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Abstract

A procedure to accurately calculate the settling time of second-order systems 
for any damping ratio and natural frequency is proposed in this paper. In 
addition, settling time calculation for second-order systems is reviewed in this 
paper, illustrating the errors generated by classical approximations reported in 
textbooks and research papers. Finally, such a procedure is used to precisely 
design a perturb and observe algorithm in a photovoltaic application.
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Resumen

En este artículo se propone un método para calcular exactamente el tiempo de 
estabilización de los sistemas de segundo orden. Adicionalmente se ilustran 
los errores generados cuando las aproximaciones tradicionales son utilizadas 
para calcular el tiempo de estabilización. Finalmente el método propuesto 
es utilizado para diseñar un algoritmo del tipo perturbar y observar en una 
aplicación fotovoltaica.
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Introduction

Photovoltaic (PV) modules provide an electrical 
power that depends on the solar irradiance and 
temperature acting on the PV module, generating 
a large amount of possible operating points. 
Such a condition can be observed in fi gure 1, 
where the electrical characteristics of a BP585 
PV panel, composed by two PV modules, are 

reported for two irradiances. Figure 1 also 
presents the reproduction of the BP585 electrical 
characteristics by means of the PV model reported 
in [1]. Moreover, among such current-voltage and 
power-voltage points exists an optimal condition 
in which the PV panel produces the maximum 
power available for the particular environmental 
conditions, named Maximum Power Point 
(MPP).

Figure 1 Electrical characteristics of a BP585 PV panel

The MPP current, voltage, and power change 
with the irradiance and temperature [1], therefore 
online optimization techniques have been 
developed to fi nd such an optimal condition 
[2, 3], where the Perturb and Observe (PO) 
algorithm [3] is the most widely adopted due to 
its simplicity and satisfactory performance.

Figure 2 shows a typical PV generation system 
controlled by a PO algorithm, where the duty cy-
cle D of the dc/dc converter is sequentially mo-

difi ed to fi nd the MPP, maximizing the PV power 
PPV. The dc/dc converter in fi gure 2 has a Boost 
topology due to its extensively use in grid-con-
nected and stand-alone photovoltaic applications. 
Moreover, the PV module operating at the MPP 
is modeled by a Norton equivalent, which is an 
accurate representation as demonstrated in [4]; 
and the load is modeled by a voltage source as 
proposed in [4], this because photovoltaic inver-
ters and batteries impose a dc-link voltage at the 
dc/dc converter output terminals.

Figure 2 Small-signal model of a PV system based on a dc/dc converter
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To implement the PO algorithm two parameters 
must be defi ned: the perturbation period Ta and 
the perturbation size D. Femia et al. [3] propose 
a design procedure for the PO algorithm, where 
Ta is calculated to ensure an optimal three-point 
behavior on the duty cycle to minimize the power 
losses in steady-state conditions [2, 3]; while 
D is calculated to accurately track the MPP in 
variable irradiance conditions. To guarantee a 
correct operation of the PO algorithm, the PV 
voltage must be stable at the instant tPV (tPV = 
ktpvTa, ktpv = 1, 2, …) in which the PO measures 
the PV power, therefore Ta must be longer or 
equal than the settling time of the PV system [3].

In [3], Femia et al. propose to calculate the Ta 
parameter (1), where C represents the input 
capacitance of the dc/dc converter, and RMPP
models the current/voltage derivative of the 
PV module at the MPP, see fi gure 2; while 
specifi es the acceptable band to consider stable 
the PV voltage. In [3], the authors use  = 0.1 or 
10 % band, but other settling time bands can be 
assumed, e.g. 2 % and 5 % bands.

 (1)

Equation (1) was based on the classical settling 
time approximation proposed by Ogata [5], which 
introduces signifi cant errors depending on the 
damping ratio () and natural frequency (n) of 
the PV system. Such  and n parameters were 
derived from the small-signal model of the PV 
system (2) reported in [4], where GPV(s) is a second 
order system with an additional gain -Vb. In such a 
small-signal model, Vb is the dc-link voltage and L 
is the inductance of the dc/dc converter.

 (2)

To provide a more precise and reliable PO design it 
is required an accurate calculation of the PV system 

settling time. But the settling time calculation 
procedures reported in classical literature for 
second-order systems are given for particular bands 
or damping ratios, introducing also approximations 
that increase the prediction error [5-12]. In 
addition, a recent work published in [13] proposes 
a settling time calculation procedure based on a 
decomposition of deterministic, random or mixed 
non-stationary signals in steady-state and transient 
components. However, such a procedure is intended 
for sensors and transducers modeling due to the 
random nature of the input signals, which makes the 
solution suitable for the particular application, but 
diffi cult to apply to different second-order systems.

