
55

Rev. Fac. Ing. Univ. Antioquia N.° 63 pp. 55-68. Junio, 2012

FPGAs Implementation of fast algorithms
oriented to mp3 audio decompression

Implementación en FPGAs de algoritmos rápidos
para descompresión de audio en formato MP3

Antonio Benavides, Geovanni Rentería, Álvaro Bernal*

Microelectronic and Digital Architectures Group. Universidad del Valle. A. A.
25360. Cali, Colombia.

(Recibido el 14 de septiembre de 2011. Aceptado el 18 de mayo de 2012)

Abstract

The high performance required by audio decompression algorithms
demands robust processors, however, sometimes they are not efficient for
optimal portable devices applications. This paper carries out an exploration
of some algorithms whose hardware implementation allow to improve the
performance of this type of customized processors when are applied to
audio decompression tasks. Some experimental and comparative results are
presented.

---------- Keywords: MP3, floating point representation, VHDL, IMDCT

Resumen

La ejecución de los algoritmos de descompresión de audio exige procesadores
potentes con alto nivel de desempeño, sin embargo, dichos algoritmos no son
apropiados para aplicaciones óptimas en dispositivos móviles. En este trabajo
se lleva a cabo una exploración de algunos algoritmos cuya implementación
en hardware permite mejorar el desempeño de los procesadores usados en
dispositivos móviles que ejecutan tareas de descompresión de audio. Se
presentan algunos resultados experimentales y análisis comparativos.

--------- Palabras clave: MP3, representation en punto flotante, VHDL,
IMDCT

* Autor de correspondencia. teléfono: + 57 + 2 + 330 34 36 ext. 113, fax: + 57 + 2 + 339 21 40 ext. 112, correo electrónico: alvaro.bernal@
correounivalle.edu.co (A. Bernal)

56

Rev. Fac. Ing. Univ. Antioquia N.° 63. Junio 2012

Introduction
Due to its compression efficiency, the standard
ISO MPEG is one of the audio compression
technique more widely used. The third layer of
MPEG, normally known as MP3, is extensively
utilized in both digital audio diffusion and
multimedia applications, in consequence the
CODEC MP3 is one of the most advanced
MPEG standard for digital audio compression.
Nevertheless, it has a relatively high computational
complexity that difficult its implementation
using microprocessors of limited characteristics.
Considering the microelectronic possibilities, is
important to explore not only different software
applications but also its hardware implementation
regarding to improve performance and a higher
impact in the market. The high power calculation
required by the algorithms used in a MP3 decoder
requires the high performance processors. In
fact, many commercial solutions utilize digital
signal processors but in many occasions this type
of solutions is not optimum because of several
external component are required. This solution
is not a more suitable for portable systems
which require both compact solutions and low
power features. According to this, an alternative
consists in using cores-soft processors which can
be implemented on FPGAs. These processors
demand a low power calculation allowing optimal
hardware implementation. In this article a quick
review related to the theory of the MP3 standard
and the study of some fast algorithms which
can be implemented in hardware are presented.
Finally, a case study an its implementation in
hardware using a VIRTEX2P card is described.

MP3 standard

MP3 compression algorithm is based on the
limitations of the human ear, which is capable
of listening frequencies between 20hz and 20khz
(is more sensitive between 2 and 4 KHz). The
algorithm eliminates the inaudible frequencies
conserving the essence of the sound. It is possible
to select the level of codification and compression
desired when MP3 algorithm is used. So, to

greater compression, smaller quality. A good
equilibrium between compression and quality is
obtained to 128Kbits/44khz stereo being the level
for defect in the compressors and in the available
songs in the network.

MP3 Decoder

A decoder basically applies inverse transformed
to setup the audio signals to be listened. All the
streaming are essentially processed using the
same technique. In figure 1, a MP3 decoder block
diagram is shown [1]. This decoder generates the
sequence of samples of the original sound from the
MP3 bit stream. This codification system is based
on small packages or streams where each one of
them corresponds to sections of sound of a few
milliseconds duration. First, the synchronization
block look for the synchronization word in the
stream, which defines the beginning of a valid
MPEG stream.

