
158

Implementing an composition architecture for an
online game software

Implementando una arquitectura de composición
para un software de juego en línea

Jaime Alberto Guzmán Luna*, Ingrid Durley Torres Pardo, Arlex David
Martínez

SINTELWEB research group, Computer Science Department. National
University of Colombia. Carrera 80 No 65 - 223 Bloque M8A. Medellín,
Colombia.

(Recibido el 2 de diciembre de 2010. Aceptado el 10 de noviembre de 2011)

Abstract

This paper presents architecture for Web service composition, in which a
plan of composition is constructed based on an agent planning, which can be
executed in a concurrent way during its composition in order to estimate the
following action to be executed instead of preparing a complete plan which
frequently would be invalidated. This feature is invaluable when it comes
to addressing problems in real time. Specifically we propose a test domain
online games software, called ENVIRO.

----- Keywords: Web architecture for Web service composition, agent
planning, problems in real time and online game software ENVIRO

Resumen

Este artículo presenta una arquitectura para la composición de servicios Web,
en la que un plan de composición se construye sobre la base de un agente
de planificación, que puede ser ejecutado en forma concurrente durante su
composición a fin de estimar la siguiente acción a ejecutar en lugar de preparar
un completo plan que con frecuencia será invalidado. Esta característica
es muy valiosa cuando se trata de abordar los problemas en tiempo real.
Específicamente se propone como un dominio de prueba un software de
juegos en línea, llamado ENVIRO.

----- Palabras clave: Una arquitectura de Composición de Servicios
Web, agente de planificación, problemas de tiempo real y software de
Juego en línea ENVIRO

 * Autor de correspondencia: teléfono: + 57 + 4 + 425 53 78, correo electrónico: jaguzman@unal.edu.co (J. Guzmán)

Rev. Fac. Ing. Univ. Antioquia N.° 61 pp. 158-169. Diciembre, 2011

159

Implementing an composition architecture for an online game software

Introduction
Web services composition has been widely
studied during the last years. One of the main
approaches to carry out this work comes from
Artificial Intelligence (AI) planning [1]. Today,
there are different tools available, among which
we can stress on [2, 3]. However, although these
applications work appropriately, it has been
identified that many of them are not capable
to jointly face several problems related to Web
context, such as: (i) It cannot be expected to
have all relevant information on the system local
knowledge base; for that reason, the planner,
when having incomplete information, will need
to collect some information with the purpose
of solving composition problem; (ii) For most
users there are limitations on the Web in relation
to the time the system can use to deliberate
before acting; and (iii) Web is a highly dynamic
world; then, an effect produced by a service is
not always known or predictable. In order to face
jointly problems mentioned above, this document
presents a service composition architecture
which allows focusing on a planning agent which
allows estimation of the following action to be
executed instead of preparing a complete plan
which frequently would be invalidated by the
environment dynamism. Under this approach,
planner is able to obtain a response (service to
be executed) in a limited interval of time and
handling the incomplete information related to
the Web. This feature is invaluable when it comes
to addressing problems in real time, specifically
we propose as a test domain environment for
games software, which is run from a finite set of
web services, previously stored in a repository.
Such services will be implemented in a plan of
composition, from which you can run online, a
custom action game (gathering resources). Decide
what action to build an entire change of plan
then must be repaired, is a feature that reduces
the time of composition almost instantaneously
responding to the requirements of a user player.

This paper is organized in the following way: The
following paragraph describes the architecture
composition. Then presents the modeling

languages used by the model. Of course is
illustrates the planning agent. Later, describes
game software as the test environment. Then is
evaluates the functionality of the architecture.
Finally, presents the conclusions.

Composition architecture
Proposed composition architecture is based on
the use of on-line planning techniques, which
bear in mind the environment concept. In our
case, the environment describes world status on
the Web, which can be observed and modified
through actions executed by a set of agents. In our
approach, the concept of agent [4], it we used to
refer to any phenomenon capable to alter the world.
An external agent is that phenomenon which can
act on the environment on which planning agent
does not have any kind of control. This lack of
control as well as the big diversity of external
agents make that study of these agents becomes
not very useful. However, changes produced
by external agents in the Web environment are
one of the main causes of execution failures of
services associated to plan actions that planning
agent detects when executing a plan.

