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Abstract

We propose to use a Fisher type discriminant objective function addressed to 
weighted principal component analysis (WPCA) and weighted regularized 
discriminant analysis (WRDA) for dimensionality reduction. Additionally, 
two different proofs for the convergence of the method are obtained. First one 
analytically, by using the completeness theorem, and second one algebraically, 
employing spectral decomposition. The objective function depends on two 
parameters U matrix being the rotation and D diagonal matrix weight of 
relevant features, respectively. These parameters are computed iteratively, 
in order to maximize the reduction. Relevant features were obtained by 
determining the eigenvector associated to the most weighted eigenvalue on 
the maximum value in U. Performance evaluation of the reduction methods 
was carried out on 70 benchmark databases. Results showed that weighted 
reduction methods presented the best behavior, PCA and PPCA lower than 
17% while WPCA and WRDA higher than 45%. Particularly, WRDA method 
had the best performance in the 75% of the cases compared with the others 
studied here.
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Resumen

En este trabajo se propone utilizar una función objetivo discriminante tipo de 
Fisher, para la reducción de la dimensionalidad, en el análisis de componentes 
principales ponderados (WPCA) y al análisis discriminante regularizado 
ponderados (WRDA). Además, se desarrollan dos pruebas de la convergencia 
del método. Primero analíticamente, usando el teorema de completitud, y una 
segunda prueba algebraica, empleando descomposición espectral. La función 
objetivo depende de dos parámetros: U matriz de rotaciones y D matriz pesos 
de características relevantes, respectivamente. Estos parámetros se calculan 
iterativamente, para maximizar la reducción. Las características relevantes 
fueron obtenidas determinando el vector propio asociado al valor propio 
con máximo valor en U. La evaluación del desempeño de los métodos de la 
reducción fue realizada sobre 70 bases de datos (benchmark). Los resultados 
mostraron que los métodos ponderados presentan un mejor comportamiento 
PCA y PPCA por debajo del 17% mientras que WPCA y WRDA por encima 
del 45%. Particularmente, el método WRDA tuvo el mejor funcionamiento 
en el 75% de los casos comparados con los otros estudiados en este trabajo.

----- Palabras clave: WPCA, WRDA, reducción de dimensión

Introduction
The relevant information extraction from a data 
set with a great number of features has been 
considered as a big problem in machine learning 
and pattern recognition. These great sets appear 
normally in areas as bioinformatics and text 
recognition, where is common to find feature 
vectors with dimensions higher than 107, but 
with a low number of relevant characteristics. 
Thus, the classification algorithm performance 
is limited and their computing time is high, 
reducing the application in real time tasks [1]. 
For solving this problem, irrelevant features that 
do not contribute to the extraction and selection 
process must be rejected, improving the classifiers 
performance. Traditionally, the dimensionality 
reduction has been developed by using linear 
techniques such as principal components analysis 
(PCA), probabilistic principal components 
analysis (PPCA) and factorial analysis [2-4]. 
Nevertheless, these linear techniques are not 
suitable for handling non linear complex data. 
For this reason, in recent years, a great number 
of non linear techniques for dimensionality 
reduction have been proposed several geometric 
methods for feature selection and dimensional 

reduction. Where they divide the methods into 
projective methods and methods that model the 
manifold on which the data lies. For projective 
methods, we review projection pursuit, principal 
component analysis (PCA), kernel PCA, 
probabilistic PCA, and oriented PCA; and for the 
manifold methods, we review multidimensional 
scaling (MDS), landmark MDS, Isomap, locally 
linear embedding, Laplacian eigenmaps and 
spectral clustering [5-7]. Nevertheless they lack 
of convergence analysis. Non linear reduction 
techniques have a good performance in complex 
artificial tasks; however, they do not overcome 
the traditional linear techniques in real word tasks 
using several databases without carrying out 
formal proofs of this fact [8]. In [9] an algebraic 
weighted variables approximation is presented. It 
is based on the Kernel matrix spectral properties. 
The main contribution consists in obtaining 
relevant variables using the weighted objective 
function, proving its convergence on employing 
strong hypothesis from the analysis fundaments, 
but being different to those used in this paper. 
An exhaustive review in extraction and selection 
features methods classification, grouping them 
in two classes, has been done in [10]. The first 
one contains the binary search methods, which 
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at the same time are catalogued as exhaustive 
search methods but forbidden because of its 
computational cost. These find the optimum 
of the objective function but provide unstable 
and not optimal results. The second group 
includes the weighted methods that multiply 
the features by continuous values, in order to 
employ mathematical analysis techniques, for 
optimizing the objective function. In reference 
[11-14] descriptive studies of the reduction 
and regression methods are observed. Some of 
them show applications in pattern classification 
for identifying faces, while others present 
applications for materials science. Although the 
two last references have the same abbreviation 
(WPCA) they refer to other aspects, employing 
“W” for window or whitened, being different to 
the methods considered in this paper, because 
they carried out a local reduction. 