Each stream contains both the data of compressed
audio and the information about how decode
these data. This synchronization word is part of
the head, where information about the number
of layer implemented, the sampling state and the
channels configuration are stored. The head also
contains information about the used binary state
(bit rate), from which, the length of the stream
can be determined and therefore informs when
will appear the next synchronization word in the
head. Besides of the transformed data, the bit
stream contains a series of collateral information
utilized to re-setup such audio samples. This
first block is used for obtaining the mentioned
collaterals data. Among this additional
information it must be mentioned the scale
factors and some look up tables utilized by the
Huffman decoder. The first ones, the frequency
spectrum, is divided into a series of bands which
are affected by some scale factors. These bands
are defined by the sampling frequency and they
correspond approximately to the critical bands
of the human ear. For each band exists a scale
factor which will be used to control the gain
while the samples are dequantized.

57

FPGAs Implementation of fast algorithms oriented to mp3 audio decompression

Figure 1 MP3 Decoder Block Diagram

The 576 samples codified using Huffman values
are read and decoded utilizing Huffman look
up tables defined by alternate information. The
encoder would be able to utilize several Huffman
look up tables in different sampling regions. The
Huffman tables have different ranks of number or
bit allocation. The values of the sampling blocks
are in the rank: [-8207 : 8207], but the values of
the Huffman tables only represent pairs of values
contents in the rank [0:15]. Some tables utilize
15 as a escape code. If the Huffman decoder finds
the escape code, it reads this code using the table
dependent of the number of bits and this value is
added to 15. This number is known like linbits.
The number of linbits is between 1 and 13. In
the dequantizer, the samples of the bit stream
are dequantized and scaled to appropriate values
using the scale factors and the grain gain. The
values of the samples are 4/3 powering during
the requantization process. In the reordering
block, the samples in the blocks that utilize short
time windows (short blocks) are reordered to be
processed by the following steps.

The alias reconstruction unit acts in blocks that
requires long time windows in order to compensate
the overlapped frequencies of the sub band filter.
Then, each subband is newly transformed to the
time domain. For the long blocks, a 36 points
inverse modified discrete cosine transform

(IMDCT) calculates 36 output samples. For short
blocks the three outputs of the 12 points IMDCT
are combined they selves to form 36 output
samples. Further the 18 samples are added to the
values stored in the previous grain. These values
are the new output values. The next block tries
to correct the frequency inversion added by the
subband filter, for doing that each second sample
is multiplied for –1. Finally, the 32 subband are
combined as samples in the domain time in order
to cover all the spectrum frequency. A sample is
taken of each subband and is transformed using
a discrete cosine transform (DCT). The result
is written in a FIFO bottom position. The PCM
samples are then calculated through an windowed
operation inside of the FIFO.

Study of a fast algorithm for the inverse
modified discrete cosine transform

(IMDCT)

The following implementation based on a
variation of the quick algorithm published by S.
W. LEE [2] is oriented to implement the IMDCT.
The transform is described by equation (1).

 (1)

58

Rev. Fac. Ing. Univ. Antioquia N.° 63. Junio 2012

The MP3 audio decompression involves a
36-point IMDCT and another one of 12-points.
So, for 36-point case N = 36, we have:

 (2)

Due to complexity of the equation its execution
requires substantial processing including a high
number of multiplications, for that reason to find
a fast algorithm is mandatory. An alternative
approach is described in [3], this algorithm is
based on permutations and simple operations
over matrices. In that algorithm X(n) is defined
by (3)

 X(n)=[x(0),x(1),......,x(17)]T (3)

The transformed vector after processing through
a block IMDCT is:

 Y(k)=[y(0),y(1),......,y(35)]T (4)

The original and reverse transformed vector are
related by (5).

 Y(k)=MTX(n) (5)

T denotes the transposed operation over the
vector or matrix. M is defined by equation 6.

 (6)

The obtained results show that the vector y(k) is
given by the equations 7 and 8.

 y(27+n) = y(26-n) (7)

 y(17-n)=-y(n) n=0,1,...,8 (8)

This feature is important because it reduces the
number of operations. So, knowing the terms on
the right side it is possible to calculate ones of the

left side. In the model W is defined as the vector
that includes only part of the vector:

W= [y(26), y(25),

 …..y(21), y(20), y(19),y(18), (9)
y(0), y(1), …….y(5), y(6), y(7), y(8)]

While the Y vector has 36 terms, the W vector
only has 18 terms. Equation 10 relates the Y
output vector and the W vector.