Proposed planning agent’s characteristics are
based on already existing proposals, such as TCA
(Task Control Architecture) [5], 3T Three-tired
architecture [6] and Simplanner [7], which follow
the following design principles: (i) concurrence:
Several processes, such as environment
monitoring, execution, and planning are carried
out in a concurrent way; (ii) Reactivity of the
system is favored by an architecture organized
by levels, in which highest levels show a more
complex behavior and represent information with
a higher abstraction level.

Planning agent architecture, consists of three
main modules (see figure 1): (i) A translator of
OWL-S [8] specification to XSPDDL[9], which
translates initial domain and goal state ontologies,
together with service descriptions respectively
implemented in OWL [10] and OWL-S, in a
domain specification and its corresponding
planning problem in XSPDDL; (ii) a planner,

160

Rev. Fac. Ing. Univ. Antioquia N.° 61. Diciembre 2011

which according to this knowledge, tries to
find out which the best services (represented
by actions) to be executed are, in order to reach
objectives; (iii) an executor, which takes service
descriptions under a planning environment and
translates them into execution orders which can

be understood by existing actual Web services.
This executor is communicating with a service
repository specifically designed for the test
environment. Once success has been validated in
a service execution adds the results to their facts
base.

Figure 1 Planning agent architecture

The integration of the planning agent architecture
is carried out through the use of test environment,
named ENVIRO. The planning agent more
ENVIRO formed the INDYGO architecture.
ENVIRO, software game, is a game whose
features are represented in Semantic Web Services
(SWS). The state of the game is in the area or unit

objective and detailed description of the status of
units, buildings and items specific to the game map
(trees, civil buildings, solder etc.) this description
is taken from the information embedded in the
server via the command executed from the GUI
for a client. In developing the game we consider
two types of actions: (i) shares directly running

161

Implementing an composition architecture for an online game software

the SWS and (ii) composite actions require a plan
of composition to achieve the objective. This
software automatically transforms the objective
of the player (user) in a composition problem
defined by OWL-S ontologies.

Modeling languages
In the proposed architecture, one can distinguish
two basic languages to represent a composition
domain and services: OWL-s and XSPDDL.

Services with ontologies

Today, there are several proposals to implement
Semantic Web Services (SWS) [11]. Among
them, we can mention OWL-S, WSMO / WSML
[12], and WSDL-S [13]. In our architecture, it
takes a set of available OWL-S services, a domain
description consisting of OWL ontology and a
planning query as input. In the specific case of
the description of the domain, the ontology used
contains all types and instances that represent
values that make up the domain. Furthermore, it
contains the properties and their instances which
represent the state it is in when beginning the
composition.

In the case of the planning query, the agent takes
an ontology that resembles the domain but it
differs from the ontology of the description of the
domain in that it only contains instances of the
properties that describe the conditions that the
domain must have at the end of the composition.

In order to handle the problem of incomplete
information, when modeling OWL-S services,
we have included the concepts of effects which
change the state of the world and effects which
change the agent’s knowledge.

The first enable us to represent the change of
state in the Web World by executing a service
and the latter enable us to represent the agent’s
mental changes when executing a service without
altering the Web World. For this reason, in the
effects of SWS we use labels <knowledge-
effect> and <effect> for identifying expressions
that represent effects of knowledge and effects

of change the world. These expressions for
reasons of convenience have been implemented
using XSPDDL, for which we have extended the
OWL-S to distinguish the use of such expression.

XSPDDL world modeling

As most classical planners, the planning module
of agent needs a description of both domain and
problem through a modeling language. For that
purpose, we defined XSPDDL, we have defined
a XSPDDL, which is an XML-Schema to which
can be written in XML, planning problems PDDL
1.2 specification [14].

