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Abstract

A vector diagram of Maxwell’s time-harmonic equations in homogeneous 
isotropic media is derived and proposed so as to include chiral media. The 
diagram may be used to obtain a number of common relationships between 
fields, potentials and source by equating appropriate components of the vectors 
in it. The construction of the diagram is based on the formal similarity between 
many theorems of vector calculus and those of vector algebra. Construction 
of the diagrams for two different gauge choices, Lorentz and Coulomb’s 
gauges, is explained in detail and some of equations which can possibly be 
derived from one of the diagram are presented. In this work this approach is 
applied to a numerical calculation of a two-dimensional chiral slab. This work 
could be a tool for designing Wireless Communications Systems devices, in a 
spectral range from 1 GHz to about 60 GHz, for example, duplexers based on 
power splitters and a rear frequency selective filtering though the use of SRR/
CSRR (splits ring resonator)/ (coplanar SRR) cells. The circuit devices using 
SRR/CSRR have a very small size, due to its operations in a sub-lambda 
system. Also this work may be useful to discuss the design, among others, of 
a circularly polarized printed patch for S- Band and different types of filters 
and others devices using metamaterials and Coplanar Wave Guides.

----- Keywords: Chiral media, Maxwell’s equation, vector diagram, 
wireless communications devices
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Resumen

En este trabajo se deriva un diagrama de las ecuaciones de Maxwell, en medios 
homogéneos isotrópicos, tal que pueda incluir un medio quiral. Este diagrama 
puede ser utilizado para obtener las relaciones entre campos, potenciales 
y fuentes, relacionando en forma adecuada las componentes vectoriales 
presentes en el diagrama. La construcción de este diagrama está basada en 
la similitud formal entre muchos teoremas del cálculo vectorial y aquellos 
del algebra vectorial. Se explica, en detalle, la construcción del diagrama 
para dos diferentes calibres, el de Lorentz y el de Coulomb, y se presentan 
algunas ecuaciones que pueden ser obtenidas del diagrama. En este trabajo, 
este enfoque, se aplica al cálculo numérico bidimensional de dos láminas 
quiral. Este trabajo puede ser una herramienta posible de usar en el diseño 
de dispositivos utilizados en sistemas de comunicaciones inalámbricas, en el 
rango espectral desde 1 GHz hasta aproximadamente 60 GHz, por ejemplo 
duplexores basados en divisores de potencia y filtraje posterior de frecuencia, 
utilizando SRR/CSRR (resonador de anillos divisores)/ celdas coplanares 
SSR. Los dispositivos de circuito que utilizan SRR/CSRR tienen un tamaño 
muy pequeño, debido a que operan en sistemas sub-lambda. Este trabajo 
también puede ser útil para el análisis del diseño, entre otros, de parches 
impresos para la banda S y para la discusión de diferentes tipos de filtros y 
otros dispositivos que utilicen metamateriales y guías de onda coplanares.

----- Palabras clave: Medio quiral, ecuaciones de Maxwell, dispositivos 
de comunicaciones inalámbricas

Introduction
Many modern satellite and terrestrial point to point 
communication systems use circular polarization 
(CP) wave polarization in order to maximize the 
polarization efficiency component of the link 
budget. The channel capacity of a communications 
link can be doubled in a polarization diversity 
system achieved by the simultaneous generation 
of orthogonal linear field components. For many 
communication systems especially in the case for 
satellite and ground station antennas, operation in 
circular polarization mode is preferred , since it 
removes the need to continuously align the two 
apertures, which otherwise would be required 
to maximize the receiver power. In addition, CP 
signals are not subject to the Faraday rotation 
effect, which causes the linear field vectors to 
rotate as a consequence of interaction with static 
magnetic fields along the propagation path [1]. 
The theory exposed here can be adequate to study 
this problem.

Design of dual and circular polarization 
microstrip antennas demands precise control of 
the individual radiated polarizations. Circular 
Polarization can be obtained when the two 
orthogonal modes are excited with equal power 
signals and in phase quadrature (90° out of phase 
at the center frequency). These modes may be 
excited in a number of ways, for example, the 
excitation can be done through reactive splitters 
(using difference in line lengths), isolating 
splitters (such as branch line, Wilkinson, hybrid 
ring) or degenerate mode single feed. In this single 
feed patch, its asymmetry excites the orthogonal 
modes. It is found that the performance is very 
similar to the reactive splitter fed patch with the 
axial ratio degrading with frequency away from 
resonance, while the input matching remains 
acceptable [2]. 