 Y(k)=P*W(k/2) (10)

Where P is a matrix of 18 x 36 determined by

 (11)

I9X9 is the 9x9 identity matrix and J is the 9x9
diagonal matrix defined by 12

 (12)

Additionally, 18 points DCT type IV denoted as
 (also as DCT-IV) is described by (1) with N

= 18. The DCT type IV () is a modification
of the SDCT II -()- shown in equation (13).

 (13)

In that equation D ‘is the diagonal matrix with
elements:

 (14)

and L1 is the triangular matrix of size 18 x 18
given by

59

FPGAs Implementation of fast algorithms oriented to mp3 audio decompression

 (15)

Figure 2a shows the block diagram for 36-points
IMDCT. The figures 2.b y 2.c show the
modifications done to a 18-point DCT used to
calculate a 36-point IMDCT. The reduction in a
number of operations is significant.

Figure 2 36-Point IMDCT Block Diagram a) Using M matrix. b,c) 18-points IV DCT using SP matrix

We can see from the figure 2c that given the
vector W1 it is possible to get Y. So, the SP Block
implementation is obtained by equation 16

 Y=SP.W1 (16)
Where

 (17)

 (18)

Y is the matrix including various components of
the vector W1.

 y(10..27) =-w1(18..1) (19)

 y(28..36) =-w1(1..9) (20)

 y(1..9) = w1(10..18) (21)

The DCT-IV can be used to perform the IMDCT
mixing both the symmetry and inversion properties
advantages of the DCT-IV and some algorithms
proposed [3, 4] for executing a standard DCT
(SDCT-II). The block diagram that implements the
mentioned transform is shown in figure 3.

In general, in order to reduce execution time of
N-points SDCT II, two N/2-points SDCT-II are
used. Figure 4 shows a flow diagram for the
IMDCT proposed algorithm.

Figure 3 Block diagram for generating a DCT IV from the SDCT II

60

Rev. Fac. Ing. Univ. Antioquia N.° 63. Junio 2012

Figure 4 Computational flux of the proposed
algorithm

A 12-point IMDCT was developed following the
same procedure , in this case:

 (22)

And the vector y(k) is defined by equations (23)
and (24).

 y(9+n)=y(8-n) (23)

 y(5-n)=-y(n) (24)

n=0,1,2

Hardware implementation for the
IMDCT fast algorithm

 The 36-Points IMDCT

The algorithms studied above reduce the number
of floating point operations therefore are called
fast algorithms. Those algorithms were simulated
using MATLAB and compared with another
expressions for IMDCT shown in the standard
ISO 11172-3 depicting satisfactory results. In
figure 5 the hardware implementation block
diagram of the 36-point IMDCT is shown. All
blocks were written in VHDL and synthesized
using a card VIRTEX 2P. The VHDL code was
compatible with the code used in MATLAB.

Addition, subtraction and floating point
multiplication block

This block calculates the sum or subtraction of
two numbers in single-precision floating point. It

consists of two 32-bit vectors representing two
input operands and a 32-bit output operand. It has
a signal to select the operation to be performed.
This block uses 3 sub-blocks, the first one is a 24
bits adder or subtract whose function is to add or
subtract the mantissas, the second one is a block
of Pre-standardization used for calculating: the
output exponent, the larger mantissa, the smaller
mantissa and the output sign. Finally a block of
Post - standardization which converts the results
to the IEEE-754 format.

Figure 5 36-Point IMDCT Block Diagram

Floating multiplication block

Computes the multiplication of two floating point
numbers and do not require clock signal

9 Points SDCT Block

This block requires both floating-point
multiplication and add-subtraction subsystems.
The program’s structure is sequential and
calculates twice SDCT of 9 points. The design
was done using a finite state machine. The result
of a floating point operation takes one clock cycle.
The final result is obtained in 46 states or clock
cycles. To reduce the number of states addition/
subtraction and multiplication operations were
executed in parallel.

