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Abstract

Industrial processes are characterized to be in open environments with
uncertainty, unpredictability and nonlinear behavior. Rigorous measuring
and monitoring is required to strive for product quality, safety and finance.
Therefore, data-based monitoring systems have gain interest in academia and
industry (e.g. clustering). However industrial processes have high volumes of
complex and high dimensional data available, with poorly defined domains
and sometimes redundant, noisy or inaccurate measures with unknown
parameters. When a mechanistic or structural model is not available or
suitable, selecting relevant and informative variables (reducing the high
dimensionality) eases pattern recognition to identify functional states of the
process. In this paper, we address the feature selection problem in data-based
industrial processes monitoring where a mathematical or structural model
is not available or suitable. Expert knowledge-guidance is used inside a
wrapper feature selection based on clustering. The reduced set of features is
capable of represent intrinsic historical-data structure integrating the expert
knowledge about the process. A monitoring system is proposed and tested on
an intensification reactor, the ‘open plate reactor (OPR)’, over the thiosulfate
and the esterification reaction. Results show fewer variables are needed to
correctly identify the process functional states.

---------- Keywords: Feature selection, processes monitoring, fault
detection, fuzzy clustering

Resumen

Los procesos industriales se caracterizan por estar en ambientes abiertos,
inciertos y no lineales. La medicion y monitoreo de estos busca calidad,
seguridad y economia en los productos. Los sistemas de monitoreo basados
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------------------------------------------------------ Expert knowledge-guided feature selection for data-based industrial process monitoring

en datos han ganado un gran interés en la academia y en la industria, pero los
procesos industriales tienen grandes volimenes de datos complejos y de alta
dimension, con dominios poco definidos, medidas redundantes, ruidosas e
imprecisas y parametros desconocidos. Cuando un modelo mecanico no esta
disponible, seleccionar las variables relevantes e informativas (reduciendo la
dimension de los datos) facilita la identificacion de los patrones en los estados
funcionales del proceso. En este articulo se propone usar el conocimiento
del experto como guia dentro de un wrapper de seleccion de descriptores
basado en agrupamiento para reducir el conjunto de variables necesarias para
representar la estructura intrinseca de los datos histdricos del proceso. Un
sistema de monitoreo es propuesto y evaluado en un reactor de intensificacion,
el Open Plate Reactor, en las reacciones de tiosulfato y esterificacion. Los
resultados muestran que so6lo algunas variables son necesarias para identificar
correctamente los estados funcionales del proceso.

---------- Palabras clave: Seleccién de variables, monitoreo de
procesos, deteccion de fallos, agrupamiento difuso.

Introduction Data-based monitoring systems use measurement's
information to identify process behaviors as
functional states or classes. Such information
is classified according to its resemblance
with previously classified historical data [10].
However, in industrial processes, class labels are
unknown and most of the knowledge is held by
the expert. Such knowledge constrains knowledge
discovery, avoid the data over fitting problem [11]
and describes the relationship between attributes,
categories and correlations among them. The
expert judgment approach may result in an effective
feature selection without bias by the distribution of
the training set [ 12]. Real-life applications require
the involvement of domain experts to validate the
allocation of operating states of the process into
classes resulting from clustering. Nevertheless,
high dependency upon expert knowledge is not
desirable due to their inability to examine large
amounts of data in a rigorous fashion without
the effects of boredom or frustration [13]. Using
computational intelligence techniques seems to

Large volumes of complex and high dimensional
data available set a barrier for developing efficient
decision support and monitoring systems [1].
Using relevant and informative variables eases
data understanding, classification accuracy and
computational efficiency [2], [3]. For example,
Mukse et al. [4] used the Pareto optimal trade-
off between the process information that can be
obtained and the sensor cost for the selected process
measurements, but a process model is needed.
Sikora et al. [5] designed an effective and efficient
genetic algorithm for a wrapper feature selection
method based on Hausdorff distance measure in a
supervised manner. Fraleigth et al. [6] developed a
sensor system selection for model-based real-time
optimization. Verron et al. [7] proposed supervised
fault diagnosis with feature selection based on
discriminant analysis and mutual information.
Bensch et al. [8] tackled the problem of identifying
the features responsible for success or failure in

the manufacturing process in a supervised context. be an alternative to take into account the process