Such undesirable characteristics make the settling 
time calculation procedures reported in literature 
not reliable to accurately design Ta in PO 
algorithms. This condition must be addressed since 
the improvement of the PO controllers increase the 
power extracted from renewable sources, which 
are extensively used nowadays [14, 15]. Therefore, 
this paper reviews the settling time calculation for 
second-order systems, providing information to 
estimate the errors generated by approximations 
reported in textbooks and research papers. In 
such a way, the reported calculation procedures 
are evaluated to quantify their prediction errors 
for a wide range of damping ratios and natural 
frequencies. Moreover, this paper proposes a 
procedure to accurately calculate the settling time 
of second-order systems for any damping ratio 
and natural frequency conditions, which could 
be implemented in any programming language. 
Finally, such a procedure is used to precisely design 
a PO algorithm in a photovoltaic application.

Settling time of second-order 
systems

The settling time ts, as defi ned in [5-10], is the time 
interval required by an output signal of a dynamical 
system to get trapped inside a band around a new 
steady-state value after a perturbation is applied to 
the system. To analyze the settling time of a second-
order system, the general G2O(s) expression given 
in (3) is adopted [5, 8].
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In classical textbooks [5-10] and research 
papers [3, 11, 12], the settling time analysis 
is mainly focused on under-damped systems 
( < 1), providing limited information concerning 
to critically-damped systems ( = 1) and over-
damped systems ( > 1). In general, the damping 
ratio of industrial systems could exhibit any 
value, as in the photovoltaic case (2), therefore 
all the damping ratio conditions are addressed in 
the following subsections.

Under-damped systems

Since in  < 1 conditions the poles of G2O(s) are 
complex [5, 8], the inverse Laplace transform of 
G2O(s) step-response, C(t) = L-1[G2O(s)/s], is:

 (4)

Equation (4) describes the exact time response 
of the second-order system to a step perturbation 
depending on  and n. To isolate the settling 
time analysis from n, the time response of the 
second-order system is normalized in terms of 
the variable tN = nt as described in [5, 8]:

 (5)

The normalized settling time tsN corresponds to 
the instant in which C(tN) enters into the band 
1 to keep trapped inside. From (5) is noted that 
C(tN) changes depending on  as reported in fi gure 
3(a), where  = [0.5, 0.6, 0.7, 0.8] conditions 
were simulated. Performing a zoom to fi gure 
3(a) around the 2% band for  = [0.5, 0.8], as in 
fi gure 3(b), two types of under-damped systems 
are differentiated: the systems with more than 
one cross over the band limits, named m-cross 
systems, and systems with one cross over the 
band limits, named s-cross systems.

Figure 3 Normalized step response

From fi gure 3(b) it is noted that  = 0.5 defi nes an 
m-cross system while  = 0.8 defi nes an s-cross 
system. The settling time tsN for m-cross systems 
corresponds to the maximum tN among all the 

crosses over the band limits, since after the last 
cross the system gets trapped into the band. In 
such a way, in m-cross systems the equations 
C(tN) = 1 provide all the crosses over the band 
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limits, where tsN corresponds to the maximum tN
value. Instead, in s-cross systems, the settling 
time corresponds to the tN of the unique cross with 
the lower band limit, therefore only the equation 
C(tN) = 1- must be solved. Such discrimination 
allows simplifying the settling time calculation 
for s-cross systems.

From (5) and fi gure 3(b) it is noted that s-cross 
systems are characterized by exhibiting a 
maximum overshoot lower than the upper band 
limit 1+. Therefore, defi ning s < 1 as the 
damping ratio in which the maximum overshoot 
is equal to 1+, all second order systems with 
> s are s-cross systems, while  ≤ s are m-cross 
systems. The limit s can be found from the 
maximum overshoot time [5, 8] following the 
procedure proposed by Bert [11] and Piche [12]:

 (6)

Figure 4 shows the limit s for different settling 
time bands, where the classical 1%, 2% and 5% 
bands are specifi ed. It is noted that wider bands 
have lower s values and larger ranges of s-cross 
systems; while narrower bands have higher s
values with larger ranges of m-cross systems.

