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Abstract 

This paper employs quaternion biarcs to interpolate a set of orientations with 
angular velocity constraints. The resulting quaternion curve represents a 
piecewise line-symmetric spherical motion with C1 continuity. The purpose 
of this effort is to put line-symmetric motions into use from the viewpoint 
of motion approximation and interpolation, and to present their potential 
applications in Computerized Numerical Control (CNC) machining simulation 
and tool path planning. Quaternion biarcs may be used to approximate 
B-spline quaternion curves that represent rational spherical motions that have 
applications in robot path planning, CAD/CAM and computer graphics.

----- Keywords: Quaternions, biarcs, orientation interpolation, 
computerized numerical control, path planning

Resumen

Este artículo emplea biarcos cuaterniónicos para interpolar un conjunto de 
orientaciones con restricciones de velocidad angular. La curva cuaterniónica 
resultante representa un movimiento simétrico lineal esférico segmentado con 
continuidad C1 . El propósito de este esfuerzo es poner en uso los movimientos 
simétrico lineales desde el punto de vista de aproximación e interpolación 
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de movimiento y presentar su potencial aplicación en la simulación de 
mecanizado por Control Numérico Computarizado (CNC) y planeación de 
trayectorias de herramienta. Los biarcos cuaterniónicos pueden ser usados 
para aproximar curvas B-spline cuaterniónicas que representan movimientos 
esféricos racionales, los cuales tienen aplicaciones en planeación de 
trayectorias de robots, en CAD/CAM y en gráficas por computador.

----- Palabras clave: Cuaterniones, biarcos, interpolación de 
orientaciones, control numérico computarizado, planeación de 
trayectorias 

Introduction
It is common practice in Computer Graphics and 
Computer Aided Geometric Design (CAGD) to 
approximate a space curve such as a cubic B-spline 
with C0 piecewise line segments, or better, with 
G1 continuous biarcs [1]. Such techniques are 
commonly employed in robot motion planning 
to generate joint trajectories in what is called 
the configuration space (C-space) [2, 3]. There 
is abundant literature on the subject (e.g. [4, 5]) 
but the general approach consists of optimizing 
some parameter or objective function while 
avoiding obstacles and kinematic singularities 
which are mapped onto the C-space. A similar 
approach is followed in CNC motion generation 
for 5-axis machining. In this context, a discrete 
set of tool positions, or cutter location (CL) data, 
is generated out of the geometry of the surface 
to be machined; then, the inverse kinematics is 
performed for each CL data, the corresponding 
joint parameters are obtained, and the C-space 
techniques are applied (see, e.g. [6-8]). However, 
in most commercial machines a simple piecewise 
linear interpolation of the joint parameters is 
commonly used which requires a huge amount of 
data in order to achieve the desired tolerance and 
does not offer velocity continuity since the cutter 
has to abruptly change its direction of motion and 
orientation between line segments compromising 
surface accuracy and machining time [9, 10]. 
Furthermore, a drawback of the C-space for 
motion design is that it does not seamlessly 
reflect the traits of the actual rigid body motion 
and does not allow for intuitive manipulation and 
fine-tuning of the motion.