These methods focus on constructing process expert knowledge. In this context, techniques that

models and identify the gap with the actual system 56 ata artificially labed by the expert are valuable
using supervised learning. However, complex  , 4iaonosis and classification systems. [14].
processes do not always have classical models

available [9]. Thus, several researchers focusedon  In this paper, a wrapper feature selec;tion guided
the development of robust and reliable monitoring by the process expert's knowledge is proposed.
systems based on data analysis. Expert's knowledge is not used for supervised
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training but as guidance in order to look for
clustering results as similar as the expert
data partition maintaining a cluster structure.
The method is applied on fault detection and
monitoring (i.e. classification of the process
dynamic in a predefined functional state) of
the ‘open plate reactor (OPR)’ [15, 16] on the
thiosulfate reaction and the esterification reaction.

Next section shows the proposed wrapper
framework for feature selection: feature
search, clustering algorithms, clustering quality
assessment. Third section details the open plate
reactor application over two chemical reactions
(esterification and thiosulfate). Results are
presented in section four. Last section shows
conclusions and future work.

Wrapper feature selection guided
by the expert knowledge

The wrapper methodology [2], offers a simple
and powerful way to address the problem of
variable selection [17], regardless of the chosen
learning machine or quality subset criterion [18].
The performance of the induction algorithm
guides the search, producing better results than
filter feature selection methods for specific
applications [19].

Figure 1 shows a detailed graphic of the proposed
methodology. Historical data (i.e. database of the
process) is defined in the N x n space, as a set Q;
N is the number of elements, » is the number of
features in the original feature set F € R" and
F_ e R with r < n represented as Q 2 F. The
clustering algorithm partitions the data subset into
¢ clusters, optimizing some metric J over the data.
Consider the clustering algorithmas Y=J(Q | F,
2) where 4 are the clustering method parameters.
Let YT =lyiy2, »¥nl yi €{12,..,c} be the
partition produced by the clustering algorithm
and Q(Y , Y) = ¢ be the performance function
that assesses similarity between two partitions
(e.g. expert and clustering partition). The feature
search procedure generates the optimal set of
features ', by testing different forms of the map

Q = flQ, 9).
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Figure 1 Proposed wrapper method based on
clustering

feature search

Finding the optimal feature subset F, requires
either an exhaustive search that involves the
evaluation of 2" subsets (becoming infeasible
since n is large) [19] or the monotonicity of a
pertinence measure. Two different sequential
search strategies were implemented to analyze
the case study: Sequential Forward Selection
(SFS) and Sequential Backward Elimination
(SBE). SFS starts with the subset F;, n partitions
are obtained using clustering and its quality is
computed. First, each feature subset includes only
one variable. The feature subset € associated
with the highest quality ¢, is set to be the first
selected variable in the vector v. Each feature that
is not yet included in v is included and the quality
of the n - 1 partitions is computed. The vector v
with two features that led to the highest quality
1s selected as the new vector of selected features.
These steps are repeated, adding one feature
per iteration until a pre-specified number of
characteristics is achieved (e.g. the total number
of characteristics) or a performance criterion is
met. Sequential Backward Elimination makes the
search in the opposite direction. Starting with the
full set of features, at each step the features are
removed one by one.

Clustering algorithm

Data-based monitoring systems based on
clustering try to find similarities in the process
data and group them into classes that correspond
to functional states. The term “similarity” should
be understood as a mathematical measure of
similarity, in some well-defined sense (e.g.
distance based, hierarchy based, possibility based



among others). In crisp clustering, when a data
partition is build, a single sample belongs to only
one cluster. The fuzzy clustering extends this
notion, and each data belongs to all clusters with
different membership degrees.

