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Abstract 

This paper presents an active vibration control scheme to reduce unbalance-
induced synchronous vibration in rotor-bearing systems supported on two 
ball bearings, one of which can be automatically moved to control the 
effective rotor length and, as an immediate consequence, the rotor stiffness. 
This dynamic stiffness control scheme, based on frequency analysis, speed 
control and acceleration scheduling, is used to avoid resonant vibration of a 
rotor system when it passes (run-up or coast down) through its first critical 
speed. Algebraic identification is used for on-line unbalance estimation at 
the same time that the rotor is taken to the desired operating speed. Some 
numerical simulations and experiments are included to show the unbalance 
compensation properties and robustness of the proposed active vibration 
control scheme when the rotor is started and operated over the first critical 
speed.
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Resumen

En este artículo se presenta un esquema de control activo de vibraciones para 
atenuar las amplitudes de vibración síncrona inducidas por el desbalance 
en un sistema rotor-chumaceras; donde una de las chumaceras puede ser 
desplazada automáticamente para modificar la longitud efectiva del rotor, y 
como consecuencia, la rigidez del rotor. El control de la rigidez dinámica 
se basa en un análisis de la respuesta en frecuencia, control de velocidad 
y en el uso de esquemas de aceleración, para evadir las amplitudes de la 
vibración en la resonancia mientras el sistema rotatorio pasa (acelerado o 
desacelerado) a través de una velocidad crítica. Se utiliza identificación 
algebraica para estimar el desbalance en línea, mientras el rotor es llevado 
a la velocidad de operación deseada. Algunas simulaciones numéricas y 
resultados experimentales son incluidos para mostrar las propiedades de la 
compensación del desbalance y la robustez del esquema de control activo de 
vibraciones propuesto, cuando el rotor se opera a una velocidad por encima 
de la primera velocidad crítica.

----- Palabras clave: control activo de vibraciones, identificación de 
excentricidad, rotor Jeffcott.

Introduction
Rotating machinery is commonly used in many 
mechanical systems, including electrical motors, 
machine tools, compressors, turbo machinery 
and aircraft gas turbine engines. Typically these 
systems are affected by exogenous or endogenous 
vibrations produced by unbalance, misalignment, 
resonances, material imperfections and cracks.

Vibration caused by mass unbalance is a common 
problem in rotating machinery. Rotor unbalance 
occurs when the principal inertia axis of the rotor 
does not coincide with its geometrical axis and 
leads to synchronous vibrations and significant 
undesirable forces transmitted to the mechanical 
elements and supports. Many methods have 
been proposed to reduce the unbalance-induced 
vibration, where different devices such as 
electromagnetic bearings, active squeeze film 
dampers, lateral force actuators, active balancers 
and pressurized bearings have been developed [1-
5]. Passive and active balancing techniques are 
based on the unbalance estimation to attenuate 
the unbalance response in the rotating machinery. 
The Influence Coefficient Method has been used 
to estimate the unbalance while the rotating speed 

of the rotor is constant [6, 7]. This method has 
been used to estimate the unknown dynamics and 
rotor-bearing system unbalance during the speed-
varying period [8]. On the other hand, there is a 
vast literature on identification methods [9-11], 
which are essentially asymptotic, recursive or 
complex, which generally suffer of poor speed 
performance.

This paper presents an active vibration control 
scheme to reduce unbalance-induced synchronous 
vibration in rotor-bearing systems supported on two 
ball bearings, one of which can be automatically 
moved along the shaft to control the effective 
rotor length and, as an immediate consequence, 
the rotor stiffness. This dynamic stiffness control 
scheme, based on frequency analysis, speed control 
and acceleration scheduling, is used to avoid 
resonant vibration of a rotor system when it passes 
(run-up or coast down) through its first critical 
speed. Algebraic identification is used for on-line 
unbalance estimation at the same time that the rotor 
is taken to the desired operating speed. The proposed 
results are strongly based on the algebraic approach 
to parameter identification in linear systems 
reported [12], which requires a priori knowledge 
of the mathematical model of the system. This 
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approach has been employed for parameter and 
signal estimation in nonlinear and linear vibrating 
mechanical systems, where numerical simulations 
and experimental results show that the algebraic 
identification provides high robustness against 
parameter uncertainty, frequency variations, small 
measurement errors and noise [13, 14]. In addition, 
algebraic identification is combined with integral 
reconstruction of time derivatives of the output 
(GPI Control) using a simplified mathematical 
model of the system, where some nonlinear effects 
(stiffness and friction) were neglected; in spite 
of that, the experimental results show that the 
estimated values represent good approximations 
of the real parameters and high performance of the 
proposed active vibration control scheme, which 
means that the algebraic identification and GPI 
control methodologies could be used for some 
industrial applications, when at least a simplified 
mathematical model of the system is available [14].