61

FPGAs Implementation of fast algorithms oriented to mp3 audio decompression

18-Point SDCTII Block

This block requires two floating-point operation
subsystems and a 9-point SDCT block. The code
has two arrays of 18 vectors of 32 bits representing
the input “X” and output “Y”. The block includes
a multiplexer which permits to select a floating
point block to calculate the 9 points SDCT or
internal calculations. A single block of add-
subtract and multiplication was used regarding
minimize the hardware. The program’s structure
is sequential and calculates twice 9-point SDCT s
for even and odd numbers

IMDCT and DCT-IV Blocks

This block first calculates the 18 results of DCT-
IV and subsequently delivered serially IMDCT
calculation results. DCT-IV requires both the
SDCTII block and the floating point subsystems
which are selected by a multiplexer in order to
execute internal 18-point SDCTII calculations.
The code includes four arrays of 18 vectors of 32
bits used to store temporary data and input that
can be previously stored in a memory. The output
is a 32-bit vector that delivers one by one the 36
results.

12-Point IMDCT

Was developed using a similar procedure for a
36-Points IMDCT. Some modifications were
done according to the mathematical conditions.

Low accuracy IMDCT synthesis
and implementation

Once the design of 36 and 12 points IMDCT
was done, the number of bits in floating point
representation was reduced from 32 to 23
regarding minimize the required hardware. This
type of architecture is called limited accuracy
implementation [5, 6] due to the calculations
in MP3. Low-precision floating point does not
represent a significant change in sound quality
and can reduce power consumption and area
on the chip. The minimum number of bits
used in floating point representation is 23 bits

distributed in 16-bit mantissa, 6-bits exponent
and an sign bit [7]. The low accuracy (23 bits)
IMDCT design generates a low error which was
programmed on the card VIRTEX 2P. From a
36 IMDCT low-precision code synthesizing, an
equivalent radius of 24% using VIRTEX 2P card
and the XC2VP30-6FF896 device was obtained.
Experimental results are shown in figure 6

Figure 6 Experimental results from 36-Point IMDCT
low accuracy synthesizing

The IMDCT12 low precision code synthesizing
gave a 9% of the VIRTEX2P card with the
XC2VP30-6FF896 device. Experimental results
are shown in figure 7.

Figure 7 Experimental results from 12 points IMDCT
low accuracy synthesizing

Data from 12 and 36 points low precision IMDCT
implementation using the VIRTEX 2 card were
supplied by the CHIPSCOPE 7.1 real time logical
scanner. The results are described below.

Low precision 36 Points IMDCT

Input: X = [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1].

Output data are depicted in figure 8 and are
equivalent to those calculated by the formula of
the standard ISO 11172 [8].

Input: X = [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1].

62

Rev. Fac. Ing. Univ. Antioquia N.° 63. Junio 2012

Figure 8 36 Points IMDCT experimental results using a VIRTEX2P

In table 1, the hexadecimal representation, their
conversion to decimal, theoretical data obtained
from Excel tables and the percentage error of

the obtained data using this implementation are
shown. Note that the maximum obtained error is
8.441%, this results is highly satisfactory.