In this work, a complete study of two of these 
weighted methods is included, WPCA and 
WRDA. These methods were already introduced 
in [15,16] by using an EM algorithm and without 
including a theoretical study. The main advantage 
of these methods is the capability of combining 
in one step two tasks (features selection and 
extraction), returning the called relevant features. 
Here we present the methods as weighted rotations 
for maximizing the objective function J4, which 
is the matrix traces ratio that represents the inter-
classes and intra-classes dispersion. From this 
definition, we develop a convergence analysis. 
The main convergence result is obtained from 
two different points of view. First analytically 
by using the completeness theorem and second 
algebraically, employing spectral decomposition.

The convergence was validated employing 
artificial and real data for selecting relevant 
variables from a set of 70 geometric features 
(areas, perimeters, fractal dimension, curvatures, 
Hausdorff dimension among others), statistical 
(correlations, means, entropy and moments) 
needed for characterizing patterns that can 
separate two classes. In order to evaluate the 
performance of these methods, the ROC surfaces 
hyper-volume (hyper-surface) has to be calculated 

by using the Monte Carlo method, additional to 
the error classification. 

Methodology

Relevance and variables selection using 
weighting 

The variables selection problem can be understood 
as choosing a subset of p features, from the whole 
features set c, that allows obtaining a suitable 
performance in the classification process. This kind 
of search is handled by some evaluation function 
named the relevant set. On the other hand, the 
extraction techniques carry out a transformation 
of c features space to a lower dimension space. 
In order to guarantee the optimum solution, these 
methods execute an exhaustive search, increasing 
the computational cost. For solving this problem, 
heuristic methodology has been proposed, but 
producing unstable behavior respect to the 
objective function. Other alternative consists in 
using weighting methods, although they are not 
the optimal solution, they are more stable and 
flexible, producing a suitable solution [17]. Some 
of these methods are described below.

Weighted probabilistic PCA 

It is a particular factorial analysis case. In this 
method, the original X features are observed as 
a linear combination of Z factors group, joined 
to a specific error V and C that represent charge 
coefficients that are modeled according to (1):

; (0, ), (0, )X CZ V Z N I V N I= + ≈ ≈  (1)

Where the random variables Z can be assumed 
non dependent and identically distributed, with 
a unitary spherical Gaussian variance. Note that 
there is a difference between the probabilistic 
model PCA (PPCA) and PCA, where the 
random variable variance can be associated 
to the diagonal elements of Ζ. The model also 
considers the general perturbation matrix V, 
but in [18] a restriction of Gaussian variance 

IR ε=  (isotropic noise) is stated. The previous 
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model formulation is modified by introducing the 
weights on the original variables (features) and 
thus containing the weighted rotation. Let D be a 
diagonal matrix that contains the i-th variable in 
the dii element. If the new variable is assumed as 
diixi, a new data subset y = Dx is generated, where 
the probabilistic model is defined in (2):

 Y XD CZ V= = +  (2)

where Z and V are distributed as in equation (1). 
From this definition Y is normally distributed, 
with mean equal to zero and the covariance given 
by (3):

  (3)

The weights are found in D and they are 
responsible of generating the noise for the X 
variables. From (3) the EM (Expectation - 
Maximization) algorithm is obtained, in order 
to estimate the unknown variables state in the 
E-step and maximizing the total probability from 
the estimation of Z and the observation of Y, in 
the M-step. E-step and M-step are observed in 
equation (4) and (5), respectively:

  (4)

  (5)