Also, using a single frequency [a continuous 
laser beam] it should be possible to produce a 
pure curl state by focusing at 90º a circularly 
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polarized Gaussian beam [3]. Unfortunately, 
today commercial objectives permit one to 
focus a beam at no more than 70º-80º. However, 
inputs can come from spatial light modulators or 
metamaterials. For a pulsed laser, things are more 
challenging because a very large light spectrum 
is nee ded — we are speaking of a pulse of a few 
attoseconds; however, it may still be feasible.

Since knotted light beams have both beamlike 
properties and unique unexplored properties, 
they may find applications in many different 
fields. These could include applications in 
plasma confinement, atomic particle trapping, 
manipulating cold atomic ensembles, and 
generating soliton-like solutions in nonlinear 
media. “In trapping colloidal particles, for 
example, there is a growing interest in exploring 
the possibilities that ari se when the full three-
dimensional structure of focused beams is 
considered. “In particular, there is interest in 
the possibi lity of the optical force having a non-
conservative component, which arises when the 
curl of the field of force exerted on the particle by 
the light is non-zero. While not force-field curl 
ei genstates, the building block of the beams we 
consider have electric and magnetic fields that 
are curl-eigenstates. It would be interesting to 
carry this structure over to the force-field. Ano-
ther potential, though at this stage speculative 
application lies in plasma physics”. These 
problems may be studied with our approach 
when the Maxwell’s equations give a Beltrami 
equation when the electric field is parallel to the 
magnetic field.

The idea of having knots in light as such is very 
exciting and could lead to many applications – 
maybe it is still too early to say exactly what 
kind of applications. Some day, if we were able to 
effectively create and manipulate knots of light, 
maybe we could speculate that there could also 
be a way to store and transform information in 
this way. Maybe we could develop some very fast 
computer memory or use them in cryptography 
for sending encrypted information. Too early to 
say, but the possibilities are definitely there.

The idea of representing Maxwell’s time-harmonic 
equations in homogeneous isotropic media by 
vector diagram as put forward by Wilton [4] and 
by S. Uckun [5] deserves consideration. All the 
common relations between field and potential 
quantities implied by Maxwell’s equations are 
represented by a diagram. It is started that the 
diagram not only illustrates Maxwell’s equations, 
but also many of the methods for constructing 
diagram are based on the formal similarity 
between many theorems of vector calculus and 
those of vector algebra.

An isotropic chiral medium is a macroscopically 
continuous medium composed of equivalent 
chiral objects that are uniformly distributed and 
randomly oriented. A chiral object is a three-
dimensional body that cannot be brought into 
agreement with its mirror image by translation 
and rotation. An object of this sort has the property 
of handedness and must be either left-handed or 
right-handed. An object that is not chiral is said 
to be achiral, and thus all objects are either chiral 
o achiral. Due to their novel properties and wide 
applications in microwave and radar engineering, 
chiral media has been undergoing extensive 
research during the last years. That is why 
this study aims to cover chiral medium for the 
representation of Maxwell’s equations in vector 
diagram form. In a chiral media a cross coupling 
between electric and magnetic filed exists. Thus, 
the vector diagram has vectors along all three 
coordinate axes where as the vector diagram 
presented by Wilton [3] for achiral media has 
vectors only in one plane with H vector normal 
to it.

Vector diagram construction
Assuming ejωt time dependence, Maxwell’s 
time-harmonic equations [5, 6] for isotropic, 
homogeneous, linear media are: 

 jω∇× = −E B  (1)

 jω∇× = +H D J  (2)
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 0∇ ⋅ =B  (3)

 ρ∇ ⋅ =D  (4)

Chirality is introduced into the theory by defining 
the following constitutive relations to describe 
the isotropic chiral medium [5]

 j Tε ωε= +D E B  (5)

 

2 21 ok T
j Tωε

µ
−

= +H E B  (6)

Where the chirality admittance –ωeT indicates 
the degree of chirality of the medium, and the 
e	and m are permittivity and permeability of the 
chiral medium, respectively. Since D and E are 
polar vectors and B and H are axial vectors, it 
follows that e	 and µ are true scalars and –ωeT 
is a pseudoscalar. This means that when the axes 
of a right-handed Cartesian coordinate system 
are reversed to form a left-handed Cartesian 
coordinate system, –ωeT changes in sign whereas 
e	and m	remain unchanged.