Figure 4 s for multiple settling time bands: 0 <  < 1

From (5) and fi gure 3(b) it is also noted that s
specifi es a discontinuity in the settling time vs. 
damping ratio relation, this because in  = s

the settling time corresponds to the tN in which 
C(tN) = 1+ (second cross of the band limit); 
while in a  slightly higher than s, i.e.  = s+
with 0+, the settling time corresponds to the tN
in which C(tN) = 1-. Such a difference in C(tN) 
for s and s+ describes an step-down change 
in the settling time for consecutive  conditions. 
Moreover,  = s provides the lower settling 
time possible for m-cross systems because that 
condition has a single cross with each band 
limit, therefore the settling time occurs earlier 
than in systems with more than two crosses 
over the band limits. Similarly  = s+  is 
the minimum  for s-cross systems, therefore 
 = s+ represents the lower settling time possible 
for s-cross systems because increments in  cause 
increments in the raising time, incrementing the 
settling time. Finally, due to the step-down change 
in the settling time for consecutive  conditions 
inside [s, s+], the settling time for  = s+
is the lowest one for C(tN) on any condition. For 
practical purposes, such lowest settling time can 
be found considering  = 0 from C(tN) = 1- in the 
condition  = s as in (7).

 (7)

Other discontinuities in the settling time vs. 
damping ratio relation are generated by the 
increasing decay of the exponential envelope 
of (5) when  increases, which causes that the 
last cross over the band limits changes from 
one peak-zone to a previous one, changing the 
position of the settling time. Such a condition can 
be observed in fi gure 5, where the C(tN) with 
= 0.36 and  = 0.49 have been simulated: it is 
noted that in  = 0.36 the settling time occurs at 
the third peak, while in  = 0.49 the settling time 
occurs at the second peak. The limit case takes 
place when the settling time of a system occurs 
in the peak P of C(tN) with  = pk,P, because 
a slightly increment in the damping ratio to 
 = pk,P + , with 0+, generates a new settling 
time, which occurs in the previous peak P-1, 
producing a discontinuity in the settling time vs. 
damping ratio at  = pk,P.
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Figure 5 Settling time peaks for = 0.36,  = 0.49

In this way, (6) can be generalized to fi nd all the 
discontinuities of the settling time vs. damping 
ratio relation: such discontinuities occur when the 
peaks of C(tpN) = 1, where tpN is the normalized 
peak time given in (8) for the peak n [5, 8], and 
pk,n is the damping ratio to fulfi ll C(tpN)-1 =  as 
in (9) [5, 8], obtaining the critical damping ratios 
given in (10) where the discontinuities take place.

 (8)

 (9)

 (10)

From (10) it is noted that n = 1 corresponds to the 
fi rst peak, therefore it defi nes the fi rst discontinuity 
previously specifi ed by s as the limit between 
m-cross and s-cross systems. In fact, (6) can be 
obtained by replacing n = 1 in (10), which put in 
evidence the generality of (10). Moreover, from 
(10) it is concluded that exist infi nite number 
of discontinuities, but the corresponding limit 
damping ratio pk,n decreases almost inversely 
proportional to the number of peaks to be analyzed.

In conclusion, the continuous zones of the 
settling time vs. damping ratio relation can be 
defi ned from (10): all damping ratios  inside 
[pk,n, pk,n+1], with n = 1, 2, 3… and  ≤ s, 

generate continuous settling time values, while 
at  = pk,n and pk,n+1 a step change on the 
settling time occurs. Moreover, the settling time 
of m-cross systems is found by solving C(tN) = 
1 using (5), selecting the higher tN solution 
tsN (normalized settling time) and removing the 
time normalization by calculating ts = tsN/ n. 
Similarly, the settling time of s-cross systems 
is found by solving C(tN) = 1- using (5) to fi nd 
the unique ts solution tsN, removing also the time 
normalization by calculating ts = tsN/n.

Figure 6 shows the previous analyses results, 
which have been mathematically condensed in 
(5-10), for under-damped second-order systems. 
Such a fi gure depicts the normalized settling time 
tsN (tsN = tsn) for the classical bands of 2%, 5% 
and 10%, where the predicted discontinuities on 
the m-cross systems are observed. Moreover, it is 
confi rmed that no discontinuities occur for s-cross 
systems. Finally, Fig. 6 also put in evidence 
existence of a minimum tsN for each band, 
which could be used to optimize the response of 
industrial systems, e.g. a photovoltaic system.