Some numerical simulations and experiments are 
included to show the unbalance compensation 
properties and robustness when the rotor is 
started and operated over the first critical speed.

System description

Mathematical model

The Jeffcott rotor system consists of a planar and 
rigid disk of mass m mounted on a flexible shaft 
of negligible mass and stiffness k at the mid-span 
between two symmetric bearing supports (see 
figure 1(a) when a = b). Due to rotor unbalance 
the mass center is not located at the geometric 
center of the disk S but at the point G (center 
of mass of the unbalanced disk); the distance 
u between these two points is known as disk 
eccentricity or static unbalance [15, 16]. An end 
view of the whirling rotor is also shown in figure 
1(b), with coordinates that describe its motion. 

In our analysis the rotor-bearing system is modeled 
as the assembly of a rigid disk, flexible shaft 
and two ball bearings. This system differs from 

the classical Jeffcott rotor because the effective 
shaft length can be increased or decreased from 
its nominal value. In fact, this adjustment is 
obtained by enabling longitudinal motion of one 
of the bearing supports (right bearing in figure 
1.a) to different controlled positions into a small 
interval by using some servomechanism, which 
provides the appropriate longitudinal force. With 
this simple approach one can modify the shaft 
stiffness; moreover, one can actually control the 
rotor natural frequency, during run-up or coast-
down, to evade critical speeds or at least reduce 
rotor vibration amplitudes. Our methodology 
combines some ideas on variable rotor stiffness 
[17] and rotor acceleration scheduling [18] 
but completing the analysis and control for the 
Jeffcott-like rotor system.
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Figure 1 Rotor-bearing system: (a) Schematic 
diagram of a rotor-bearing system with one movable 
(right) bearing and (b) end view of the whirling rotor

For simplicity, the following assumptions are 
considered: flexible shaft with attached disk, 
gravity loads neglected (insignificant when 
compared with the actual dynamic loads), 
equivalent mass for the base-bearing mb, linear 
viscous damping cb between the bearing base 
and the linear sliding, force actuator to control 
the shaft stiffness F, angular speed ���

d�

dt
�=  

controlled by means of an electrical motor with 
servodrive and local Proportional Integral (PI) 
controller to track the desired speed scheduling 
in presence of small dynamical disturbances. 
The mathematical model of the four degree-of-
freedom Jeffcott-like rotor is obtained using 
Newton equations as follows.
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	 mx + cx + kx = m u sin + u cos( )� � � �
2.. . .. . 	 (1)

	 my + cy + ky = m sin - u cos( )� � �u�
2.. . . .. 	 (2)

	(J + mu ) + c = - p = m( xu sin - yu cos )
z

2
� � � � �

�

.. . .. ..
	(3)

	 m b + c b = F
b b

.. .
	 (4)

where k and c are the stiffness and viscous damping 
of the shaft, Jz is the polar moment of inertia of 
the disk and t(t) is the applied torque (control 
input) for rotor speed regulation. In addition, x 
and y denote the orthogonal coordinates that 
describe the disk position and �

.
 = w is the rotor 

angular velocity. The coordinate b denotes the 
position of the movable (right) bearing, which 
is controlled by means of the control force F(t) 
(servomechanism). 

In our analysis the stiffness coefficient for the 
rotor-bearing system is given by [19]

	 k =
3EIl(a - ab + b )

2 2

a b
3 3

	 (5)

where l = a + b is the total length of the rotor 
between both bearings with b the coordinate to be 
controlled, I =

�D
64

4

 is the moment of inertia of a 
shaft of diameter D and E is the Young’s modulus 
of elasticity (E = 2.11 x 1011N/m2) for AISI 4140 
steel). The natural frequency of the rotor system 
is then obtained as follows [19] 

	 k / m��
n

= 	 (6)

In such a way that, controlling b by means of the 
control force F one is able to manipulate wn to 
evade appropriately the critical speeds during 
rotor operation.