Table 1 Validation of the 36- Points IMDCT

Hexadecimal 23 bits Implementation Y(k) teorico Error %

5E4A5B -0.6452255 -0.67817 4.858

1E326B 0.5984726 0.630236 5.040

5E1CA2 -0.5559235 -0.592845 6.228

1E0E2E 0.5276947 0.563691 6.386

5E0097 -0.5011520 -0.541196 7.399

1DF08A 0.4849014 0.524265 7.508

5DE1CE -0.4705124 -0.51214 8.128

1DDA25 0.4630318 0.504314 8.186

5DD53B -0.4582329 -0.500476 8.441

1DD53B 0.4582329 0.500476 8.441

5DDA25 -0.4630318 -0.504314 8.186

1DE1CE 0.4705124 0.51214 8.128

5DF08A -0.4849014 -0.524265 7.508

1E0097 0.5011520 0.541196 7.399

63

FPGAs Implementation of fast algorithms oriented to mp3 audio decompression

Hexadecimal 23 bits Implementation Y(k) teorico Error %

5E0E2E -0.5276947 -0.563691 6.386

1E1CA2 0.5559235 0.592845 6.228

5E326B -0.5984726 -0.630236 5.040

1E4A5B 0.6452255 0.678171 4.858

5E6D7A -0.7138214 -0.740094 3.550

1E9653 0.7936020 0.82134 3.377

5ED20A -0.9102325 -0.930579 2.186

1F0F93 1.0608368 1.08284 2.032

5F4B09 -1.2931061 -1.306563 1.030

1FA5C4 1.6475220 1.662755 0.916

6026DE -2.3036499 -2.310113 0.280

20E940 3.8222656 3.830649 0.219

1FA5C4 1.6475220 1.662755 0.916

5F4B09 -1.2931061 -1.306563 1.030

1F0F93 1.0608368 1.08284 2.032

5ED20A -0.9102325 -0.930579 2.186

1E9653 0.7936020 0.82134 3.377

5E6D7A -0.7138214 -0.740094 3.550

Low precision 12 Points IMDCT

The experimental results are shown in
figure 9 and are similar to simulation results

Input: X = [5 4 23 5 74 96].

Figure 9 Low precision 12-Point IMDCT results using aVIRTEX2P

obtained for a low precision 12 Points-
IMDCT

64

Rev. Fac. Ing. Univ. Antioquia N.° 63. Junio 2012

Study of a fast algorithm
Subband block implementation: the subband
block synthesis is the final step of the decoder.
This module produces 32 PCM samples at the
same time using the inputs supplied by the filter
bank. Once the capture of 32 subband samples
is done, a matrification is realized in order to
execute an operation of 64 points modified DCT
for the block of 32 samples. See figure 10.

The 64 points modified DCT can be easily
reduced to 32 points DCT, which requires 32 x 32
multiplications. The verification was done using
spreadsheets, allowing to eliminate 50 per cent of
redundancy. The first and last 16 coefficients in
the array are identical but with inverted sign. The
same occurs with the following 32 coefficients.

A 32 points DCT: was implemented using the fast
algorithm proposed by C. W. Kok [4]. Where a N
points DCT is divided in two N/2 Point DCT, if
N is a power of 2. That operation delivers an even
and odd part of N/2 DCTs denoted as C(i) and D
(i) respectively.

Figure 10 Flow of synthesis subband module [9]

In figure 11, a division scheme of the 32 DCT
considering an even and odd part using a 16 DCT
is shown. Each one of these modules is divided
into an even and odd part with 8-Points DCT
respectively. It is important to mention that the
odd part must be multiplied by a scalar factor
before executing the respective subdivision in
even and odd part. From figure 11, it should be
mentioned that the 8 DCT is divided itself into an
even and odd part using a 4-Points DCT.

Hardware design of the 32 points
discrete cosin transform fast

algorithm
In figure 12 hardware design for 32 points DCT
block diagram is depicted. These blocks were
described in VHDL, simulated and synthesized
using a 2P VIRTEX card.

65

FPGAs Implementation of fast algorithms oriented to mp3 audio decompression

Figure 11 32 DCT Division Schema

Figure 12 32 Point DCT Diagram

Floating point sum/subtraction block: this
block computes the sum or subtraction of two
floating point single-precision 32-bit numbers.
This module consists of two 32-bit vectors
representing both operands of input and output
of 32-bit, a clock signal input and a signal which
selects the operation to perform. The block
includes 3 sub-blocks, an adder of 24-bit whose
function is to add or subtract the mantissas; a
block of pre - standardization which calculates
the output exponent , a larger and less mantissas,
the output sign and the operation to be executed
according to the sign of the operators, and finally,

a block of Post-standardization which converts
the result to the IEEE754 format.

Floating point multiplication block: this block
computes a single-precision floating-point
multiplication of two 32-bits numbers. This
module consists of two 32-bit vectors which
represent two input operands, 32 bit output and
an input clock signal. It includes two sub-blocks:
a 24-bit multiplier required for multiplying the
mantissas, an adder which computes the addition
of the input exponents and resulting sign and
finally a standardization block that determines if

66

Rev. Fac. Ing. Univ. Antioquia N.° 63. Junio 2012

the result has overflowed the maximum capacity
allowed by IEEE754 floating-point format.