Figure 6 Normalized settling time of under-damped 
second-order systems

Critically-damped and over-damped 
systems

The critically-damped systems ( = 1) have the 
poles of G2O(s) equal and real [5, 8]. Therefore, 
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the inverse Laplace transform of G2O(s) step-
response, C(t) = L -1[G2O(s)/s], normalized in 
terms of the natural frequency using tN = tn, 
is given by

   NNN texpt11)t(C   (11)

Since (11) has no sinusoidal components, the 
settling time of a critically-damped system occurs 
in the same condition than in the s-cross systems: 
C(tpN) = 1-.

Similarly, the over-damped systems ( > 1) have 
the poles of G2O(s) different and real [5, 8], and 
the normalized time response of G2O(s) step-
response is given by

 (12)

Again, (12) has no sinusoidal components, 
therefore the settling time of an over-damped 
system occurs in C(tpN) = 1-. From (11) and (12) it 
is concluded that both critically and over-damped 
systems have no discontinuities in the settling 
time vs. damping ratio relation. In addition, since 
the settling time of s-cross systems is calculated 
at the same condition than in both critically and 
over-damped systems, it is evident that  ≥ 1 
generates larger settling times than s <  < 1 due 
to the larger rising time of larger damping ratio 
conditions. 

Figure 7 illustrates the previous concepts: fi gure 
7(a) presents the normalized step responses for 
 = 1,  = 1.5 and  = 2, where the settling time 
increases with the damping ratio. Also, fi gure 
7(a) contrasts the settling time for 2%, 5% and 
10% bands, where it is verifi ed that a single 
cross with the band limits occurs. In addition, 
fi gure 7(b) provides a more general view of the 
normalized settling time for 2%, 5%, and 10% 
bands, presenting a sweep on the damping ratio 
for 1 ≤  ≤ 3.

Figure 7 Normalized time response for critically-damped and over-damped systems
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Figure 7 confi rms that both critically and over-
damped systems are continuous in the settling 
time vs. damping ratio relation, also they confi rm 
that increment/decrement in  generates an 
increment/decrement in the settling time.

Evaluation of classical settling 
time criteria

Taking into account the complexity of solving 
the implicit relations between normalized 
settling time tsN and the  given in (5), (11) and 
(12), some authors have proposed calculation 
procedures to approximate the tsN by means of 
explicit equations. However, such expressions 
could introduce signifi cant errors depending on 
both  and n. In particular, the widely adopted 
relation given in (13) was proposed by Ogata 
[5], which provides a continuous relation that 
interpolates the intermediate points of fi gure 6, 
therefore it is only valid for 0 <  < 1. Similarly, 
Kuo et al. [8] propose the continuous relation 
given in (14), based on the exponential decay of 
under-damped systems (5), which again is valid 
for 0 <  < 1 only. Kuo et al. also provide a set 
of relations for a wider range of  (15), which are 
only applicable to the 5% band ( = 0.05).

 (13)

 (14)

 (15)

Other interesting relations where proposed 
by Bert in [11], where (16) approximates the 
settling time by means of the fi rst two terms of 
a power series representation of (5). But Bert’s 
expression requires to calculate the constants a 
and b by means of a precise solution of (5), which 
reduces its simplicity. In particular, Bert provides 
a = 2.99 and b = 0.56 for the 5% band. Then, 

Piche improves Bert’s solution by expanding 
(5) into McLaurin series instead of power series 
[12], obtaining (17), which provides an equation 
more general since no external, or offl ine, 
parameterization is required to fi t any settling 
time band. In general, Bert and Piche works 
have the same accuracy if Bert‘s parameters are 
externally calculated. Moreover, Bert and Piche 
are continuous and simple relations applicable to 
under-damped systems only.

 (16)

 (17)

In any case, relations given in (13)-(15) are the 
most widely adopted ones in control systems 
textbooks: in example, Carstens [6] and Dorf [7] 
books use the Ogata relation (13), while Nise 
[10] and Mandal [9] books use the Kuo relation 
(14). Figure 8 shows the evaluation of relations 
(13)-(17) for 2%, 5% and 10% bands. The 5% 
is evaluated in fi gure 8(a) and fi gure 8(b), where 
large errors are caused by the classical criteria in 
comparison with the real settling time measured 
using the exact time response of the system. It is 
observed that Kuo’s criterion is the only one for 
 ≥ 1 using (15), which is valid for  = 0.05 only. 
Moreover, fi gure 8(b) put in evidence the large 
errors introduced by such explicit equations, which 
can be up to 60 % at damping ratios around 0.7.