The proposed control objective is to reduce as 
much as possible the rotor vibration amplitude, 
denoted in adimensional units by 

	
�

x y

u

2 2
+

R = 	 (7)

for run-up, coast-down or steady state operation 
of the rotor system, even in presence of small 
exogenous or endogenous disturbances. Note, 
however, that this control problem is quite 
difficult because of the 8th order nonlinear 
model, many couplings terms, underactuation 
and uncontrollability properties from the two 
control inputs (τ, F).

Experimental results
Some experimental results were performed in 
open loop in a Rotor-Kit experimental platform 
of Bently Nevada®. The positions of the inertial 
disk, sensors and bearing supports in the rotor-
kit are shown in figure 2. The experimental 
results were performed to show how the natural 
frequency can be modified to different positions 
of the right bearing. Furthermore, the rotor is 
started and operated over the first critical speed 
where the speed operating condition for the rotor 
is given as j = 418.9 rad/s (4000 rpm) and the 
acceleration for the speed ramp was 1.74 rad/s2.
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Figure 2 Positions of the inertial disk, sensors and 
bearing supports in the rotor-bearing system

The response for the Jeffcott rotor configuration 
(right bearing position at point B, see figure 2) 
is shown in figure 3 and it was recorded by the 
sensor S3 (see figure 2). The natural frequency 
for the Jeffcott rotor configuration was about 
ωn = 2200 rpm.
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Figure 3 Unbalance response for a Jeffcott Rotor 
(right bearing position at point B)
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The use of this controller yields the following 
closed-loop dynamics for the trajectory tracking 
error e1 = ω - ω* (t):

	 e e1 1 1 0 1+ e + = 0� �
.. .

	 (9)

Therefore, selecting the design parameters 
[∝1, ∝0] so that the associated characteristic 
polynomial for equation (9) is a Hurwitz 
polynomial, one guarantees that the error 
dynamics is asymptotically stable.

The prescribed speed and acceleration scheduling 
for the planned speed trajectory is given by

	 �*( ) =t {
�

�

i

( , , )�

�

t t t
i f f

f

���

�

t < t

t t < t

t > t

i

i i

f

	 (10)

where ωi and ωf are the initial and final speeds at 
the times ti and tf, respectively, passing through 
the first critical frequency, and σ(t, ti, tf) is a Bézier 
polynomials, with σ(t, ti, tf) = 0 and σ(t, ti, tf) = 1, 
described by

	

� �( , , )t t t =
i f f
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t - t

i

f i
( (

� 21 - �[ [t - t
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( (���3

t - t

t - t

i

f i
( (

2
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t - t
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i

f i
( (

5

	 (11)

with g1 = 252, g2 = 1050, g3 = 1800, g4 = 1575, 
g5 = 700, g6 = 126, in order to guarantee a 
sufficiently smooth transfer between the initial 
and final speeds.

The fundamental problem with the proposed 
feedback control in equation (8) is that the 
eccentricity u is not known, except for the fact 
that it is constant. The Algebraic identification 
methodology is proposed to on-line estimate the 
eccentricity u, which is based on the algebraic 
approach to parameter identification in linear 
systems [12].

Experimental results for the bearing position at 
points A (l = 0.4 m) and C (l = 0.5 m), are shown 
in figures 4 and 5, respectively. Here, the open-loop 
responses show that a smaller length l = 0.4 m leads 
to a higher natural frequency and a bigger length 
l = 0.5 m leads to a smaller natural frequency. 
Hence to get a minimal unbalance response, the 
rotor length should start at l = 0.4 m and then 
abruptly change to l = 0.5 m. This change of the 
bearing position must occur exactly when the 
response for l = 0.4 m crosses the response for 
l = 0.5 m.
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Figure 4 Rotor unbalance response for the right 
bearing position at point A 
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Figure 5 Rotor unbalance response for the right 
bearing position at point C 

Speed control with trajectory planning

In order to control the speed of the Jeffcott-
like rotor system, consider ω = z6 = �

.
 equation 

(3), under the temporary assumption that the 
eccentricity u is perfectly known and that c ≈ 0 to 
simplify the analysis. Then, the following local PI 
controller is designed to track desired reference 
trajectories of speed ω*(t) and acceleration 
scheduling ω*(t) for the rotor:

	
� � � �

� � ����� � � �

= J v + c + kux sin - kuy cos

v t t t dt

z 1

1 1 0

�

= *( ) - ( * ( )) - ( - *( ))�0

t 	 (8)
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Algebraic identification of eccentricity

Consider equation (3) with perfect knowledge of 
the moment of inertia Jz and the shaft stiffness k, 
and that the position coordinates of the disk (x, 
y) and the control input τ are available for the 
identification process of the eccentricity u.