32 Point DCT Block: this block computes the 16
DCT for both even and odd parts. Its implementation
requires the obtained results in C(i) and D(i). That
results are used to implement a 8 DCT also for
the pair and odd part of the 16 DCT which itself
uses a 4 DCT for the respective even and odd
parts. The mentioned transformations require
both the addition/subtraction and multiplication
floating point blocks which execute the operations
sequentially following a finite state machine
description. A 16 DCT implementation required
16 constants for the odd part according to the D(i)
function model. Some similar was done for the odd
part of the 8 DCT and 4 DCT schemes. The VHDL
description was optimized in order to use a total
of 28 32-bit registers and additionally additions or
subtractions in parallel with multiplications.

4 Point DCT Block: This block calculates the
2 DCT for even and odd parts. It involves the
addition/subtraction and multiplication floating
point blocks. This sub function uses 4 constants
for cosine functions and a total of 4 32-bit
registers.

Finally, the 32 Points DCT synthesis gave a ratio
of 34 per cent of the 2PVIRTEX card using the
XC2VP30-6FF896 device. Experimental results
are shown in figure 13:

Figure 13 32-Points DCT experimental results

The obtained results were validated using the
vector shown in table 2.

Table 2 32-Point DCT validation. Input vector

Input vector (Hex.) (Dec.)
temp_32i(0) <=x”3F800000” val_dec=1
temp_32i(1) <=x”40800000” val_dec=4
temp_32i(2) <=x”40400000” val_dec=3
temp_32i(3) <=x”40800000” val_dec=4
temp_32i(4) <=x”40A00000” val_dec=5
temp_32i(5) <=x”40C00000” val_dec=6
temp_32i(6) <=x”40E00000” val_dec=7
temp_32i(7) <=x”41000000” val_dec=8
temp_32i(8) <=x”41100000” val_dec=9
temp_32i(9) <=x”41200000” val_dec=10
temp_32i(10)<=x”41300000” val_dec=11
temp_32i(11)<=x”41400000” val_dec=12
temp_32i(12)<=x”41500000” val_dec=13
temp_32i(13)<=x”41600000” val_dec=14
temp_32i(14)<=x”41700000” val_dec=15
temp_32i(15)<=x”41800000” val_dec=16
temp_32i(16)<=x”41880000” val_dec=17
temp_32i(17)<=x”41900000” val_dec=18
temp_32i(18)<=x”41980000” val_dec=19
temp_32i(19)<=x”41A00000” val_dec=20
temp_32i(20)<=x”41A80000” val_dec=21
temp_32i(21)<=x”41B00000” val_dec=22
temp_32i(22)<=x”41B80000” val_dec=23
temp_32i(23)<=x”41C00000” val_dec=24
temp_32i(24)<=x”41C80000” val_dec=25
temp_32i(25)<=x”41D00000” val_dec=26
temp_32i(26)<=x”41D80000” val_dec=27
temp_32i(27)<=x”41E00000” val_dec=28
temp_32i(28)<=x”41E80000” val_dec=29
temp_32i(29)<=x”41F00000” val_dec=30
temp_32i(30)<=x”41F80000” val_dec=31
temp_32i(31)<=x”42000000” val_dec=32

Simulation results were compared with excel
results for 32 DCT. The validation is shown in
table 3

67

FPGAs Implementation of fast algorithms oriented to mp3 audio decompression

Table 3 32-Point DCT validation. Output vector

Theory results (Dec) Simulation results (Dec.) % Error
530 530 0

-205.44 -205.444 0.00194
1.9139 1.9138 0.00522

-21.1643 -21.1642 0.00047
1.6629 1.6629 0
-6.7332 -6.7332 0
1.2688 1.26878 0.00157
-3.1198 -3.11976 0.00128
0.7654 0.76536 0.00522
-1.9866 -1.9866 0
0.1960 0.1960 0
-1.7208 -1.72077 0.00174
-0.3902 -0.39018 0.002
-1.8055 -1.8055 0
-0.9428 -0.94279 0.00106
-2.0129 -2.01285 0.00248
-1.4142 -1.4142 0
-2.2180 -2.2180 0
-1.7638 -1.7638 0
-2.3448 -2.34476 0.00170
-1.9616 -1.96157 0.00152
-2.3470 -2.34698 0.00085
-1.9904 -1.99036 0.002
-2.2017 -2.20168 0.0009
-1.8478 -1.84775 0.0027
-1.9055 -1.90543 0.00367
-1.5460 -1.54602 0.00129
-1.4722 -1.4722 0
-1.1111 -1.1111 0
-0.9301 -0.93006 0.0043
-0.5806 -0.58056 0.00688
-0.3181 -0.31806 0.00012