In this article the Learning Algorithm for
Multivariate Data Analysis (LAMDA) is used.
LAMDA method has been widely used in the
literature for the construction of systems for
monitoring industrial processes [14, 16, 17,
20-24]. LAMDA [25] is based on finding the
overall adequacy level of each individual to
each class, called Global Adequacy Degree
(GAD). The GAD is the membership degree of
each object to each class. Its value is estimated
using the contributions of the features based on
a marginal concept of adequacy which replaces
the use of traditional distance approximations.
The contribution of each descriptor is called
the Marginal Adequacy Degree (MAD) and it is
computed using a possibility function. The class
adequacy concept is expressed as the “fuzzy”
truth value of a compound sentence using logical
connectives between elementary assertions.
Attributes can be numeric, symbolic or mixed
(which is an advantage compared to other
fuzzy classifiers that can only handle numeric
descriptors). Also, LAMDA methodology does
not require a number of classes to be specified
as parameter, thus, it is capable of producing a
data partition estimating the number of classes
based on the data distribution. For a complete
description of the LAMDA methodology see [25,
26].

Feature evaluation criteria

Partitions results are evaluated comparing the
clustering algorithm and the process expert
partition. The expert's partition is not used as
classification vector in supervised way because
even though the proposed method looks for
producing partitions similar to the expert proposal,
it still looks for finding underlying structures
among data in order to identify similarities in the
historical data [27].

Expert knowledge-guided feature selection for data-based industrial process monitoring

The Index of Dissimilarity /dn proposed by Lopez
de Mantaras in [28, 29] allows to compare two
data partitions with different number of classes
and it has been recently used to compare partitions
of industrial process [14]. The contingency
matrix is established for two partitions: A (whose
classes are denoted (a,, a,, ..., a,..., ap)) and B
(whose classes are denoted (b, , b,,..., bj,. .»b)).
The probabilities corresponding to each class and
the probability of the intersection between a class
of A partition and a partition class B are noted as
Eq.1:

P,=P(a),P=P(b),P,=P@a,Nb) ()

where a, N b, is formed by the elements that
belong simultaneously to the latter class a, and
class b.. The probabilities satisfy Eq. 2:

P =Xl Py, P =30 Py, Y X Py =1 (2)

The probability of elements belonging to this
class a, and class b, is computed with Eq. 3.
M is the cardinality N and the total number of
individuals ordered M(X).

M(a;nby)

N 3)

The Idn is zero only if the contingency matrix
is “almost diagonal” or “quasi-diagonalizable”,
that is, when the partitions are either equal or
compatible or equal modulo zero. The Idn is
estimated from the conditional information
between partitions A and B.

P(a;Nb;) =

A normalized index of dissimilarity Idn = ¢
between the clustering partition Y and expert
partition Y is defined in Eq. 4.
g(Ye
Idn(A,B) = —port— (Yf)
H(Y—‘:)+H(Ym,Y5)
. C))
-3 P Py lng(P—Li])

- D p
=Y I Py +XT S Pijloga(Py)

If the partition Y is consistent or equal to Y, Idn
=0 and /dn = 1 in the opposite case.
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Cases studies: Open Plate Reactor
-OPR

The OPR is a plate heat exchanger of new design
[15]. One side is used as a chemical continuous
reactor while the other side a cooling/heating

thermal fluid flows. The primary reactant R,
flows from the inlet to the outlet of the reactor
(see figure 2). The secondary reactant R, can
then be injected along the reactor side with
R,. Depending on the reaction, the utility flow
is used to cool (exothermic reaction) or heat
(endothermic reaction) the reactor side.