Weighted regularized discriminant 
Analysis WRDA

RDA was proposed by Friedman [19] for being 
used in small samples, where data possess 
high dimensionality, trying to overcome the 
discriminant rule degradation. In this document, 
they were identified as the regularized linear 
discriminant analysis method. The aim of 
this technique is to find the lineal projection 
space where the dispersion between classes 
was the maximum value. One way consists in 
maximizing the ratio between projected classes 
in the dispersion matrix inter-classes ΣB and the 
dispersion matrix intra-class ΣW, as is expressed 
in (6): 

 
 (6)

where W is the projection matrix, which 
dimension is defined by the number of linearly 
separated classes k. The aim is to maximize 
the previous objective function (6), under 
restriction 1=Σ WW W

T . The solution is 
obtained employing the Lagrange multipliers, 
the solutions are k-1 eigenvectors generalized 
from ΣB and ΣW, that correspond to the principal 
eigenvectors of BW ΣΣ−1 . The regularization is 
needed because for small samples size, ΣW cannot 
be inverted directly. Then, the solution would be 
reformulated as is expressed in the next equation, 
where Λ is the eigenvalues matrix (a diagonal 
matrix) as is presented in (7):

  (7) 

After data weighting by obtaining XD, where D 
be a diagonal matrix, the function to optimize is 
transformed in (8):

 
 (8)

Weighted variables and relevance criteria

In previous subsections some weighted linear 
transformations were defined. Now, the interest 
is to project data in a f dimension space. Such 
dimension depends on the chosen rotation 
criterion; for instance, there is a bi-class problem 
and the convergence of WRDA is required, the 
fixed dimension must be f =1, in order to reach 
the convergence. For evaluating the weighted 
projection relevance at a fixed dimension, 
the measurement of separability is required. 
The parameter to be optimized is the weight 
diagonal matrix D, and the selected criterion 
is the inter-classes and intra-classes dispersion 
matrix traces coefficient, known as J4 [20]. For 
projected and weighted data, this measurement 
is given by (9):
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  (9)

where Φ can represent U or W. The size of Φ is c × f 
and f denotes the fixed dimension, corresponding 
to the number of projection vectors Φ such that: 

),...,,( 21 fφφφ=Φ .

Rewriting the D matrix as a column vector d, and 
using the Hadamard matrix product (expressed as 
o ), the traces of equation (9) can be rewritten as 
is presented in (10):

 
 (10). 

 (10)

Then, equation (9) is transformed in equation 
(11):
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This function is essentially equal to the LDA 
(linear discriminant analysis) function, then, the 
solution of d with norm L2, will be chosen by the 
principal eigenvector given by (12):
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Note that this kind of description assumes that the 
Φ elements are static; this problem is overcome 
by overlapping d and Φ calculation, until the 
convergence of both is reached [9]. Related to 
weight interpretability, in order to define the 
dispersion, positive values are generally required. 
Nevertheless, in the context of relevance function 
used in this work, negative values can be obtained, 
this is avoided taking the absolute value of d.

Weighted reduction WPCA and WRDA

In [9] the convergence towards local maximum, 
using the power method applied to Q-α method 
with objective function similar to J4, is shown. 
Such proof was carried out for a particular case, 
where the objective function is poor, which 
means that there is a subset of characteristics 
including a coherent cluster and a positive 
function, conditions that normally can not be 
demanded. For this reason, in this section the 
convergence objective function in WPCA is 
proved, but it requires using the lemma 1, which 
can be demonstrated from two perspectives: 
analytic and algebraic. 

The next lemma guaranties the objective function 
has a maximum. Moreover, it is observed that 
any search method converges to the same limit.

Lemma: The objective function 
1

4
1 1

( , )
K K

T T T
i i i i

i i

J W D d B w w Id A w w dδ
−

= =

 = ⋅ + ⋅  
∑ ∑  

has a maximum.

Proof  (analytic version): the objective function can 
be represented as: )(,),( ddDWJ WΓ=  where 

Let be { }1:)(, =Γ= dddC W
 a set. The set is 

not empty since any eigenvector id β=  satisfies 
the condition in the C set. Now, it is necessary 
to show that the set posses supremum. Taking a 
base of eigenvectors { }nβββ ,...,, 21 , associated 
to the transformation ΓW, then, for any d vector 
conformed by a linear combination of iβ , it is 
had that , such that: 

, where . Then C is 

upper bounded, because of the supremum axiom 
( )sup C  exists. Considering 1

1

22 == ∑ =

n

i icd  

and { }i
nii

λλ
≤≤

= maxˆ  it implies that  For 
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this reason, if β̂=d  the eigenvector associated 
to the greater eigenvalue λ̂ , maximizes the 
objective function.

