, basic SVM-c is 
oriented to a bi-classification scheme, but the 
problem of fault location in power distribution 
systems is a multi-classification approach. In 
order to solve this problem is necessary to use the 
generalization of the SVM-c by defining a global 
classification function from a set of bi-classification 
functions, using decomposition and reconstruction 
strategies. The selected decomposition technique 
is one versus one and the simple voting is the 
reconstruction technique here used [10, 11].

Objective function definition as the 
classification error

Using a set of descriptors as inputs of the SVM-c 
as it was described in the stage I, and one of 
the individuals of the population defined by 
the CBGA presented in the stage II to set the 
parameters C and s, the training stage is started. 
These all stages are devoted to obtain the best 
configuration parameters, determined by the 
minimum cross validation error in the faulted 
zone estimation. 

Considering that it is not known beforehand 
which parameters are the best for the SVM-c, 
consequently the model selection (parameter 
evaluation) has to be done using cross validation. 
In v-fold cross-validation, first a subdivision of 
the training set into v subsets of equal size is 
performed. Sequentially each subset is tested 
using the SVM-c trained on the remaining v-1 
subsets. Thus, each instance of the whole training 
set is predicted once, so the cross-validation 
error is estimated as it is presented in (5). T is the 
number of fault data in each subset, (v-fold)×T is 
the total training faults using in this stage and j 
identifies the evaluated individual.
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	(5)

Stage IV. Error evaluation and optimal 
parameters

15 different input sets are obtained from the 
combination of the four basic descriptors 
presented in stage I (DI, DV, DX and DS). For each 
one of these sets, the optimal values of the SVM-c 
parameters are obtained by using the CBGA and 
by the definition of the objective function as 
the minimization of the cross validation error 
in equation (5). Once the stop criterion of the 

genetic algorithm is reached, the best parameters 
are those which give a lower error.

Test and result analysis 

Power distribution system used in tests

The 24.9 kV IEEE 34-bus feeder presented in 
figure 4 is used to test the fault location approach 
[16]. The proposed system contains a three phase 
main feeder, single-phase laterals, multiple 
conductor gauges, single and three phase tapped 
loads.

Figure 4 IEEE 34-bus test feeder

Description of the tests

The fault location defined as a classification 
problem, requires of a zone definition of the 
analyzed circuit which is presented in figure 4. 
The dataset used in the v-fold validation process 
considers 660 single phase faults, 570 phase to 
phase faults, 570 double phases to ground faults 
and 380 three phase faults. The used descriptors 
or inputs of the SVM-c are defined by the set 
composed of the 15 possible combinations of DI, 
DV, DX and DS.

For testing, an initial CBGA population is 
composed by 30 individuals, a 4-fold cross 
validation is used and the values of the integer 
constants to define the search space are defined 
as E=F=500.

Results 
As result of the combination of the GA and 
the cross validation strategy, the best SVM-c 
parameters in the case of each one of the 15 
defined set of descriptors and for four different 
fault locators are obtained. Table 1 presents the 
best SVM-c configuration parameters.
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Table 1 Best SVM-c configuration parameters obtained using a CBGA and cross validation
Se

t o
f 

de
sc

rip
to

rs Single phase
fault locator

Phase to phase
fault locator

Double phase to 
ground

fault locator

Three phase
fault locator

C s C s C s C s

DV 961,848,995 0.495 834,893,670 0.742 802,616,893 0.742 525,036,606 0.016

DI 918,813,292 0.191 598,197,301 0.287 1,030,706,121 0.103 1,030,706,121 0.016

DS 1,043,616,832 0.638 589,590,161 0.207 718,697,271 0.095 1,030,706,121 0.016

DX 152,777,771 0.495 460,483,050 0.159 245,304,533 0.143 1,073,741,824 0.135

DV,DI 1,043,616,832 0.638 1,017,795,410 0.119 1,073,741,824 1.333 477,697,332 0.487

DV,DS 843,500,811 1.301 862,866,877 0.095 97,260,792 0.295 96,615,257 0.495

DV,DX 268,974,170 0.662 460,483,050 0.191 42,390,270 0.351 43,036,727 0.495

DI,DS 895,143,655 0.495 684,268,708 0.287 535,795,531 0.263 1,030,706,121 0.016

DI,DX 152,777,771 0.431 636,929,434 0.287 286,188,452 0.167 802,616,893 0.742

DS,DX 19,581,347 0.439 837,045,455 0.295 626,170,509 0.359 802,616,893 0.742

DV,DI,DS 697,179,419 1.070 98,551,863 0.447 802,616,893 2.427 802,616,893 0.742

DV,DI,DX 30,340,273 0.495 1,011,340,054 0.495 1,071,590,039 0.303 43,036,727 0.495

DV,DS,DX 43,036,727 0.495 337,831,296 0.295 83,920,646 0.383 43,036,727 0.495

DI,DS,DX 731,607,982 0.431 1,002,732,913 0.311 815,527,604 0.183 365,804,503 0.479

DV,DI,DS,DX 43,036,727 0.495 886,536,514 0.511 40,453,664 0.439 43,036,727 0.495

The SVM-c adjusted using the parameters 
presented in table 1 is tested in a 4-fold cross 
validation process. The error estimated as in 
equation (5) is presented in table 2.