Primary
E]eactant (RI)
1 > 2 60 > 61 > 62
3 59 63
Secundary
Reactant (R2) .
29 33 89
v v v
30 » 31 > 32 90 » 91 |—>
\ 4 v v
Block 1 Block 2 Block 3

— 3 Reactant Flow
------------------------------- » Utility Flow

Figure 2 Schematic Representation of the OPR

Figure 2 shows the schematic representation
of the pilot plant; two feeding loops ensure
the introduction of the reactants in the reactor
at normal temperature [15]. The OPR has 27
available sensor measurements from temperatures
and pressures from different cells of the reactor.

The OPR is studied under two chemical reactions;
thiosulfate and esterification; described below.
Failures in the OPR for the thiosulphate reaction
and the esterification reaction were introduced
in the process in the form of disturbances on
the main variables: increase and decrease of
temperatures and flows of the utility, primary and
secondary reactants and increase and decrease of
the compositions of the primary and secondary
reactants.
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Thiosulphate reaction

The thiosulphate reaction has the following
characteristics: its stoichiometry and kinetic
are known, the reaction is irreversible, fast and
highly exothermic.

Table 1 shows a description of all functional states
over the thiosulfate reaction. The database used
is composed by the measure of the 27 variables
with 17 simulated faults over 2076 time samples.
The reaction scheme is in Eq. 5:

2Na,S,0; + 4H,0,
d Na25306 + Na2504_ + 4H20

)
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Table 1 OPR, thiosulfate and esterification reaction faults description

Functional State Description Thiosulfate Esterification
Description Fluid Variable Id Initial Final Initial Final
Normal - - 1
1F(U) Utility Flow 2 0.916m°h 0.22m%h 3mdlh 1m’h
TFU) Utility Flow 3 0.916m°h 1.76m%h 3mlh 5mélh
1Y) Utility Temp. 4 13.37°C 8°C 70°C 60°C
1T(U) Utility Temp. 5 13.37°C 20°C 70°C 80°C
IF(R,) Prim. Reac. Flow 6 39.38m°h 30m’h 15m*lh 10mh
TF(R,) Prim. Reac. Flow 7 39.38m°h 50m3h 15m¥h 20m3h
ITR,) Prim. Reac. ~ Temp. 8 19.8°C 10°C 20°C 10°C
1T(R,) Prim. Reac. ~ Temp. 9 19.8 °C 30°C 20°C 30°C
IF(R,) Sec. Reac. Flow 10 9.87m%h 5mdlh 10m¥h Tmih
TF(R,) Sec. Reac. Flow " 9.87m3h 15m’lh 10m¥h 13mdlh
ITR,) Sec. Reac. Temp. 12 19.15°C 10°C 20°C 10°C
1T(R,) Sec. Reac. Temp. 13 19.15°C 30°C 20°C 30°C
1C(R,) Prim. Reac. Mol. Frac. 14 0.0157 % 0.0173 % 0.966 % 0.95 %
1C(R,) Prim. Reac. Mol. Frac. 15 0.0157 % 0.0141 % 0.966 % 0.981 %
1C(R,) Sec. Reac.  Mol. Frac. 16 0.1289 % 0.15% 0.994 % 0.99 %
1C(R,) Sec. Reac.  Mol. Frac. 17 0.1289 % 0.1% 0.994 % 0.998 %
1sd(R) Util. Flow  Shutdown 18  0.916m%h 0.01m%h

In order to validate the generated model using  described only by the selected features was
just the selected subset of sensors (the selected  simulated. Six new faults were induced in the test
features), a test database with 735 new samples dataset as described in table 2.