In order to represent the incomplete information,
a tri-value logic has been used about the set of
literals which define a state. If planning agent
knows the truth value of a literal, such literal
should explicitly appear on the state specification.
If such literal does not meet such state, it should
be preceded by the clause not. On the other hand,
if agent does not know a specific fact, it should
not appear on the status specification. Proposed
representation, however, is compact, thus
avoiding making the tedious task of listing all
unknown facts on a state. To model the effects of
world change and the effects knowledge change in
the SWS, we have chosen to implement two types
of actions related to one same service within the
planning component. The first is called Action,
which represents a service with world changing
effects. The second is called Sensing, which
represents a service with knowledge changing
effects. This avoids making large changes to the
PDDL syntax. With the purpose of modeling the
dynamic environment of the Web in our planner
because PDDL does not allow representing non
deterministic actions (actions which applied on
a same state, can produce different results), our
agent’s planning mechanism XSPDDL has the
following features: (i) Planner does not explicitly
manage indeterminism for it, all actions are
considered deterministic actions, for this reason,
planner only works with expected effects in its
actions. (ii) Indeterminism is handled during
the execution: executor verifies the real result

162

Rev. Fac. Ing. Univ. Antioquia N.° 61. Diciembre 2011

of each service execution through monitoring
mechanism. If a non-expected result is found,
planner repairs the plan to adapt it to the new
situation.

Translating OWL ontologies to XSPDDL

Web service ontologies, initial ontology of
domain and goal ontology of planning query are
translated to a domain and a problem under AI
planning approach. This requires transferring
specifications of ontologies to XSPDDL. The
Class and Properties included in OWL ontologies
are mapped to Types and Predicates of XSPDDL.
Web services are mapped to XSPDDL Actions,
in which the model of an action represents a Web
service. Thus the main relations of conversion
among OWL-S in XSPDDL are summarized in
figure 2.

Figure 2 OWL-S to XSPDDL Conversion

Planning agent
A planning problem P = (O; I; G) is a triplet
where O is the group of operators, I is the initial
state, and G as the goals to be accomplished. To
solve this, in the context of the tree problems
to be solved (dynamic environment of the Web,
incomplete information and time restrictions)
proposed planner’s algorithm is provided with
four steps proposed planner’s algorithm is
provided with four steps: the Pre-process, relaxed
planning graph, generation of Mono-objective
plans and ordering of plans. At the end of the last
step of proposed algorithm, the following action
to be executed is selected among all of the actions
which compose each one of mono-objective
plans. Then, specification of such actions is sent
to the executor for its corresponding execution.
This process is repeated continuously until the
user decides to stop the planner’s execution or if
the planner achieves all objectives.

Pre-process

In this step, information about the problem and
domain, specified through XSPDDL in files
generated by OWL-S to XSPDDL converter, is
processed and organized. This step is divided
in three tasks: (i) verification of domain and
XSPDDL problem through a parser; (ii) analysis
of possibilities for reaching objectives, in which
all possible actions which lead to a satisfaction
state are generated, (iii) data structure to store all
the previous information.

Relaxed Planning Graph (RPG)

The RPGs, provides necessary heuristic
information for the construction of plans [15].
In our agent, we have modified traditional RPG,
because we should have in mind the partial
knowledge of Web.

In our agent’s RPG, due to the tri-valued logics
it uses, literal levels will be called propositional
levels because these will have logic propositions
(not literal ones). The first level L0, will have
all logic propositions which are satisfied in S0.

163

Implementing an composition architecture for an online game software

Actions levels At have all actions, which positive
and negative pre-conditions are found in level Lt.
The following level Lt+1, extends Lt with positive
and negative effects of actions At. A propositional
level can have two propositions which represent
the same literal, one in a positive way and the

other one in a negative way. In this way, in t steps
of time, we can obtain that a Lt will then have Pi
and ¬Pi propositions. The main difference with
traditional RPG is that the RPG expands according
to cost all possible actions until accomplishing the
objectives (see figure 3 lines 15 - 36).