Proof 2 (algebraic version): The objective function 
J(w,D) = trace(WT DADW) is  maximized, under 
restrictions: WTW = Id, trace(WT DBDW) = 1 where 
D be a diagonal matrix and  The original 
data is stored in the X matrix and its covariance 
XTX is analyzed, written it as BAXX T +=
, being A and B symmetric and positive semi-
defined matrixes, which can be substituted by 
Cholesky decomposition: 1111 BBAAXX TTT += . 
Multiplying the left side by WTD and the right side by 
DW and taken the traces, next expression is obtained:   

Using the W orthogonality conditions, it can be 
written as 

Finally it can be expressed as 

. Its matrix 

representation is given by: 

Then,  implies that
1)(:,)(:, 11

2 =∑ iBiBd T
i , and it can be transformed 

in ∑ =1
~

id  where  such that 

)(:,)(:, 11 iBiBy T
i = . Therefore D can be 

expressed in a matrix form as:  

The last expression can be transformed in the next 

function for maximizing: 
2

2

~
),( dMDWJ = , joined

to 1
~ =d , which has as a maximum ||M|| 

as is evident.

Following, the WPCA algorithm and its 
convergence is presented.

WPCA algorithm

The iterative nature and the convergence of EM 
and PCA probabilistic parameters estimation is 
used for obtaining the WPCA algorithm, which is 
described as follow, employing r as the iteration 
index:

i Normalize each characteristics vector for 
obtaining zero mean and the one Euclidean 
norm (||x||2 = 1). 

ii Start with some orthogonal set of vectors 
U(0).

iii Calculate D(r) from the solution given in 
equation (12) and weighted data.

iv Calculate the step-E and step-M, from 
equation (4) and (5) respectively. Normalize 
the C columns de C for obtaining ||C(:,i)||2 = 1.

v If ||C(r) - C(r - 1)||2 > ε, return to numeral iii. 

vi Orthonormalize the subspace obtained, finding 
its singular values decomposition (SVD), 
as follow: 

 where A, S the elements 
obtained from the decomposition SVD.

WPCA convergence 

As was stated in the last section, weighting the 
characteristics by integrating with EM method 
can guarantee the convergence of steps D, and 
it is possible to ensure the relevant features 
obtained. From equation (4) the relationship (13) 
was reach in the algorithm:

 
( ) ( ) ( ) ( )r r r rD X C Z V= +  (13)

Again, r corresponds to the iteration. As EM 
is applied (increasing r) the perturbation V(r) 
decreases, due to it is approximated to the most 
discriminant axes. That is, if r → ∞, then ||V (r)|| → 
0, guarantying the convergence.

Theorem 1: If C(r) → Ĉ y ZZ r ˆ)( →  then 
DD r ˆ)( → .
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Proof: Given the Eq. (13) for iterations r and r + 1, the subtraction produces: 

)()()( )()1()()()1()1()()1( rrrrrrrr VVZCZCXDD −+−=− ++++ . Applying to the last relationship, any 

type of norm follows: )()1()()()1()1()()1( )( rrrrrrrr VVZCZCXDD −+−≤− ++++ . It is known that if 

r → ∞, then ||V(r)|| → 0, then: )()()1()1()()1( )( rrrrrr ZCZCXDD −≤− +++ . Adding and subtracting 

C(r+1) Z(r), to the right side, it is obtained:   

Applying the triangular inequality and the multiplicative property, the expression: 
)()()1()()1()1()()1( )()()( rrrrrrrr ZCCZZCXDD −+−≤− ++++  is reached, when r → ∞, then 

ZCCZZCXDD rrrrrr ˆ)()(ˆ)( )()1()()1()()1( −+−≤− +++ . By hypothesis, X is the original 

data matrix, then ||X|| > 0. In a norm space, if a sequence converges, is a sequence of Cauchy. If 

r → ∞, then 0( )()1( →−+ rr CC , 0)()1( →−+ rr ZZ , and 0)()1( →−+ rr DD . Thus the weight 

convergence working in a Banach space is had.