Table 2 Faults description in the test dataset (thiosulfate)

Fault Description Start (1) End (1)
Fault 1 LF(U): 0.916m*h — 0.3m*h 15 75
Fault 2 1C(R,):0.0137% — 0.017% 135 195
Fault 3 1T(U): 13.37°C — 15°C 255 315
Fault4 1C(R,):0.0137% — 0.017% 375 435
LF(U,):0.916m%h — 0.3m%h 375 435
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Fault Description Start (1) End (1)
Fault5 1C(R,): 0.0137% — 0.0165% 495 555
TF(U): 0.916m*h — 1.5m%h 495 555
Fault 6 1C(R,): 0.0137% — 0.0165% 615 675
1F(U): 0.916mh — 0.6m%h 615 675
1T(U): 1337 — 14.8°C 615 675

Estertification reaction

The esterification reaction is slow and weakly
exothermic. To accelerate it, it is necessary to
heat the reaction medium. In this case, the utility
flow serves as fluid heating. In total, 16 faults
have been applied to the reactor. Failures in the
OPR are disturbances on the temperatures and
flow rates of main reactant0 (C,H,O) secondary

or injected reactant (C.H O,), cooling system
(utility), and composition in primary and
secondary reagents, see table 2.

Validation on the esterification reaction results is
made over a test database consisting of 410 new
samples described only by the selected feature
was simulated. Five new faults were induced in
the test dataset as described in table 3.

Table 3 Faults description in the test dataset (esterification reaction)

Fault Description Start (1) End (1)
Fault 1 1C(R,): 0.994% — 0.991% 10 50
Fault 2 IT(U):70°C — 65°C 90 130
Fault 3 1C(R,): 0.994% — 0.991% 170 210
1F(R,): 10m’h — 13m*h 170 210
Fault4 LF(U): 3m’th — 2m*lh 250 290
Fault 5 LF(U): 3m’th — 2m*lh 330 370
1T(U,): 70°C — 60°C 330 370

Experimental results and

the clustering algorithm and the partition proposed

discussion by the expert knowledge. For the thiosulfate
' . . reaction, the feature set f&q (5) = {1,22,7,8,24}
Variables representing input pressures for and fL. (5) = {24,8,7,22,1} are selected as

primary and secondary reactants were eliminated
since they are constant. Feature selection is
applied to the remaining 25 variables. The data
subset associated with the lowest Idn value is
represented by the set of features that minimize the
dissemblance between the partition produced by

118

the best set of features reaching Idn = 0.03232
and Idn = 0.03171 respectively, see figure
3. For the esterification reaction, features
sets  f&o(8) = {5,14,2,1,22,18,20,15}  and
f&e(7) =1{21,8,6,13,19,22,3} with dissemblance
index values of 7dn = 0.04048 and Idn = 0.04193,
see figure 4.
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Figure 4 Dissimilarity Index of the OPR reactions studied, with the SBE

Figures 5, 6, 7 and 8 show the classification
results of the training datasets when using just
the selected features. The monitoring system
identifies all functional states for both chemical
reactions studied, with similar results for SFS
and SBE. Additionally, anew class is defined, the
transition class. This class represents a deviation

from the Normal state and it is not included by the
process expert. False alarms appears at the end of
some faults, most of them are misclassification
with the increase of Temperature of the Utility
Flow 17(U,) since the utility flow acts as
temperature regulation and influences directly all
functional states.
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Figure 5 Map of Clustering Results for Thiosulfate Reaction with SFS
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Figure 7 Map of Clustering Results for Esterification Reaction with SFS
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Figure 8 Map of Clustering Results for Esterification Reaction with SBE

The resulting classifiers are tested on validation
datasets, obtaining the results shown in figures 9,
10, 11 and 12. For the thiosulfate reaction, when
using SFS, the first three single disturbances
are correctly identified. The classifier is able
to identify the fault when several disturbances
are presented simultaneously. Perturbation 5 is
classified as normal because the combined effect
of both perturbations cancels out. The reactor is
fed with more primary reactant, but the utility
fluid cools more, which corresponds to a normal
operating state. For the esterification reaction

both procedures, SFS and SBE, produce different
sets of features. Fault 4 is identified as normal
in both cases, since the esterification reaction
is very exothermic, so the impact of such small
variation does not affect la reaction. In the SBE
search, the second perturbation corresponding
to |T(U,), 1s misclassified with functional state
TF(R,) this is because a decrease on the utility
fluid temperature increases the temperature of
the reaction, and this increase appears when
there is an increase of flow of the Secondary
Reactant.
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Figure 9 Map of Clustering for the Test Dataset of the Thiosulfate Reaction with SFS
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Previously in [16], the authors proposed aranking
method based on information-theoretic measures
to evaluate the amount of information within
each variable to select the most informative ones.
Additionally, [17] and [30] explore wrapper