1. Second expansión RPG until reaching all objectives
2. while $ g ∈ G / cost (g) = ∞ do
3. // Cálculo de la lista de acciones de sensorización
4. L sens = a ∈ At / $ li ∈ Leff (a) ∧ (cost (li) = ∞ ∧ cost (¬ Li) = ∞)
5. if Lsens = 0, then fail endif
6. // Acción de sensorización de menor costo
7. a = argmín (cost_reach (ai) + cost (ai)), ∀ ai ∈ Lsens

8. // Cálculo de los nuevos efectos que produce a en el RPG
9. New_Eff = li U li, ∀ li ∈ Leff (a) / cost (li) = ∞ ∧ cost (¬ li) = ∞)
10. // Inserción de los efectos de a
11. t = cost_reach (a) + cost (a)
12. cost (p) = t, ∀ p ∈ New_Eff, k ≥ 1
13. Lk = Lk U New_Eff, k ≥ 1
14. New_Prop = 0
15. //Expansion RPG until reaching all objectives
16. while $ g ∈ G / g ∈Lt do
17. // Niveles de acciones
18. At = { a ∈ A / Lprec (a) ∈ Lt) U { a ∈ A / Lprec (a) ∈ Lt
19. cost_reach (a) = Σ p ∈ Lprec (a) Cost (p) ∀ a ∈ At

20. // Costo de los efectos de las acciones de At
21. for all pi ∈ Leff (a), a ∈ At do
22. new_cost = mín (cost_reach (ai) + cost (ai)), ∀ ai ∈ At / pi ∈ Leff (ai)
23. cost (pi) = mín (cost (pi), new_cost)
24. end for
25. // Nuevas proposiciones alcanzadas
26. New_Prop = New_Prop U Leff (a) - Lt ∀ a ∈ At
27. if New_Prop = 0, then fail endif
28. // Siguiente nivel proposicional
29. next_t = mín (cost (p)) ∀ p ∈ New_Prop
30. Lnext_t = Lt U { p ∈ New_Prop / cost (p) = next_t }
31. New_Prop = New_Prop - Lnext_t
32. t = next_t
33. endwhile
34. call expansión RPG2
35. endwhile

Figure 3 RPG algorithm with sensing actions Effects

164

Rev. Fac. Ing. Univ. Antioquia N.° 61. Diciembre 2011

One of the main objectives of this proposal is
to work with incomplete information about
environment, so sensing mechanisms are
required. To accomplish this, we distinguish
normal actions (a) from sensing actions (a) and
modify the RPG.

Consequently, if RPG is expanding, sensing
actions in the graph are included, but not adding
its effects in propositional levels. If in this first
expansion, all propositional objectives of the
problem are achieved, then, it is not necessary to
acquire new information. If this is not the case, it
is necessary to include possible effects of sensing
actions in the graph. In order to accomplish this,
a second expansion of RPG is necessary using
algorithm in figure 3 (lines 1 – 14). If after this
process, any objective of the problem becomes
unreachable, it does not have a solution.

Calculation of mono-objective plans

The agent planning uses objectives decomposition
technique, where the algorithm calculates, in a
concurrent way, a Pi plan, separately, for each one
of the propositional objectives of the problem (gi∈
G). The calculation of each Pi plan is carried out
in an incremental way: an initial plan (possibly
incomplete) is constructed and is refined with time.
This allows the interruption of the process at any
moment and gives the planner an anytime behavior.
The Pi plan refining ends when a valid plan is
reached, supposing that there are not unexpected
situations, (δ = 0). Pi plans are constructed in a
regressive way, not bearing in mind numerical pre-
conditions of the actions. Initial plans guaranty
that the first action is executable in the current
status (exec(first(Pi), S0) = V), this allows that these
actions can be a possible answer from the planner.

Many times, a selected Pi plan, may result not
valid when being executed due to: (i) there is an
action (Web service), which does not work (afail)
because it has propositional pre-conditions which
are not satisfied and (ii) there is an action which
dose not work (afail) which only has not-satisfied
numerical pre-conditions. For all this, after each Pi
is calculated, there comes a refining phase which is

carried out while the executor does not requires an
action, reports an unexpected situation or reaches
a valid plan.

Ordering of plans

In this stage, it is possible to find several Pi plans,
which are not totally executable, for each one of gi
objectives. When the executor requires an action,
the refining stage is stop. The action which returns
to the executor is the first action of one or more
of the Pi plans. To reach this, we establish order
relations between plans Pi à Pj, in which Pi and
Pj, are two mono-objective plans. After applying
the respective processes that evaluate the previous
criteria, the planner chooses one of the plans which
has already been ordered. The first action anext of
the chosen plan is sent to the executor. The planner
must then update its believes with the effects of anext,
and then recalculates anext, which the planner then
sends to the executor when it requests it once more.