WRDA Algorithm 

For this algorithm, errors produced by the 
rotation of weighted data are not important, since 
not only the function of each rotation but also the 
weighting function have similar directions. The 
algorithm is described as follow:

Fix the k – 1 dimension, being k the number of 
classes.

Normalize each vector of feature for having 
media zero and Euclidian norm one.

Start with some orthogonal set of vectors W(0).

Calculate d(r) from the solution of equation (12), 
weighting the data.

Calculate the W(r) from equation (8) y (9).

If ε>− −

2

)1()( rr WW , return to numeral iii. ε is 

the fixed error in the process. 

Its objective function is precisely the observed in 
the lemma 1. 

Results and analysis
By using a support vectors machine (SVM) 
classifier and evaluating its performance using two 

different approaches: employing ROC curves and 
hyper-surfaces and using the classification error, 
the dimensionality reduction PCA, PPCA, WPCA 
y WRDA techniques behavior was studied. Real 
data generated from geometric features as area, 
perimeters, orientations, dispersion, centroids 
and different statistical moments were used, 
obtaining 70 features applied to 50 capillary 
images of people without lupus erythematosus 
and 50 capillary images of ill people. In figure 1, 
data projection on the principal plane is shown. It 
is observed that in WPCA and WRDA methods, 
the data clouds belonging to healthy people class 
(circle) versus lupus erythematosus ill people 
class (cross), are more compacted. They vary 
between -0.1 and 0.1 on the horizontal axis 
and take values between -0.04 and 0.04 on the 
vertical axis. While in PCA and PPCA methods, 
the clouds are enlarged and the horizontal axis 
varies between -0.5 and -0.5 and the vertical axis 
varies between -0.3 and 0.2.

In figure 2, the reduction methods performance 
is shown. In the left curve, the highest point 
indicates that WRDA obtained the greatest 
efficiency percent, while the right curve shows 
that WRDA has the lowest classification error 
compared with the other methods.
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Figure 1 Projection of reduction features methods 
PCA, PPCA WPCA and WRDA applied to the set of 
feature extraction from capillary images
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Figure 2 Performance evaluation of reduction methods 
for data related with 100 capillary images of persons with 
lupus erytematosus and persons without lupus

The figure 3 shows the reduction methods 
performance in the classification applied to 70 
databases discharged from the website [21]. From 
the figure, it is observed that the WRDA method 
presented the best performance compared to the 
others methods.
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Figure 3 Reduction methods performance applied 
to 70 databases

In table 1, the performance behavior and 
classifier errors of reduction methods applied to 
70 databases were summarized. The values were 
obtained by using the mean, median, standard 
deviation and minima. In row “number of match” 
a best performance for WRDA was observed in 
53 of the 70 databases, while PCA and PPCA 
were the worst.

Table 1 Reduction methods evaluation

Performance evaluation in percent of 
the weighted dimensionally reduction methods 

PCA PPCA WPCA WRDA

Efficiency Error Efficiency Error Efficiency Error Efficiency Error

Mean 0.7265 0.0013 0.7341 0.0013 0.8678 0.0008 0.9146 0.0008

Deviation 0.2393 0.0012 0.2304 0.0013 0.1427 0.0006 0.1402 0.0008

Median 0.7956 0.0010 0.7874 0.0010 0.9109 0.0007 0.9729 0.0006

Minimum 0.2101 0 0.2283 0 0.4658 0 0.2047 0

No. Mach 11 12 30 53
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Conclusions
Proofs of WPCA and WRDA reduction methods 
were carried out from two points of view: 
algebraic and geometric. Such proofs were 
relatively weaker than those known for other 
weighted methods. Results of weighted reduction 
methods PPCA, WPCA and WRDA performance 
were present. These results indicate that WRDA 
method has a best performance in 75% of 
databases, being the first compared to the other 
methods. In the literature, no rigorous proofs of 
the WPCA method and its variants are reported. 
For this reason, great part of the document was 
dedicated to carry out formalization tests, one 
analytic and other algebraic. 

Capillary images showed great complexity for 
extracting relevant features due to the signal 
noise ratio. The feature reduction methods 
implemented in this paper. It was confirmed 
by the errors generated in the order of 30%. It 
can be observed since the classes were highly 
overlapped. Nevertheless, the method with 
the best performance was WRDA, reducing 
the classification error in spite of the classes 
overlapping.
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