For a graphical representation of the above 
relationships, following Wilton’s procedure [3], 
let us assume vector-differential operator, ∇ is 
an ordinary vector and treat the divergence and 
curl operations in equations to as ordinary scalar 
(dot) and vector (cross) products, respectively. 
Equation implies that ∇ is perpendicular to B and 
the vector ∇×B must be perpendicular to both ∇ 
and B. 

As shown in figure 1, three transverse coordinate 
axes are chosen as ∇, from equation (1) B = –∇ 
× E/(jω) and, ∇ × B/(jωeµ)	=	∇	×	∇	×	E/k2 where 
k2 = ω2.eµ

Since ∇ B = 0 always, this conditions will hold 
identically if B is expressed as the curl of a vector 
potential A since the divergence of the curl of a 
vector is identically zero. Thus

 = ∇×B A  (7)

and A must be perpendicular to both ∇ and B 
and lie in ∇ and ∇ × B plane. However, A is not 
unique since only its components perpendicular 
to ∇ contribute to the cross product. Therefore, 
∇·A, the component of A parallel to ∇, must be 
specified. The curl equation for E, as in equation 
(1), and equation (7) give ∇ × (E + jωA) = 0 where 
the quantity in parentheses should be parallel to 
∇ and the curl of the gradient of a scalar function 
φ is identically zero; so the general integral of the 
above equation is E + jωA = –∇φ or

 jω φ= − − ∇E A  (8)

As shown in figure 1. 
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Figure 1 Diagram of the full Maxwell System for a 

chiral media with Lorentz gauge,  

Following the Uckun’s approach [5], we 
substitute equation (7) into equation (6) having

 

2 21 ok T
j Tωε

µ
−

= ∇× +H A E  (9)

Substituting equation (9) and equation (5) into 

equation (2) gives 

 
placing the 

value of ∇×E from equation into the above equation 
2

2 2 2 2 2 2
2

1 1 1o o o

T
j

k T k T k T

µω ε ωµε µ∇×∇× + = +
− − −

A B E J  using 

the vector identity ∇×∇×A = ∇(∇·A) – ∇2A 
enables us to write the above equation as 

and using equation (8)
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2 2 2

2 0
2 2 2 2 2 2 2 2
0

2 ( ) ( )
1 1 1 1o o o

k T T
j

k T k T k T k T

ω µε ω µε φ µ∇ + + ∇× = ∇ ∇ ⋅ − −
− − − −

A A A A J  (10)

Here ∇·A is arbitrary, so in order to specify ∇·A, 
for unique A, we may choose

 
2 21 o

j
k T

ωµεφ∇ ⋅ =
−

A  (11)

And eliminate the term in parentheses. The 
choice in equation (11) is known as Lorentz 
gauge. Then equation (10) will be simplified to

2 2
2 0

2 2 2 2 2 2
0

2 ( )
1 1 1o o

k T

k T k T k T

ω µε µ∇ + + ∇× = −
− − −

A A A J  (12)

Divide both sides of equation (12) by 
2 2

( )
1 o

j
k T

ωµε
−

 
and reorganize it to get

2
2 2 1

(1 ) 2 ( )ok T j j
j j

ω ωβ
ωµε ωε

∇− = + ∇× −A
A A J  (13)

See figure 1. 

The difference between our approach and the 
Uckun’s procedure [5], is that we take the chiral 
media characterized by ( )ε β= + ∇×D E E  
and ( )µ β= + ∇×B H H . In this form we can 
obtain the spatial parallel condition between B
and E where the main equation is like a Beltrami 
equation which is important for the numerical 
simulation. 