Game software

The distributed architecture of the test environment,
software game “ENVIRO” has as its basic
components: (i) a knowledge base of the domain
itself, (ii) a server (iii) a filter action, and (iv) an
interaction module with the user (see figure 4).

In the knowledge base stores all the information
that is necessary for the development of the game
(location of units, buildings, troops and resources).
The server is responsible for managing all the
information in the knowledge base, including
changes to the outturn of the game commands.
The filter action is responsible for filtering the
direct orders, under the command of the game; of
indirect commands, which correspond to complex
objectives (gathering resources, repairing tanks,
buy game software) that require a plan composition.
And finally, a module of user interaction and
core of the testing environment, which provides
behavior and tools for searching information
about the world and the corresponding game state
display presented to the player (Data Handler +
GUI) . When a player gives a hint, the software
automatically generates a problem of composition,
as defined in ontologies (initial and final).

165

Implementing an composition architecture for an online game software

Figure 4 Enviro GUI

This problem is reported to the planning agent
through its executor, to be solved. After a period
of time within the architecture, ENVIRO reviews
and compares the facts as the performer with its
base of knowledge, such a comparison is done
periodically until the composition plan actions
executed one by one, are been implemented in
its entirety. If as a result of this comparison are
different facts, ENVIRO updates its knowledge
base, to continue the development of the game.
This process is performed many times as the
player determines his goals.

Results
The purpose of these experiments is to assess the
efficiency of our approach, i.e., the possibility
of generating translations, parsings, instancings
and executions in the smallest possible time. We
ran our experiments on an Intel Pentium D 940
(3.2GHz Dual-Core), OCZ DDR2 2GB 800MHz
Dual-Channel, JVM 1.6.0_13 64 bit, and under a
Windows operating system.

The typical problems that planning aims to address
and that are used in the international planning

competition are so called closed problems in which
the number of objects in the world remains constant.
In ENVIRO game, however, creating objects is key.
A typical game starts with a small number of units
and a limited amount of resources. Then, those units
can create structures that can produce new units,
mine resources, or perform other functions. But one
important aspect of this game is the buy “objects”,
for this specific case the user’s problem required
purchased through the Shopping Domain Service a
weapon to advance in the game. This allows us to
generate an idea of the efficiency of our proposal.
Remember that this software automatically
transforms the Objectives of the player (user) in a
composition problem defined by OWL-S ontologies
(figure 5). The example domain described here is
intended for the purchase of software a weapon
(items) through Web services (ShopingDomain)
and consists of three Web services: (i) to determine
if the item exists for this vendor (In Catalogue
Services) (ii) obtain detailed information about the
item (GetIteminformation) and (iii) to purchase the
Item (BuyItem). Importantly, if the cumulative score
in the game towards the player was not high enough,
the weapon was likely not available in the catalog of

166

Rev. Fac. Ing. Univ. Antioquia N.° 61. Diciembre 2011

the seller. Otherwise, the catalog would show the
entire set of items, weapons, shields and other items
according to the player’s score were available for

purchase by the player. The first assessment is to list
various service providers to purchase are recorded
in our game.

Figura 5

Figure 5 Composition problem defined by OWL-S shopping ontology

Now it will consider the objective described in
table 1, there are states that “the customer owns the
item 12303,” where the item 12303, corresponds
to the coding of the weapon. The case has been
solved in four different ways, which are listed in
table 1. The cases are different instances of the
situation described above, with differences in the
availability of the product with item 12303. In
case number 1, the item is available in the store
service_004, but not in the store service_001,
in case 2, the item is only available to buy in
the store service_001 in case 3, the item is not
available in any store and if number 4, both stores
have availability of the item.

Table 1 lists the first column on the number
case; columns 2 and 3 indicate which stores
have availability. Column 4 lists the number
of web services implemented under the plan.
Column 5 indicates the composition plan metrics
achieved, column 6 records the length of the
plan until they achieved the objectives or until it
notifies the scheduler itself unreachable. Finally,
column 7, records each of the services has been
implemented within the plan, indicating which of
them the feedback has coincided with a “false”,
typified by the executor as a kind of Fail.