This is why the space defined by the four 
components of a quaternion is recognized as an 
elegant tool for handling rotations, or spherical 
motions, and it is referred to as the image space 
of spherical displacements because it permits a 
direct description of the spherical motion of a 
rigid body [11, 12]. Typically, unit quaternions 
are used and the resulting image space is a unit 
hypersphere [13]. Alternatively, when four 
components of a quaternion are considered as 
homogeneous coordinates, the resulting image 
space is a projective three-space where no 
normalization of the quaternions is required in 
order to be valid representations of spherical 
displacements [14]. Thus, the study of a spherical 
motion corresponds to that of a curve, called 
image curve, in the image space. For example, a 
great circle on the unit hypersphere corresponds 
to a pure rotational motion about a fixed axis. 
This property has formed the basis for the so-
called spherical linear interpolation (Slerp) by 
Shoemake [15] and has been used for spherical 
motion planning in robotics and 5-axis machining, 
yet the angular velocity is not continuous [16, 17]. 
Although regular, or small, circular arcs on the 
unit hypersphere, such as spherical biarcs, have 
been used to generate interpolating spherical 
motions (see, for example, [18]) and even C1 
quaternion biarcs on the hypersphere have been 
used to approximate cubic B-spline quaternion 
curves [19], it is far less well known that a planar 
curve in the image space corresponds to a line-
symmetric motion [20]. Line-symmetric motions 
offer more flexibility to the motion designer 
since they are not restricted to be circular arcs 
and can be designed in the projective three-space 
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decreasing the computational burden inasmuch as 
no constraint in the magnitude of the quaternions 
is imposed.

The purpose of this paper is to put line-symmetric 
motions into use from the viewpoint of motion 
approximation and interpolation and to show 
their potential applications in Computerized 
Numerical Control (CNC) machining simulation 
and tool path planning. To this end quaternion 
biarcs are used for motion design. Kinematically, 
this means that we can use a velocity-continuous 
piecewise line-symmetric spherical motion to 
approximate the B-spline rational spherical 
motion. The advantage of using quaternion 
biarcs is that they can be generated much more 
efficiently than cubic b-spline quaternion curves.

The content hereby presented is organized as 
follows. Firstly, some kinematics fundamentals are 
briefly reviewed including quaternions and line-
symmetric motions. Also, the constraint manifold 
of a positioning head for 5-axis machining is 
obtained. Secondly, the biarc technique is extended 
to handle quaternions resulting in an image curve 
describing a piecewise line-symmetric spherical 
motion. Then, the quaternion biarcs are used 
for 5-axis tool path generation; the algorithm is 
sketched and an example is discussed. Concluding 
remarks are drawn at the end. 

Kinematics fundamentals

In this section quaternions and line-symmetric 
motions are reviewed in the extent that pertains 
to this paper. Also, the kinematic constraint 
manifold of a positioning head for 5-axis 
machining is obtained which will be used in the 
application discussed further.

Quaternions

A unit quaternion q = q1i + q2j + q3k + q4 
representing a spherical displacement is made up 
by the so-called Euler-Rodrigues parameters as 
follows 

2
cos=,

2
sin=,

2
sin=,

2
sin= 4332211

θθθθ
qsqsqsq  (1)

where θ and the unit vector s = (s1, s2, s3,) 
represent the angle and the axis of the rotation, 
respectively. The quaternion basis units i, j, and k 
satisfy the fundamental multiplication rules 
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The quaternion q is said to be a unit quaternion since 
its magnitude is one, i.e. 1=2
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Although it has been widely accepted that only unit 
quaternions represent spherical displacements, it 
has been shown that this restriction is not necessary 
in case of rational motion synthesis (see Purwar 
and Ge [21]). Therefore, a unit quaternion q and 
a multiple of it Q = wq = ( Q1, Q2, Q3, Q4,), w > 0, 
represent the same rotation since the components 
of Q are homogeneous coordinates of q and the 
quaternion space is referred to as the image space 
of spherical kinematics.

The spherical displacement of a point P, whose 
homogeneous coordinates are (P1, P2, P3, P4,), is 
given by 

 
*QPQP =

~
 (3)

where P
~  denotes the homogeneous 

coordinates of the point after the displacement;  
Q* = (–Q1, –Q2, –Q3, Q4,) is the conjugate of Q. 
Thus, a curve Q(t) in the image space describes 
the spherical motion of a rigid body being t a 
parameter usually associated with time.

The time derivative q  of a unit quaternion q is 
related to the instantaneous angular velocity 
vector  of the rotation as follows 

  (4)

 is a vector quaternion whose scalar part is zero. 
For details on quaternions and the image space, 
the interested reader is referred to [11-13]. 