Multiplying equation (3) by t and integrating by 
parts the resulting expression once with respect 
to time t, one gets

	
0

t

� ( ) =tz dt6

1
J

z 0

t

� t c z dt +( - )
� 6t

ku

J
z 0

t

� t cos z dt( - - )5z z sin z3 1 5

	 (12)

Solving for the eccentricity u in equation (12) 
leads to the following on-line algebraic identifier 
for the eccentricity:

	 u =
J t J

z z
� - ( ��� ��� �t )tc dt

�0

t

�

k t y cos - x sin )dt( ��
0

t

�

t [ , )]� �0
�

, 	 (13)

where d is a positive and sufficiently small value.

Therefore, when the denominator of the identifier 
of equation (13) is different to 0, at least for a 
small time interval [O, d] with d < 0, one can find 
from equation (13) a closed-form expression to 
on-line identify the eccentricity.

An adaptive-like controller with algebraic 
identification

The PI controller given by equation (8) can be 
combined with the on-line identification of 
the eccentricity in equation (13), resulting the 
following certainty equivalence PI control law

	
� � � �

� � ����� � � �

= J v + c + kux sin - kuy cos

v t t t dt

z 1

1 1 0

�

= *( ) - ( * ( )) - ( - *( ))�
. 	 (14)

with

	
u =

J t J
z z
� - ( ��� ��� �t )tc dt

�0

t

�

k t y cos - x sin )dt( ��
0

t

�

t [ , )]� �0
�

,

Note that, in accordance with the algebraic 
identification approach, providing fast 
identification for the eccentricity, the proposed 
controller (14) resembles an adaptive control 
scheme. From a theoretical point of view, the 
algebraic identification is instantaneous [12]. 
In practice, however, there are modeling errors 
and other factors that inhibit the algebraic 
computation. Fortunately, the identification 
algorithms and closed-loop system are robust 
against such difficulties [14].

Simulation results

Some numerical simulations were performed 
using the parameters listed in table 1.

Table 1 Rotor system parameters

mr = 0.9 kg D - 0.01 m a = 0.3 m
mb = 0.4 kg rdisk = 0.04 m cϕ = 1.5 x 10-3 Nms/rad

cb = 10 Ns/m u = 100 mm z7 = 0.3 ± 0.05 m

Figure 6 shows the identification process of 
eccentricity and the dynamic behavior of the 
adaptive-like PI controller given by equation (14), 
which starts using the nominal value u = 0 mm. 
One can see that the identification process is 
almost instantaneous. The control objective is 
to take from the rest position of the rotor to the 
operating speed ωf = 300 rad/s.
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Figure 6 Close loop system response using the PI 
controller: (a) identification of eccentricity, (b) rotor 
speed and (c) control input
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The desired speed profile runs up the rotor in a 
very slow and smooth trajectory while passing 
through the first critical speed. This control 
scheme is appropriate to guarantee stability and 
tracking. The resulting rotor vibration amplitude 
(system response when t = 0) is shown in figure 
7, for three different and constant positions of the 
right bearing (i.e., b = 0.25 m, 0.30 m, 0.35 m), 
using the PI controller.
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Figure 7 Unbalance response R for different and 
constant positions of the movable bearing: (dashed 
line), (solid line) and (dash-dotted line) 

The purpose of these simulations is to illustrate how 
the position of the bearing truly affects the rotor 
vibration amplitudes for the desired speed profile. 
The nominal length of the shaft is l = 0.60 m. A 
smaller length l = 0.55 m leads to a higher natural 
frequency and a bigger length l = 0.65 m leads to 
a smaller natural frequency (see figure 7). Hence to 
get a minimal unbalance response, the rotor length 
should start at l = 0.55 m and then abruptly change 
to l = 0.65 m. This change of the bearing position 
must occur exactly when the response for l = 0.55 
crosses the response for l = 0.65, in order to evade 
the resonance condition, because the rotor speed 
is different from the natural frequency of the 
rotor-bearing system.

Position control of the bearing support

It is evident from equations (5) and (6) that 
controlling the position of the movable (right) 
bearing b applying the control force F and 

according to a pre-specified speed profile ω*(t) 
the modification of the rotor amplitude response 
to the unbalance is possible. As a matter of fact 
this methodology is equivalent to a dynamic 
stiffness control for the Jeffcott-like rotor system, 
enabling smooth changes on coordinate b.

