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Abstract

A procedure to accurately calculate the settling time of second-order systems
for any damping ratio and natural frequency is proposed in this paper. In
addition, settling time calculation for second-order systems is reviewed in this
paper, illustrating the errors generated by classical approximations reported in
textbooks and research papers. Finally, such a procedure is used to precisely
design a perturb and observe algorithm in a photovoltaic application.

--------- Keywords: Settling time, accurate calculation, second order
systems

Resumen

En este articulo se propone un método para calcular exactamente el tiempo de
estabilizacion de los sistemas de segundo orden. Adicionalmente se ilustran
los errores generados cuando las aproximaciones tradicionales son utilizadas
para calcular el tiempo de estabilizacion. Finalmente el método propuesto
es utilizado para disefiar un algoritmo del tipo perturbar y observar en una
aplicacion fotovoltaica.

--------- Palabras clave: Tiempo de estabilizacion, calculo exacto,
sistemas de segundo orden
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Introduction

Photovoltaic (PV) modules provide an electrical
power that depends on the solar irradiance and
temperature acting on the PV module, generating
a large amount of possible operating points.
Such a condition can be observed in figure 1,
where the electrical characteristics of a BP585
PV panel, composed by two PV modules, are
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Figure 1 Electrical characteristics of a BP585 PV panel

The MPP current, voltage, and power change
with the irradiance and temperature [1], therefore
online optimization techniques have been
developed to find such an optimal condition
[2, 3], where the Perturb and Observe (PO)
algorithm [3] is the most widely adopted due to
its simplicity and satisfactory performance.

Figure 2 shows a typical PV generation system
controlled by a PO algorithm, where the duty cy-
cle D of the dc/dc converter is sequentially mo-
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reported for two irradiances. Figure 1 also
presents the reproduction of the BP585 electrical
characteristics by means of the PV model reported
in [1]. Moreover, among such current-voltage and
power-voltage points exists an optimal condition
in which the PV panel produces the maximum
power available for the particular environmental

conditions, named Maximum Power Point
(MPP).
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(b) Power-voltage curves

dified to find the MPP, maximizing the PV power
P,.. The dc/dc converter in figure 2 has a Boost
topology due to its extensively use in grid-con-
nected and stand-alone photovoltaic applications.
Moreover, the PV module operating at the MPP
is modeled by a Norton equivalent, which is an
accurate representation as demonstrated in [4];
and the load is modeled by a voltage source as
proposed in [4], this because photovoltaic inver-
ters and batteries impose a dc-link voltage at the
dc/dc converter output terminals.
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Figure 2 Small-signal model of a PV system based on a dc/dc converter
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To implement the PO algorithm two parameters
must be defined: the perturbation period Ta and
the perturbation size AD. Femia et al. [3] propose
a design procedure for the PO algorithm, where
Ta is calculated to ensure an optimal three-point
behavior on the duty cycle to minimize the power
losses in steady-state conditions [2, 3]; while
AD is calculated to accurately track the MPP in
variable irradiance conditions. To guarantee a
correct operation of the PO algorithm, the PV
voltage must be stable at the instant t,, (t,, =
ktpvxTa, ktpv =1, 2, ...) in which the PO measures
the PV power, therefore Ta must be longer or
equal than the settling time of the PV system [3].

In [3], Femia et al. propose to calculate the Ta
parameter (1), where C represents the input
capacitance of the dc/dc converter, and R,
models the current/voltage derivative of the
PV module at the MPP, see figure 2; while €
specifies the acceptable band to consider stable
the PV voltage. In [3], the authors use € = 0.1 or
10 % band, but other settling time bands can be
assumed, e.g. 2 % and 5 % bands.

T.>-2-R,, C-In(e) (1)
Equation (1) was based on the classical settling
time approximation proposed by Ogata [5], which
introduces significant errors depending on the
damping ratio (p) and natural frequency (® ) of
the PV system. Such p and ®_parameters were
derived from the small-signal model of the PV
system (2) reported in [4], where G, (s) is a second
order system with an additional gain -V,. In such a
small-signal model, V, is the dc-link voltage and L
is the inductance of the dc/dc converter.

Ve
GPV(S): SL.C 1
s>+ e (2)
C'RMPP L-C
JL-C 1
p:— A (‘0/1:—
2-C-Rypp ~NL-C

To provide a more precise and reliable PO design it
is required an accurate calculation of the PV system
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settling time. But the settling time calculation
procedures reported in classical literature for
second-order systems are given for particular bands
or damping ratios, introducing also approximations
that increase the prediction error [5-12]. In
addition, a recent work published in [13] proposes
a settling time calculation procedure based on a
decomposition of deterministic, random or mixed
non-stationary signals in steady-state and transient
components. However, such a procedure is intended
for sensors and transducers modeling due to the
random nature of the input signals, which makes the
solution suitable for the particular application, but
difficult to apply to different second-order systems.

Such undesirable characteristics make the settling
time calculation procedures reported in literature
not reliable to accurately design Ta in PO
algorithms. This condition must be addressed since
the improvement of the PO controllers increase the
power extracted from renewable sources, which
are extensively used nowadays [14, 15]. Therefore,
this paper reviews the settling time calculation for
second-order systems, providing information to
estimate the errors generated by approximations
reported in textbooks and research papers. In
such a way, the reported calculation procedures
are evaluated to quantify their prediction errors
for a wide range of damping ratios and natural
frequencies. Moreover, this paper proposes a
procedure to accurately calculate the settling time
of second-order systems for any damping ratio
and natural frequency conditions, which could
be implemented in any programming language.
Finally, such a procedure is used to precisely design
a PO algorithm in a photovoltaic application.