Line-symmetric spherical motion

A general line-symmetric motion is a geometric 
construction of motion in which an arbitrary 
position in the space is rotated half-turn about 
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a continuous set of lines. The set of positions 
obtained is called a line-symmetric motion. The 
arbitrary position is called polar position and the 
ruled surface formed by the set of lines is the 
basic surface of the line-symmetric motion. If 
the polar position is described as a quaternion P 
relative to a frame F; and the rotation of the i-th 
line-symmetric position with respect to the polar 
position is described by the quaternion si; then, 
the line-symmetric rotation Qi of each one of the 
positions relative to F is 

 Qi = Psi (5)

Since every one of the quaternions Qi is displaced 
half-turn with respect to the unique polar position 
P in the quaternion space then P is analogous to 
the normal of a plane. Thus, P can be obtained 
from the wedge product “∧” of any three of the 
quaternions Qi (i = 0,1,...,n), e.g. 

 210 QQQP ∧∧=  (6)

This means that all the quaternions representing 
a line-symmetric spherical motion lie on a 
hyperplane in the image space. Hence, a quadratic 
curve on the image space indeed represents a line-
symmetric spherical motion. Therefore, the curve 
can be defined by a set of three Bézier control 
positions and written as a rational Bézier conic, 
for instance. For a thorough discussion on line-
symmetric motions see [12, 20].

Kinematic constraint manifold of a 
positioning head

In this paper, the problem of spherical motion 
planning in 5-axis CNC machining will be 
addressed assuming that the tool is attached 
to a positioning head as shown in figure 1. 
Nevertheless, a similar analysis applies for a 
tilting rotary-table type of machine setting up the 
appropriate coordinate frames. In our case, we 
attach the moving frame xyz to the tool and the 
fixed frame XYZ to the machine.

Figure 1 Positioning head for 5-axis machining

With these conventions the structure equation of 
the head is defined by a rotation of the tool about 
the z axis on the moving frame by angle A, a 
rotation about x by an angle of 90o, and a rotation 
of the head about Z on the fixed frame by angle 
C. In terms of quaternions we have 

  (7)

Expanding this product, the parameterized 
constraint manifold in R4 is 

 (8)

where 
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The parameterized constraint manifold of the 
head, equation 8, describes the quaternions that 
represent the orientations of the tool, with respect 
to the machine frame, given angles A and C. 
Furthermore, from a quaternion representing 
a given orientation of the tool, the inverse 
kinematics can be carried out by solving for A 
and C from the constraint manifold equation. 
Thus,

 )/(arctan)/(arctan= 2314 DDDDA −  (9) 

 )/(arctan)/(arctan= 2314 DDDDC +  (10) 

Interpolation of orientations with specified 
angular velocities using quaternion 

biarcs

Biarcs are a technique of interpolation of data 
based on the fact that two points and their 
corresponding tangent vectors can be fitted not by 
one circular arc but by two, though some special 
cases need four arcs [1]. In the traditional biarc 
technique, unit tangent vectors are used so that 
the fitting curve obtained is G1 continuous [1, 22]. 
In this paper the goal is to extend this approach 
in order to interpolate a set of orientations 
expressed in terms of unit quaternions, which can 
be regarded as points on a unit hypersphere in R4, 
with angular velocity constraints. Moreover, we 
are not willing to limit our approach to circular 
arcs but to allow for elliptical, parabolical, or 
hyperbolical arcs, i.e. quadric arcs, achieving 
a flexible technique for the motion design task. 
Therefore, for two given orientations Qs and Qe 

with respective angular velocities 
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 respectively; and the continuity of the arcs 
is C1 at the junction point. Although equation 
4 is only valid for unit quaternions, there is no 
need to impose normalization constraints on 
the interpolating quaternions if homogeneous 
coordinates are used to compute the rotations 
of points of a rigid body since a unit quaternion 
and a multiple of it represent the same rotation as 
explained before.