In addition, fi gure 8(b) also highlights that, 
classical criteria given in (13)-(17), could either 
underestimate or overestimate the settling time, it 
depending on the . Therefore, a system designed 
with such criteria could exhibit a settling time 
shorter or larger than the expected one. Figure 
8(c) and fi gure 8(d) show the behavior of the 
classical criteria for both 2% and 10% bands, 
where Bert criterion is not presented since a and 
b parameters are not reported for 2% and 10% 
bands, and also because Piche criterion is close 
to Bert approximation. Figure 8(c) and fi gure 
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8(d) show the same characteristics than fi gure 
8(a): the classical criteria do not reproduce the 
settling time vs. damping ratio discontinuities, 
introducing large errors. Moreover, the settling 

time is estimated for 0 <  < 1 only. Therefore, 
to perform an accurate design of a second-order 
system, a more precise settling-time calculation 
procedure is required.

Figure 8 Evaluation of classical settling-time criteria

Method to accurately calculate the 
settling time in second-order 

systems
The normalized settling time can be accurately 
calculated by using (5), (11) or (12), depending 
on the  value, at the cross of C(tN) with the band 
limits.

In m-cross systems, i.e. 0 <  ≤ s, the settling 
time is the higher tN that fulfi lls C(tN) = 1. From 
C(tN) expression for m-cross systems given in (5), 
the settling time is obtained from the solutions 
of (18). But due to the implicit nature of such 
an equation, an optimization technique must be 
used to fi nd the solutions. This paper adopts the 
Newton-Raphson (NR) method [1], which can be 
easily automatized.
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 (18)

The derivative of (18), given in (19), is equal 
to zero in multiple points, therefore multiple 
solutions of f(tN) exist as illustrated in fi gure 
5. Such a characteristic makes impossible to 
guarantee that the NR algorithm fi nds all the 
solutions to select the higher tN, since the NR 
trajectory and the NR solution depends on the 
adopted initial condition. 

 (19)

Taking into account that the fi rst relation 
proposed by Kuo (14) is based on the exponential 
envelop of C(tN) in (5), it provides a good initial 
condition for the NR algorithm: relation (14) 
gives an overestimation of tsN, even for a 5% 
band where (15) provides underestimations. 
Therefore, starting from (14), the NR algorithm 
will fi nd the nearest solution, which corresponds 
to the maximum tN that fulfi lls (18), i.e. the 
settling time tsN. Similarly, in s-cross systems (s
<  < 1) the settling time is obtained from the 
negative solution of (18), where again the NR 
initial condition is calculated from (14). 

For critically-damped systems ( = 1), the settling 
time is found from C(tN) = 1- considering C(tN) 
expression given in (11). C(tN) = 1- in this 
case corresponds to the solution of (20), which 
derivative is given in (21). Since in  = 1 there is 
a single cross with the band limits, as previously 
concluded, the NR algorithm must be able to fi nd 
the solution starting from any initial condition. 
This is verifi ed by analyzing (21), which is 
negative for tN > 0 and zero for tN = 0; hence (20) 

is a monotonically decreasing function with f(0) 
= 1- > 0. Therefore, (20) has a unique solution 
and (21) is continuous, which ensures that the 
NR method will converge to tsN from any initial 
condition. For practical purposes, the initial 
condition can be set from (14) with  = 1 -  and 
0 <  < 1, where the near  to 1- makes faster the 
convergence of the NR algorithm.

      0texpt1tf NNN   (20)

 (21)

For over-damped systems ( > 1), in the same 
way as in critically-damped systems, there is a 
single cross with the band limits; hence the NR 
algorithm must be able to fi nd the solution starting 
from any initial condition. In this case the settling 
time is found from C(tN) = 1- (22) considering 
C(tN) expression given in (12). Therefore, a 
single-solution is obtained from (22). Moreover, 
from (12) it is noted that 0 < BN < 1 due to 
 > 1, therefore the derivative of (22), given in 
(23), is positive for tN > 0 and zero for tN = 0, which 
implies that (22) is a monotonically increasing 
function with f(0) = -1+ < 0. Such conditions 
guarantee that (22) has a unique solution, and 
taking into account that (23) is continuous, the 
NR method will converge to tsN from any initial 
condition.