Placing the value of B from equation (1) 
into equation (5) D = e(E + β∇×E) will 
be obtained. Placing the value of H, from 
equation (6), and D into equation (2) will give 

2 21
( ) ( )ok T

j T jωε ω ε εβ
µ

−∇× + = + ∇× +E B E E J  

by rearranging this equation

2 2(1 ) 2ok T
j j

β
ωµε ωε

∇×− = + ∇× +B J
E E  (14)

will be obtained as shown in figure 1. In this 
figure we put 2 2

0/(1 )k Tµ µ→ − .

Taking divergence of equation (5) and using 
equations (3) and (4) in it

 ρ ε= ∇ ⋅E  (15)

Will be derived. To find the projection of E onto 
∇, from equation (15) ∇· E = ρ / e, take the 
gradient of both sides and divide by scalar value 
∇2 to normalize ∇ to a unit vector. So 

 2 2

( ) ρ
ε

∇ ∇ ⋅ ∇=
∇ ∇

E
 (16)

Similarly, getting gradient of both sides 
of equation (11), using the vector identify 
∇×∇×A+∇2A for ∇(∇·A) and normalizing by ∇2

 2
2 2

jw jw k
φ∇×∇× ∇+ =

∇ ∇
A

A  (17)

will be obtained as parallel component of A to ∇ 
coordinate.

By using equations (8), (13), (14), (16) and 
(17), the vector diagram of Lorenz gauge can 
be completed as shown in figure 1, where all 
Maxwell’s relations and potential quantities 
appear.

Now let us examine derivation of some relations 
from the diagram. For example, it is seen that the 
component of E and J/(jωe) parallel to ∇ must be 
equal and apposite. By taking the divergence of 
equation (14) and using ∇·E = ρ/e can be shown 
that

 
1

j

ρ
ωε ε

∇ ⋅ = − ∇ ⋅ =E J  (18)

Taking the gradient in both sides of equation (18) 
and dividing it by scalar value ∇2 will given the 
same value as equation (16) with opposite sign. 
From the right side of equation (18) it is seen that
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1

jw
ρ = − ∇ ⋅J  (19)

This is the known continuity equation. Since the 
divergence of the curl of any vector is identically 
zero, the divergence of equation (2) yields  
0 = jω∇·D + ∇·J. Using equiation (4) convert this 
immediately into continuity equation as, expected. 
Again, as seen in figure 1, 2β∇×E and –jω2β∇×A 
are equal and opposite vectors. From equation (8), 
taking curl of both side and using the vector identity 
∇×∇φ = 0 will show that

 2 2jβ ω β∇× = − ∇×E A  (20)

as expected. By using the vector calculus a few 
possible equations from the vector diagram can 
be written as follows

2 22 (1 ) 0ok T j
j j

β φ ω
ωε ωµε

∇×∇× + − − − ∇ − =J B
E A  (21)

 2
2 2

0j k
φω φ∇×∇× ∇− − − ∇ =

∇ ∇
A

E  (22)

 (23)

 (24)

For example, adding equations (13) and (14) side 
by side and using equation (8) will give equation 
(24) which shows the correctness of the equation 
derived from the diagram 1. Instead of Lorenz 
gauge we can choose Coulomb’s gauge.

 0c∇ ⋅ =A  (25)

In equation (10) so that it will take the form 

 where the 

subscript ″c″ is used it indicate Coulomb’s gauge. 
Using equation (8) and (20) in the above equation

2
2 2(1 ) 2c
ok T

j j
β

ωµε ωε
∇− − − ∇× = +A J

E E  (26)

will be obtained. Placing the values of 
equations (5) and (6) into equation (2) will give 

2 2(1 )
( ) ( )ok T

j T j j Tωε ω ε ωε
µ

−∇× + = + +E B E B J
 

and value of ∇×E from equation will give 

2 2(1 ) 2ok T j
j j

ωβ
ωµε ωε

∇×− + = +B J
B E .

Combining these equations with equation (26) 
and using equation (7) we have

2
2 2 2 2(1 ) (1 ) c
o ok T k T

j jωµε ωµε
∇∇×− = − − AB

 (27)

By using the same coordinates axes ∇, B and 
2 2(1 ) /( )ok T jωµε− ∇×B  and equation (1), (8), 

(16), (26) and (27) for the Coulomb gauge. It is 
clear from equation that the component of the 
vector A parallel to ∇ is equal to zero.