Let Qs = Qo and Qe = Q4 represent two desired 
orientations of a rigid body with respect to an 
arbitrary fixed frame as illustrated in figure 2. 

Figure 2 Biarcs scheme

It should be noticed that figure 2 sketches a 
biarc for regular planar points although the 
current paper deals with quaternions which are 
impossible to visualize in R4. However, the 
considerations on biarcs can be extended to the 
quaternion space since a quadratic arc is also a 
planar curve in R4 . The unit quaternions Q0 and 
Q4 and their respective derivatives is all what is 
needed to apply the biarc method. It is required 
to find the Bézier control quaternions Q1, Q2, 
Q3 such that the arcs C1 defined by Q0, Q1, Q2, 
and C2 defined by Q2, Q3, Q4 can be written as 
rational Bézier curves 
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where wi are the weights and )(B2
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2 t  are quadratic rational Bernstein polynomials 
and 0 ≤ t ≤ 1 is a dimensionless local parameter that 
can be correlated to time. When the weights of the 
end points are equal to one, the arcs can be written 
in standard form [23], as follows.
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Similar to the traditional CAGD theory it can 
be said that if the weight is smaller than one an 
elliptical arc is obtained, if the weight is equal 
to one the arc is parabolic, and if the weight is 
larger than one the arc is a hyperbola. Recalling 
the derivative for a rational Bézier B-spline conic 
in standard form and denoting the parameter 
intervals ∆1 = u1 - u0 and ∆2 = u2 - u1, where each 
arc is defined, the unknown control quaternions 
Q1

 and Q3 are correlated to the interpolated 
quaternions by 

  0
1

1
01 2

= QQQ 

w

∆+  (15)
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1

1

2
=

w

∆α  (17)
and 

 
3

2

2
=

w
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Then, equations 15 and 16 can be written as 
follows 

  001 = QQQ α+  (19)

  443 = QQQ β−  (20)

Q2
 is the end point of one arc and the start point 

of the next one; thus, the derivatives at this 
quaternion must be equal for both arcs in order 
to guarantee C1 continuity of the biarc segment. 
From this 

  βα
αβ

+
+ 31

2 =
QQ

Q  (21)

α and b are degrees of freedom that allow the 
designer to fine-tune the motion which also 
depend on the parameter intervals and weights. 
For instance, after choosing α and b one can pick 
the parameter interval and solve for the weight 
of each arc segment. This course of action makes 
sense in the context of CNC machining since the 
parameter interval is related to the sampling time 
of the controller which is a fixed feature of the 
machine hardware. Of course, one can instead pick 
the weights and use the derived values of α and b 
for computation of the control quaternions of the 
arc segments. It should be recalled that a change in 
the weights affects the shape of the actual motion of 
the rigid body and that the rational arc segments can 
always be reparameterized such that the path of the 
motion does not change but only the speed of the 
motion does as explored in [21]. The choice of α = 
b facilitates computations, avoids awkward-looking 
curves and, as pointed out in [22], optimized values 
of α and b do not offer significant advantages and 
this is the alternative used in this paper. In such a 
case equation 21 becomes.

 2
= 31

2

QQ
Q

+
 (22)

It must also be recalled that the local parameter t 
defined as follows must be used when evaluating 
each of the arcs in equations 13 and 14.
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This procedure can be carried out for every 
two consecutive quaternions representing a 
set of specified key orientations such that the 
b-spline curve obtained, which is composed by 
biarc segments, interpolates the series of input 
orientations and is C1 continuous. Finally, since 
each of the segments is a quadratic arc, the rigid 
body motion obtained is a continuous-velocity 
piecewise line-symmetric spherical motion. 