By way of example shows first the case 2, for
which INDYGO, hopes to buy in the store
service004, however when running the respective
getiteminformation_service004T information
service, which investigates the availability of the
item turns out to be false, which fail it notifies the
planning mechanism, who immediately receives
the report, looking for a new alternative plan from
the current state of knowledge (planning agent),
enabling the customer to meet the precondition
to purchase the item 12303. Therefore, included
in the new plan, the services provided by the
store service001, indicating that the service
getiteminformation first run, which confirms
the correctness of its effects, allowing you to
continue with the rest of the plan to research the
goal. The example of case 3 corresponds to the
full implementation of all possible services from
both stores that achieve the goal.

Although the table does not allow registering
the full name of the service instances executed
(due to space limitations), the scheme never
fails to be satisfactory, as expected since none
of the two stores offer product availability
(see columns 2 and 3 of table 1). However, in
all cases, the information services have been

167

Implementing an composition architecture for an online game software

executed successfully, but his answer always
correspond to false, INDYGO, shows that
correctly follows the search for alternatives,
whose instances match the data of the objective.
Although apparently runs several times the service

op_3_getiteminformation004service_12303, this
corresponds to different instances of the same
example: 1) _TitleData_build1 and 2) _TitleData_
soldier. Finally, when the user (player) executed
all plan

Table 1 Execution the action for buy item (weapon)

C
as

e

D
om

ai
n

1.

Se
rv

ic
e0

04

D
om

ai
n

2.

Se
rv

ic
e0

01

N
o.

 o
f W

S
ex

ec
ut

ed

M
et

ric
a

Le
ng

th
 a

t p
la

n

Plan

1
Item

available
Item not
available

1 3 2
1.op_3_getiteminformation_services004_item12303
2.op_11_buyitem_services004_item12303

2
Item not
available

Item
available

2 3 3
1.op_3_getiteminformation_services004_item12303 (FAIL)
2. .op_3_getiteminformation_services001_item12303
2.op_14_buyitem_services001_item12303

3
Item not
available

Item not
available

21 16 23

1.op_3_getiteminformation_services004_item12303 (FAIL)
2. op_9_getiteminformation_services001_item12303 (FAIL)
2.op_5_register_services004_item12303(FAIL)
3. op_11_register_services001_item12303(FAIL)
4. op_3_getiteminformation_services004_item12303 (FAIL)
5….
24. op_3_getiteminformation_services004_item12303 (FAIL)

4
Item

available
Item

available
1 3 2

1.op_3_getiteminformation_services004_item12303
2.op_11_buyitem_services004_item12303

Another important aspect to consider when
dealing with real problems and online game
software it’s represented in the time. The table 2,

records the time in seconds of CPU consumed in
each process of INDYGO, for exactly the same
four cases in table 1.

Table 2 Time of composer mechanism

No. Case
No. SW of

information
executed

Translation
Time
(msg)

Planning Time
(msg)

Execution
Time
(msg)

Concurrent
planning and

execution

1 1 2.340 0.031 0.171 9.456

2 2 2.215 0.047 0.218 13.025

3 21 2.293 0.047 0.390 119.070

4 1 2.340 0.031 0.156 9.885

168

Rev. Fac. Ing. Univ. Antioquia N.° 61. Diciembre 2011

The final results are shown in the figure 6. As
mentioned above, when information of availability
of the item turns out to be false, the scheduler has
to discard the plan currently being followed and
calculate a new one to repeatedly select another
anext possibly to assess the availability to run true,
and these correspond anext to different instances of
the same service. The cost of treating this type of
“unexpected events” associated with incomplete
information it nevertheless represents a very low
increase in the planning process, since the values
of time planning the curve tend to be constant.

0

0,5

1

1,5

2

2,5

0 10 20 30

Ti
em

po
 (S

eg
.)