According to the results presented in table 2, 
the cross validation errors are small and variant 
depending of the set of descriptors used as inputs. 
In such tests were only one descriptor is used as 
input, the errors are relatively high, especially 
in the case on single phase, phase to phase and 
double phase to ground faults (maximum error of 

16.6%). However if more than one descriptor is 
used as input, errors drastically decrease in most 
of the cases. In the case of three phase faults, it is 
notice how in the most of the tested circumstances 
the cross validation error is zero. As a summary, 
the best alternatives for all of the four types of 
faults (these highlighted using bolded numbers in 
table 2) give an average cross validation error of 
0.3%. These results offer an interesting alternative 
for adjusting and selecting the descriptors at the 
input on the SVM-c, in order to reach a very good 
performance in the proposed situation. 
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Table 2 4-fold cross validation errors obtained in the faulted zone location using a SVM-c 

Set of descriptors

Cross validation error (%)

Single phase
fault locator

Phase to phase
fault locator

Double phase to 
ground

fault locator

Three phase
fault locator

DV 6.212 7.262 6.316 0.000

DI 1.818 8.781 5.263 0.000

DS 2.727 6.001 7.018 0.000

DX 1.061 1.053 1.754 0.000

DV,DI 3.003 2.456 5.614 0.000

DV,DS 0.606 2.807 4.737 2.105

DV,DX 0.455 1.228 0.000 0.000

DI,DS 1.515 11.054 4.561 0.000

DI,DX 0.455 1.404 0.351 0.000

DS,DX 0.000 1.404 0.351 0.000

DV,DI,DS 0.455 4.023 2.862 0.000

DV,DI,DX 0.606 1.228 0.000 0.000

DV,DS,DX 0.000 1.579 0.000 0.000

DI,DS,DX 0.000 1.404 0.175 0.000

DV,DI,DS,DX 0.000 1.228 0.175 0.000

Analysis

A simple strategy to determine the error nature 
and as a consequence the performance of the 
SVM-c is called confusion matrix, which simply 
relates the real faulted zone location and those 
faulted zones determined by the locator. As a 
consequence, a perfect prediction is obtained in 
the case of having a diagonal confusion matrix, 
which means that all of the data corresponding 
to a specific zone is located in the same zone 
by the proposed SVM-c locator. Table 3 shows 
the confusion matrix in the case of single phase 
faults, considering the best result obtained which 
is presented in table 2. In addition also in table 
3 and in parenthesis, the confusion matrix in the 

case of single phase faults, considering the worst 
result obtained is given.

In the case of zero error which is obtained in the 
best case, the confusion matrix is completely 
diagonal, as it is presented in table 3 

In the worst case for the single phase fault locator 
the highest cross validation error is 6.21%, and 
according to table 3 (on parenthesis) it is noticed 
how 41 faults of 660 single phase faults are wrong 
classified or recognized in a different faulted 
zone. All of the faults which are not recognized 
in the real faulted zone were recognized in a 
closest neighboring zone and these are outside of 
the diagonal and also on parenthesis. As example, 
there are 110 faults in zone four but only 102 
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of them were recognized in this real zone, 5 in 
zone three and 3 in zone six. Zones three, four 
and six correspond to neighboring parts of the 
power distribution system. All of the errors are 
due to faults which really belong to a zone, but 
are located in a neighboring zone, according to 

the system division presented in figure 4. The 
last circumstance evidences the necessity for 
defining an additional index to the proposed in 
(5), to give a confidence degree which helps to 
solve the problem of wrong classified faults; then 
this aspect is evidenced as a further research.

Table 3 Confusion matrix in case the best (worst) results obtained for the single phase fault locator presented 
in table 2

Real faulted zone

Zo
ne

 d
et

er
m

in
ed

 b
y t

he
 fa

ul
t l

oc
at

or

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 Zone 7 Zone 8 Zone 9

Zone 1 90 (89) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Zone 2 0 (1) 40 (40) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Zone 3 0 (0) 0 (0) 90 (90) 0 (5) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Zone 4 0 (0) 0 (0) 0 (0)
110 

(102)
0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Zone 5 0 (0) 0 (0) 0 (0) 0 (0) 30 (30) 0 (0) 0 (0) 0 (0) 0 (0)

Zone 6 0 (0) 0 (0) 0 (0) 0 (3) 0 (0) 100 (98) 0 (0) 0 (0) 0 (0)

Zone 7 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (2) 90 0 (30) 0 (0)

Zone 8 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 80 (50) 0 (0)

Zone 9 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 30 (30)

Finally and as a comparison of the obtained 
methodology and the proposed in [15], in this 
reference an extensive test is performed by the 
definition of a feasible interval of C and s and 
all of the individuals (C, s) in this interval are 
tested. In The proposed approach a guided search 
is performed avoiding the extensive tests and 
additionally having obtained better results. 

Conclusions
This paper proposes a straightforward strategy 
which uses a Chu Beasley Genetic Algorithm for 
performing an oriented search in the optimization 
space, aimed to select the best parameters of a 
SVM-c based fault locator. The strategy is oriented 
to test each one of the population individuals 
from the genetic algorithm in the SVM-c and the 

cross validation error is then defined as objective 
function. The genetic algorithm evolves until the 
lowest cross validation error is obtained. This 
strategy is repeated to consider 15 different set of 
descriptors at the SVM-c input. 

Additionally, several tests were presented 
considering four different fault locators according 
to the possible types of shunt faults in power 
distribution systems. The results show perfect 
performance in case on single, double phase to 
ground and three phase faults, and a minimum 
error of 1.05% in the case of phase to phase 
faults, considering test in the IEEE 34 bus feeder. 

Finally as it was demonstrated, the proposed 
approach contributes to improve the power 
continuity indexes in distribution systems, by the 
opportune zone fault location.
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