To design a controller for position reference 
tracking, consider equation (4). Then, one can 
propose the following Generalized Proportional 
Integral (GPI) controller for asymptotic and 
robust tracking to the desired position trajectory 
b* (t) for the bearing position and velocity, which 
employs only position measurements of the 
bearing. For more details on GPI control see [20].

	
F = m

b
v - c b

2 b

.

v = b* t b - b* t

b - b* t b - b* t dt

2
( ) - ( ( ))

- ( ( )) - ( ( ))

�

� �

2

1 0

.. . .

�

	 (15)

where .b  is an integral reconstructor of the bearing 
velocity, which is given by

	
0

t

�
.
b =

c

m

b

b

b +
1
m

b

F d( ) �� 	 (16)

The use of the GPI controller given yields the 
following closed-loop dynamics for the trajectory 
tracking error e2 = b - b* (t):

	 e + e + e + e = 02 2� 2 1 2 0 2� �
(3)

.. .
	 (17)

Therefore, selecting the design parameters {b0, 
b1, b2,} such that the associated characteristic 
polynomial for equation (17) be Hurwitz, one 
guarantees that the error dynamics be globally 
asymptotically stable. The desired trajectory 
planning b* (t) for the bearing position and 
velocity is also based on Bézier polynomials 
similar to equation (10).

Results and discussion
The proposed methodology for the active 
vibration control of the transient run-up or coast-
down of the rotor-bearing system consists of the 
following steps:
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1.	 Define the trajectory planning for the speed 
trajectory profile w*(t) to be asymptotically 
tracked by the use of the adaptive-like PI 
controller with the algebraic identifier of the 
eccentricity, i.e., limt→∞ w*(t) = w*(t).

2.	 Establish an appropriate smooth switching on 
the position of the movable bearing b*(t) to 
be asymptotically tracked by the application 
of the GPI controller, i.e., limt→∞ b(t) = b*(t). 
The switching time has to be at the crossing 
point leading to minimal unbalance response 
in figure 7.

Figure 8 shows the unbalance response of 
the rotor-bearing system when rotor speed 
PI controller with algebraic identification of 
eccentricity and GPI control of the bearing 
position are simultaneously used. Note that 
the switching of the bearing position leads to 
small transient oscillations due to inertial and 
centrifugal effects on the overall rotor system.
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Figure 8 Rotor vibration amplitude response using 
active vibration control (solid line)

First of all, the speed trajectory planning and 
control torque shown in figure 6 are similarly 
used. The smooth switching for the bearing 
position is implemented in such a way that the 
run-up of the rotor system starts with the position 
bi = 0.25 m  (i.e., l = 0.55 m) and changes to bf = 
0.35 m (i.e., l = 0.65 m) exactly at the crossing 
point shown in the corresponding response in 

figure 7. The switching time occurs when ω 
= 170.6 rad/s, that is, t = 23.9 s. The desired 
position of the bearing b(t) is illustrated in 
figure 9 together with the applied control force 
F. A comparison of the open-loop response and 
the closed-loop response in figure 8 results in 
important unbalance reductions about 64%.
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Figure 9 Response of the bearing support using GPI 
controller: (a) position of the movable bearing and (b) 
control force

Conclusions
The active vibration control of a Jeffcott-like 
rotor through dynamic stiffness control and 
acceleration scheduling is addressed. The control 
approach consists of a servomechanism able to 
move one of the supporting bearings in such a 
way that the effective rotor length is controlled. 
As a consequence, the rotor stiffness and natural 
frequency are modified according to an off-line 
and smooth trajectory planning of the rotor speed/
acceleration in order to reduce the unbalance 
response when passing through the first critical 
speed. The vibration control scheme results 
from the combination of passive and active 
control strategies, leading to robust and stable 
performance in presence of the synchronous 
disturbances associated to the normal operation of 
the rotor and some small parameter uncertainties. 
Since this active vibration control scheme 
requires information of the eccentricity, a novel 
algebraic identification approach is proposed 
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for on-line estimation of the eccentricity. 
From a theoretical point of view, the algebraic 
identification is practically instantaneous and 
robust with respect to parameter uncertainty, 
frequency variations, small measurement errors 
and noise. The proposed active vibration control 
scheme, used to reduce unbalance-induced 
synchronous vibration, is restricted to use in 
small rotating machinery (e.g., tools machines, 
motors and generators).
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