 (22)

 (23)

Similar to the critically-damped case, for 
practical purposes the initial condition of the 
NR algorithm can be set from (14) with  = 1 - 
and 0 <  < 1, this taking into account that over-
damped systems have larger normalized settling 
times than critically-damped systems.
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To solve f(tN) given in (18), (20) or (22), selecting 
the proper one depending on the system damping 
ratio, the NR method starts from the initial 
condition tsN = tsN0 previously defi ned. Then, f(tsN) 
is calculated to evaluate the present value tsN, and 
the NR algorithm stops if |f(tsN)| ≤ , where  is a 
threshold to balance the calculation precision and 
the processing time: smaller  produces higher 
precision but longer processing times. If |f(tsN)| > 
, a new tsN value to test is obtained using (24) 
[1] (non-constant modifi cation to tsN), where tsN,old
is the value previously evaluated. New tsN values 
are sequentially tested until |f(tsN)| ≤  is achieved.

 (24)

The simplicity of both NR method and relations 
(18)-(24) allow to implement the proposed 
solution in any programming language to 
accurately calculate the settling time. The 
proposed method (named Method) was 
implemented in Matlab, where fi gure 9 shows 
the comparison between Method and the stepinfo
function (named Real) from the Matlab control 
systems toolbox for 2%, 5% and 10% bands. 
Figure 9(a) shows the normalized settling time, 
where the high accuracy of Method is evident.

Such an accurate calculation is verifi ed by the 
small error between Method and Real data 
presented in fi gure 9(b), which is constrained up 

to 0.6 % for all the bands with an average value 
of 0.1 %. To perform a fair comparison between 
the bands, the NR threshold  was balanced to 
achieve the same error spectrum:  was modifi ed 
proportionally to the band, therefore  is larger 
for larger bands. Such a condition is illustrated 
in fi gure 9(b), where the errors distribution is 
similar for all bands tested. Moreover, fi gure 
9(c) presents the processing time required by 
Method, in comparison with Real, to calculate 
the settling time. Such results put in evidence the 
improvement achieved by the proposed solution, 
in comparison with Matlab stepinfo, since the 
former requires a small fraction of the time to 
obtain a small prediction error, which is almost 
negligible. In such an example, smaller bands 
use smaller  to provide comparable prediction 
errors, which increases the processing time when 
the band is decreased.

Application example: accurate PO 
design

To design the Ta parameter of the PO algorithm 
it is required to defi ne the appropriate irradiance 
(S) condition. In [3] the authors propose to design 
at the lowest irradiance in which the PV system 
will operate. To test such a consideration, the PV 
system of fi gure 2 was parameterized with L = 
600 µH, C = 100 µF, Vb = 48 V, and considering 
six BP585 PV panels connected in parallel. 
Moreover, the PV system was considered with 
irradiances between 500 W/m2 ≤ S ≤ 1000 W/m2.
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Figure 9 Evaluation of proposed method for 2%, 5% and 10% bands

The accurate settling times of the PV system were 
calculated using Method, and their results are 
reported in fi gure 10(a). Those results validate 
the consideration given in [3] because lower 
irradiances produce larger settling times. To avoid 
the condition Ta < ts, Ta must be designed at the 
lower irradiance required by the application. In 
this way, fi gure 10(a) is used to select the accurate 
Ta for the system.

From Method results, the PV system exhibits a 
settling time of 11.71 ms at S = 500 W/m2, while 

at S = 750 W/m2 and S = 1000 W/m2 the settling 
times are 8.55 ms and 6.40 ms, respectively. Figure 
10(b), fi gure 10(c) and fi gure 10(d) illustrate 
the performance of Method for the PO design, 
where the settling times previously calculated 
predict the PV system behavior under different 
conditions. In such fi gures the settling times 
are measured in the average PV voltage, since 
the voltage ripple do not degrade signifi cantly 
the system power [3]. This application example 
shows the usefulness and high accuracy of the 
Method in PV applications.
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Figure 10 Settling time of the PV system for 2% band

Conclusions
This paper proposes a method to accurately 
calculate the settling time in second-order 
systems. Approximations reported in textbooks 
and research papers are reviewed illustrating the 
prediction error generated for those methods. The 
new method, named Method, was used to calculate 
the Ta parameter designing a PO algorithm in a 
PV application. The analytical results show that 
Method accurately calculates the settling time 
predicting the PV system behavior. Moreover, 
due to the accurate results, Method can be used 
to automatize the settling time calculation in any 
second order system such as excitation system, 
operational amplifi ers, dc/dc converters, etc.
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