The results show a good approximation since
the maximum error obtained for the set of input
values was 0.00688%. Figure 14 shows the

simulation data obtained for the input values
listed above using the software tool ISE 8.1.

Input: X = [1 4 3 4 5 6 7 8 9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32].

68

Rev. Fac. Ing. Univ. Antioquia N.° 63. Junio 2012

Figure 14 32-Points DCT simulation results

From the 32 Point DCT block implementation,
a finite states machine was described in order
to synthesis of Subband block which starts with
the capture of a set of 32 samples that are then
transformed using a 32 point DCT. The obtained
results allow to get a 64 points DCT. These 64
samples are stored in a RAM dual port internal
(512x32bits + 4 Parity bits). Two RAM blocks
were used for executing the 1024 samples vector
shifting. Furthermore, 512 selected samples were
windowed and stored in a dual-port RAM to
obtain 32 output samples by adding each one of
the components of the 32 respective samples.

Conclusions
The implementation of the fast IMDCT algorithm
applying different modifications allowed to obtain
a system hardware with better performance than
conventional processing methods. The IMDCT
block involves 18 inputs and 36 outputs and
is useful as MP3 decoding tool allowing that
future projects based on core-soft designs uses
embedded processors with less configurations.

The synthesis of Subband block in hardware
allows a more efficient performance using fast
algorithms to improve processing time. The
reduction floating-point representation from 32-
bits to 23-bit got a considerable minimization
in hardware without sacrificing sound quality.
The experimental results obtained from the
implementation using VIRTEX2P card show low
errors when are compared with the data obtained
from MP3 standard theories [8].

References
1. Z. Lai, Z. Liu, M. Li, Q. Yuan. MP3 Player, CSEE 4840

SPRING 2010 PROJECT DESIGN. www.cs.columbia.
edu/~sedwards/classes/2010/4840/designs/KH.pdf.
Consultado el 10 de marzo de 2010.

2. S. Lee. “Improved algorithm for efficient computation
of the forward and backward MDCT in MPEG audio
coder”. Circuits and Systems II: Analog and Digital
Signal Processing, IEEE Transactions on. Vol. 48.
2001. pp. 990-994.

3. M. Cheng, Y. Hsu. “Fast IMDCT and MDCT
algorithms a matrix Approach”. Signal Processing,
IEEE Transactions on. Vol. 51. 2003. pp. 221-229.

4. C. Kok. “Fast algorithms for computing Discrete
Cosine Transform”. Signal Processing, IEEE
Transactions on. Vol. 45. 1997. pp. 757-760.

5. B. Lee. “A new algorithm to compute the discrete
cosine Transform IEEE Transactions on Acoustics”.
Speech, and Signal Processing. Vol. 32. 1984. pp.
1243-1245.

6. Codification MP3. Disponible en: http://members.
fortunecity.com/alex1944/mp3coding/maindata.html
Consultado el 10 de septiembre de 2009.

7. J. Eilert, A. Ehliar, D. Liu. Using Low Precision
Floating Point Numbers to Reduce Memory Cost
for MP3 Decoding. Dept. of Electrical Engineering,
Linkoping University. Linkoping (Suecia). 2004.
pp.119-122.

8. ISO/IEC. Information Technology — Coding of
Moving Pictures and Associated Audio for Digital
Storage Media at up to About 1.5Mbit/s, Part 3: Audio.
Ginebra (Suiza). 2004. pp.1-147.

9. K. Konstantinides. “Fast subband filtering in MPEG
audio coding”. IEEE Signal Processing Letters. Vol. 1.
1994. pp. 26-28.