No WS executed

Buyweapon
Translator

Planning

Execution

Figure 6 Composition time

Conclusions
An architecture for Web service composition
has been proposed, which allows Web service
composition described in OWL-S through the
use of an OWL-S to XSPDDL translator, and
planning agent which is based on a heuristic
planning algorithm, designed to work in
dynamic environments in a concurrent way
with the executor. Planning agent includes
some characteristics, not very common ones,
for working in real domains. Since it supports
sensing actions, it carries out planning with
time restrictions; it uses number functions, it
bears metrics in mind in order to optimize the
problem and handles uncertainty. The basic idea
is to accomplish plans, for each objective level
separately. The test environment is a software
game named ENVIRO that allows simulated
several game behaviors with the composite

SWS, which has shown its great possibilities
for this kind of problems. The architecture and
integration of ENVIRO with the planner agent
have been described in the paper.

As future work, we propose to extend the
expressiveness of agent using quantification
operators to handle composition queries more
complex. Another feature that we intend to
improve in the agent is to minimize the fails in
the resolution of a composition.

Ackowledgements
This work is partially funded by the Doctoral
Thesis “Multi-Agent Model of Concurrent
Planning and Execution for the Semantic Web
Services Composition in Partially Observable
environments”.

References
1. M. Ghallab, D. Nau, P. Traverso. Automated Task

Planning. Theory and Practice. Ed. Morgan Kaufmann.
Trento (Italy). 2004. pp.449 -461

2. OWL-XPlan online: http://projects.semWebcentral.
org/projects/owls-xplan/. Accessed in November 2010.

3. J. Peer. A POP-based Replaning Agent for Automatic
Web Service Composition. The Semantic Web: Research
and Applications. Second European Semantic Web
Conference, Heraklion. Crete, Greece. May 29 - June
1, 2005. pp. 1-14.

4. E. Sirin, D. Martin, B. Mark, M. Drew McDermott, S.
McIlraith, P. Massimo, S. Katia, M. Deborah, S. Naveen
Srinivasa. “Bringing Semantics to Web services with
OWL-S”. World Wide Web Journal Special Issue on
Web Services: Theory and Practice. 2006. pp. 26-40.

5. C. Pelachaud, J. C. Karpoutzis, D. Pelé, Martin, G.
Chollet. Intelligent Virtual Agents. 7th International
Conference. IVA 2007. Paris, France. September 17-
19, 2007. pp. 47-53.

6. R. P. Bonasso, R. J. Firby, E. Gat, D. Kortenkamp, D.
Miller, M. Slack. “Experiences with an Architecture for
Intelligent, Reactive Agents”. Journal of Experimental
and Theoretical Artificial Intelligence. Vol. 9(1). 1997.
pp. 237-256.

7. O. Sapena, E. Onaindía. “Handling Numeric Criteria
in Relaxed Planning Graphs”. Advances in Artificial
Intelligence. IBERAMIA. 2004. pp 114-123.

169

Implementing an composition architecture for an online game software

8. OWL-S Coalition: OWL Web Services 1.1. Online:
http://www.daml.org/services/owls Accessed in
November 2010.

9. XSPDDL. Online: http://67.223.239.230/xspddl.
Accessed in Octuber 2010.

10. M. Dean, G. Schreiber, eds. OWL Web Ontology
Language Reference, W3C Recommendation. Online:
http://www.w3.org/TR/owl-ref/. Accessed in february
2004.

11. C. Bussler, A. Maedche, D. Fensel. Conceptual
Architecture for Semantic Web Enabled Web Services.
Memories Proceedings of the First International
Semantic Web Conference on the Semantic Web. June
9 de 2002. pp 12-18

12. WSML. Working Group: Web service Modeling.
Online: Language. http://www.wsmo.org/wsml/.
Accessed in November 2010.

13. WSDL-S. Web Service Semantics WSDL-S, online:
http://lsdis.cs.uga.edu/library/download/WSDL-SV1.
pdf. Accessed in Octuber 2010.

14. PDDL: Planning Domain Definition Language online:
http://www.ida.liu.se/~TDDA13/labbar/planning/
2003/writing.html. Accessed in June 2010.

15. S. J. Russell, P. Norvig. Artificial Intelligence: A
Modern Approach. 2nd ed. Ed. Pearson Education.
Spain. 2004 pp 37-42.