Expert knowledge-guided feature selection for data-based industrial process monitoring

approaches for unsupervised feature selection.
Tables 4 and 5 show a comparison of previous
feature selection results on the same process
showing a better performance, with lower Idn
value

Table 4 Comparison of dissimilarity with previous proposals for the thiosulfate reaction

Author Feature Set Idn Type
Orantes et al. [16] [1,4,5,6,12,14, 22, 25, 26] 37.49 Filter
Uribe et al. [17] [1,7,25,9,6,21,20,8,10] 39.38 Wrapper
Uribe et al. [30] [6,8,1,7,25] 34.89 Wrapper
Expert-Guided SFS [1,22,7,8,24] 32.32 Wrapper
Expert-Guided SFS [24,8,7, 22, 1] 31.71 Wrapper
Table 5 Comparison of dissimilarity with previous proposals for the esterification reaction
Author Feature Set Idn Type
Orantes et al. [16] [11,26, 12,22, 25,1, 2, 3] 46.65 Filter
Uribe et al. [17] [5,14,4,6,1, 2,27, 3] 45.01 Wrapper
Uribe et al. [30] Not Available - Wrapper
Expert-Guided SFS [5, 14, 2,1, 22, 18, 20, 15]] 40.48 Wrapper
Expert-Guided SFS [21, 8,6, 13,19, 22, 3] 41.93 Wrapper

Conclusions and future work

An expert-guided wrapper for feature selection
on data-based industrial process monitoring is
presented. Expert knowledge is incorporated in
the feature search to look for a subset of features
able to represent the expert knowledge, but not
in a supervised way, since it is important to take
into account the data structure itself. Sequential
Forward Selection (SFS) and Sequential
Backward Elimination (SBE) were used as search
methods, coupled with LAMDA as clustering
algorithm and the Index of Dissimilarity to assess
the cluster quality measure comparing the expert-
knowledge partition with the clustering results.

The proposed methodology was successfully
applied to a complex industrial process known as

the Open Plate Reactor (OPR), on the thiosulfate
and the esterification reaction. The objective was
identify abnormal behaviors in the process when
using relative simple sensor (temperature), even
though some states concerns changes on flow
composition of primary and secondary reactants.
First, using a training data set, the subset of feature
is selected and a behavioral model is constructed
using just the reduced set of features. Then, the
generated model was tested on a validation data
set consisting of perturbations different than those
used in training, including simultaneous faults.
In both cases, the proposed approach was able
to select a set of features capable of generating
a behavioral model robust enough to identify not
only all functional states on the train data set but
correctly identify faults on the test dataset.
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The proposed procedure was compared with
previous approaches dealing with the same
chemical reactions. A fewer number of features
were needed to correctly identify all the functional
states of the complex chemical process. The
feature subset shows a good response and
performance since the index of dissimilarity was
lower than other approaches, indicating a high
similarity with the expert-knowledge proposal.
The main improvement of this methodology is
introducing the unsupervised learning and expert
guidance in the search process. The use of a
non-iterative clustering algorithm leads to fast
performance on the search over the feature subset
space. Even though some specific methods were
used at each block of the wrapper, the presented
framework can be applied to any clustering
method. Future work will consist in comparing
different methods of feature selection, clustering,
cluster quality and partition comparing to
determine which among the methods proposed in
the literature has better performance on specific
applications.
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