Tool path generation by means of piecewise 
line-symmetric spherical motion

This section describes the application of the 
quaternion biarcs, or piecewise line-symmetric 
spherical motion, in path generation of a cutter 
mounted on a positioning head as that described 
in section 2. Let us assume that a set of n key 
orientations of a cutter is specified in quaternion 
form qi, (i =1,2,...,n), along with their respective 
angular velocities 

 

Furthermore, from a quaternion representing a given orientation of the tool, the inverse kinematics 

can be carried out by solving for A  and C  from the constraint manifold equation. Thus, 

 )/(arctan)/(arctan= 2314 DDDDA   (9)  

 )/(arctan)/(arctan= 2314 DDDDC   (10)  

Interpolation of Orientations with Specified Angular Velocities Using Quaternion Biarcs 

Biarcs are a technique of interpolation of data based on the fact that two points and their 

corresponding tangent vectors can be fitted not by one circular arc but by two, though some special 

cases need four arcs [1]. In the traditional biarc technique, unit tangent vectors are used so that the 

fitting curve obtained is 1G  continuous [1, 22]. In this paper the goal is to extend this approach in 

order to interpolate a set of orientations expressed in terms of unit quaternions, which can be 

regarded as points on a unit hypersphere in 4R , with angular velocity constraints. Moreover, we 

are not willing to limit our approach to circular arcs but to allow for elliptical, parabolical, or 

hyperbolical arcs, i.e. quadric arcs, achieving a flexible technique for the motion design task. 

Therefore, for two given orientations sQ  and eQ  with respective angular velocities sθ  and eθ , 

and consequently with corresponding non-unit tangent vectors sQ  and eQ , an interpolating 

piecewise quadric arc, i.e. a biarc, must meet the following conditions: it passes through sQ  and 

eQ ; the tangent vectors at those points are sQ  and eQ  respectively; and the continuity of the arcs 

is 1C  at the junction point. Although equation 4 is only valid for unit quaternions, there is no need 

to impose normalization constraints on the interpolating quaternions if homogeneous coordinates 

are used to compute the rotations of points of a rigid body since a unit quaternion and a multiple of 

it represent the same rotation as explained before. 

Let 0=QQs  and 4=QQe  represent two desired orientations of a rigid body with respect to an 

iè . Such a CL data set can be 
obtained from discretization procedures and local 
gouging analyses as those found elsewhere [24, 
25].

It should be noticed that the angular velocity can 
be established from velocity tracking control if 
this type of control is available in the machine 
[6] and then the quaternion derivative can be 
computed. Otherwise, local estimation methods 
borrowed from CAGD may be implemented 
[26- 28] in order to compute the tangent at each 
quaternion. This is the type of approach that we 
propose in this paper. Basically, one can use the 
unit direction vector of the line that joins two 
quaternions qi-1 and qi+1 as the direction of the 
tangent vector ti at qi. Kinematically this means 
that the tangent vector points along the direction 
of the screw displacement between the positions 
represented by qi-1 and qi+1 [29, 30]. For the first 
and last quaternions, qo and qn, the tangent vector 
can be computed from the line that joins qo and 
q1, and qn-1 and qn, respectively, as depicted in 
figure 3. As far as the magnitude goes one can 

use the maximum angular velocity allowed 
by the machine motors as an upper bound and 
eventually fine tune it after the interpolation, if 
it is required.

Figure 3 Local estimation technique of the tangent 
vector at the junction points of the biarcs

The quaternions are assembled from the angles A 
and C of the CL data using equation 8. The time 
derivatives are computed by means of equation 
4, if the angular velocity is known at each tool 
position, or by the local estimation method 
aforementioned. The parameter interval for 
each arc may be attached to the sampling period 
of the controller. Here, we assume a uniform 
parameterization of the piecewise biarc curve. 
The value of α is found by solving equation 17. 
The weights of each quaternion biarc can be 
interactively adjusted by the motion designer 
in order to fine-tune the motion of the tool and 
this way improve the accuracy of the machining 
if required. The control quaternions of each 
biarc segment are evaluated using equations 19, 
20 and 21. After the control quaternions of the 
piecewise biarc curve have been obtained, several 
intermediate positions on each biarc segment can 
be evaluated by using equations 13 and 14; i.e. 
a piecewise line-symmetric motion interpolates 
the key orientations and approximates the actual 
motion of the machine. Equations 9 and 10 
provide reference values of joint displacement to 
the machine controller.