As seen in figure 1, Lorenz gauge are the best 
choice because these make A either parallel or 
perpendicular to any of the other vectors and 
simplify its relationship to those vectors. In figure 
1 if the chirality constant T, goes to zero, point K, 
L and R approach point M. P, and N respectively, 
in which case the diagram will be the same as in 
Reference [7] for linear, homogeneous, isotropic 
achiral medium. If 2 2(1 ) 0ok T− →  then E is 
parallel to B, and parallel to A so all vectors 
remain in an only plane. This Beltrami condition 
is usefull to numerical calculations. We apply 
this approach to a two dimensional chiral slab. 
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This result cannot be obtained with the Uckun’s 
approach [5]. 

Two dimension chiral slab
Considering a two dimension chiral slab with 
material polariton, where a polariton is the result 
of the mixing of a photon with an excitation 
of a material in figures 2 and 3 with the aid of 
figure 1, the spatial variation of the magnetic 
and electric field amplitudes versus y is sketched 
for an incident TE plane wave whose electric 

field is given by 
2 2
0( , ) tt j k k yjk xE x y ze e −−= , 

with a transverse wave-number equal to the 
TE material polariton one kt = 5.28x10-3k0 and 
koT = 0.3. The complete coupling between the 
plane wave and the cover polariton assures that 
the reflected field from the slab (and possibly the 
corresponding enhancement on the screen) has 
its maximum and that the total field is entirely 
dominated by the material polariton distribution, 
as evident from figures 2 and 3 where the field 
complex amplitudes have only real or imaginary 
parts.

Figure 2 Spatial variation of the tangential magnetic 
complex amplitude versus y for an incident plane 

wave with 
2 2
0( , ) tt j k k yjk xE x y ze e −−=  exciting the 

natural mode of the structure
The slab has the same parameters e = e0, 
µ = 10-3µ0, dsalb = 4/k0, kt = (4.46 + j4.51×10-3)k0 
and kt = (5.28 ×	10-3)k0 respectively for the leaky 

wave and the material polariton supported by the 
grounded slab.

 

Figure 3 Spatial variation of the tangential electric 

field
2 2
0( , ) tt j k k yjk xE x y ze e −−= complex amplitude 

versus y for an incident plane wave with exciting the 
natural mode of the structure

The slab has the same parameters of figure 2.

The two plots clearly show how the material 
polariton of such a structure behaves in this 
case: The electric field inside the slab assumes 
values comparable with outside (i.e., twice 
the value of the incident field, due to the total 
reflection from the screen), whereas the magnetic 
field builds up on the screen, consistently with 
the theory. If the plane wave had impinged at a 
different angle without noticeably exciting the 
polariton, we would have expected a much lower 
value for the electric field inside the slab (due 
to the low intrinsic impedance η of the chosen 
metamaterial) and a value of the magnetic field 
comparable with outside. Not surprisingly, such 
an excitation would not cause any enhancement 
in the transmission properties [8].

Also, at optical level, our approach can to show 
how a new class of knotted beams of light can 
be derived, where approximate knots of light 
may be generated using tightly focused circularly 
polarized laser beams. We predict theoretical 
extensions and potential applications, in fields 
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ranging from fluid dynamics, topological optical 
solitons and particle trapping to cold atomic 
gases and plasma confinement [9-11].

Conclusion
Vector diagrams of Maxwell’s time-harmonic 
equations in homogeneous isotropic chiral media 
have been derived for Lorenz and Coulomb 
gauges separately. The diagrams illustrated 
Maxwell’s equations, relationship among the 
vector and scalar potential and field quantities 
and standard relationships derivable from them. 
A number of formulas may be derived simply 
by equating various vector components in 
the diagram. Since we are working with three 
dimensional vector diagrams, the numbers of 
possible derivable formulas are greater than in the 
case examined by Wilton [4] and Uckun [5]. With 
our approach we are able to obtain the parallel 
condition between the electric field and magnetic 
field. A chiral slab is studied with this approach. 
This approach is a powerful tool for low cost and 
reduced size implementations in high-frequency 
planar technology and optical vortex situations.
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