After applying the quaternion biarc interpolation 
method to the orientation data in table 1, describing 
the tool orientation at each cutter contact (CC) 
point, several intermediate orientations are 
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obtained, see figure 4. In this case a weight of 0.5 
and an angular velocity of 0.2 rad/s were assumed 
for all of the biarc segments. The plots of the joint 
displacements and C-space are shown in figure 5, 
which are smoother compared to the traditional 
piecewise linear interpolation used by CNC 

interpolators, even though the curves obtained are 
very close to the line segments. Figure 6 shows 
a closeup on a segment of the joint trajectories 
in C- space, where the smoothness claimed for 
the curves obtained from the biarc technique is 
evidenced. 

Figure 4 Line-symmetric positions interpolating ten 
key orientations; all weights equal to 0.5

Figure 5 a) Joint displacements b)C-space. The solid 
lines correspond to the piecewise linear interpolation 
and the dashed curves are obtained by the biarc 
technique. All weights equal to 0.5

Figure 6 Closeup on joint trajectories where the 
smoothness of the curves obtained by the biarc 
technique, dashed curves, is evidenced compared to 
the solid line segments

Figure 7 shows the motion generated when the 
weight was changed to 2. As expected, a slight 
change in the path of the motion is evidenced. 
Also, the plots of the displacements of the joints 
suffer changes as seen in figure 8. Nonetheless, 
the joint displacement curve is smoother than 
the piecewise linear one. The algorithm was 
implemented on a 1.50 GHz laptop using 
MATLAB. The computational time to generate 
the motion and the joint displacement curves of 
these examples was less than 2 s.

Table 1 Orientation data used in example

 CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9 CC10

A(º) 0 5.737 18.210 35.497 45.419 46.901 54.825 60.873 73.807  83.359 

C(º) 0 -5.946 -16.6741 -20.4189 -30.4049 -47.4576 -58.5542 -74.7468 -81.813 -86.7452 
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Figure 7 Line-symmetric positions interpolating ten 
key orientations; all weights equal to 2

Figure 8 a)Joint displacements b)C-space. All 
weights equal to 2 and compared to linear interpolation

Conclusions
Quaternion biarcs permit to interpolate a set of 
orientations by means of a piecewise quadratic 
curve constituted by arcs. Quadratic curves in 
the image space of spatial motions describe line-
symmetric motions so that the b-spline obtained 
describes a piecewise line-symmetric motion. 
The spherical line-symmetric motion achieved 
with this b-spline curve is 

1C  continuous which 
is a desirable feature for orientation interpolation 
in 5-axis machining of sculptured surfaces 
in order to avoid poor surface finish as in the 
traditional method of linear interpolation of tool 
orientation. Moreover, the biarc technique is a 
superior alternative since the discrete orientations 
are exactly interpolated. The computational 
efficiency and flexibility offered for fine-tuning 

of the piecewise line-symmetric motion makes 
it an appealing choice for motion interpolation. 
Moreover, since the method developed here 
directly interpolates the actual orientations of the 
tool, represented by quaternions, it is superior to 
the traditional C-space interpolation approach in 
the sense that the interpolation of the motion is 
accomplished in the cartesian space, enabling the 
designer to visualize, tune and modify the motion 
directly in the real three-dimensional space and 
not through a mathematical construction such 
as the C-space. Therefore, the method described 
in this paper is useful in CAD/CAM, robot path 
planning and computer graphics. 
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