Settling time of second-order
systems

The settling time t , as defined in [5-10], is the time
interval required by an output signal of a dynamical
system to get trapped inside a band around a new
steady-state value after a perturbation is applied to
the system. To analyze the settling time of a second-
order system, the general G, (s) expression given
in (3) is adopted [5, 8].



0)2

G,o(s) = 2 . 2 (3)

s"+2-p-o, s+ o;

In classical textbooks [5-10] and research
papers [3, 11, 12], the settling time analysis
is mainly focused on under-damped systems
(p <1), providing limited information concerning
to critically-damped systems (p = 1) and over-
damped systems (p > 1). In general, the damping
ratio of industrial systems could exhibit any
value, as in the photovoltaic case (2), therefore
all the damping ratio conditions are addressed in
the following subsections.

Under-damped systems

Since in p < 1 conditions the poles of G, (s) are
complex [5, 8], the inverse Laplace transform of
G, (s) step-response, C(t) = L'[G, (s)/s], is:

C(t) =1 exp(—p ‘W, 't)

(a) Time response for 7 =[0.5, 0.6, 0.7, 0.8]

Figure 3 Normalized step response

From figure 3(b) it is noted that p = 0.5 defines an
m-cross system while p = 0.8 defines an s-cross
system. The settling time t for m-cross systems
corresponds to the maximum t among all the

Accurate calculation of settling time in second order systems: a photovoltaic application

Equation (4) describes the exact time response
of the second-order system to a step perturbation
depending on p and o . To isolate the settling
time analysis from  , the time response of the
second-order system is normalized in terms of
the variable t = w xt as described in [5, 8]:

C(tN) =1- exp(—p ) tN)

Vi=p’ )
sin[tN yJ1-p® —tan™ [—“1__;2 ]:l

The normalized settling time t corresponds to
the instant in which C(t) enters into the band
1te€ to keep trapped inside. From (5) is noted that
C(t,) changes depending on p as reported in figure
3(a), where p = [0.5, 0.6, 0.7, 0.8] conditions
were simulated. Performing a zoom to figure
3(a) around the 2% band for p = [0.5, 0.8], as in
figure 3(b), two types of under-damped systems
are differentiated: the systems with more than
one cross over the band limits, named m-cross
systems, and systems with one cross over the
band limits, named s-cross systems.
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(b) Zoom at 2 % band for ? =[0.5, 0.8]

crosses over the band limits, since after the last
cross the system gets trapped into the band. In
such a way, in m-cross systems the equations
C(t,) = 1£e provide all the crosses over the band
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limits, where t corresponds to the maximum t
value. Instead, in s-cross systems, the settling
time corresponds to the t of the unique cross with
the lower band limit, therefore only the equation
C(t,) = 1-€ must be solved. Such discrimination
allows simplifying the settling time calculation
for s-cross systems.

From (5) and figure 3(b) it is noted that s-cross
systems are characterized by exhibiting a
maximum overshoot lower than the upper band
limit 1+€. Therefore, defining p, < 1 as the
damping ratio in which the maximum overshoot
is equal to 1+¢, all second order systems with p
> p_ are s-cross systems, while p <p_are m-cross
systems. The limit p_ can be found from the
maximum overshoot time [5, 8] following the
procedure proposed by Bert [11] and Piche [12]:

= - 1n(€)
’ 7+ ln(g)2 ©)

Figure 4 shows the limit p_ for different settling
time bands, where the classical 1%, 2% and 5%
bands are specified. It is noted that wider bands
have lower p_values and larger ranges of s-cross
systems; while narrower bands have higher p
values with larger ranges of m-cross systems.
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Figure 4 p_for multiple settling time bands: 0 <& <1

From (5) and figure 3(b) it is also noted that p_
specifies a discontinuity in the settling time vs.
damping ratio relation, this because in p = p

S
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the settling time corresponds to the t_ in which
C(t,) = 1+€ (second cross of the band limit);
while in a p slightly higher than p , i.e. p = p+ &
with E—07, the settling time corresponds to the t,
in which C(t,) = 1-€. Such a difference in C(t)
for p, and p_+ & describes an step-down change
in the settling time for consecutive p conditions.
Moreover, p = p_ provides the lower settling
time possible for m-cross systems because that
condition has a single cross with each band
limit, therefore the settling time occurs earlier
than in systems with more than two crosses
over the band limits. Similarly p = p+ & is
the minimum p for s-cross systems, therefore
p=p_+Erepresents the lower settling time possible
for s-cross systems because increments in p cause
increments in the raising time, incrementing the
settling time. Finally, due to the step-down change
in the settling time for consecutive p conditions
inside [p, p,+ €], the settling time for p = p+ &
is the lowest one for C(t,) on any condition. For
practical purposes, such lowest settling time can
be found considering £ = 0 from C(t,) = 1-e in the
condition p = p_as in (7).

Aty )|p:ps =l-e¢ (7

Other discontinuities in the settling time vs.
damping ratio relation are generated by the
increasing decay of the exponential envelope
of (5) when p increases, which causes that the
last cross over the band limits changes from
one peak-zone to a previous one, changing the
position of the settling time. Such a condition can
be observed in figure 5, where the C(t,) with p
= 0.36 and p = 0.49 have been simulated: it is
noted that in p = 0.36 the settling time occurs at
the third peak, while in p = 0.49 the settling time
occurs at the second peak. The limit case takes
place when the settling time of a system occurs
in the peak P of C(t,) with p = [ because
a slightly increment in the damping ratio to
p =P, + & with §>0", generates a new settling
time, which occurs in the previous peak P-1,
producing a discontinuity in the settling time vs.

damping ratio at p = (s



1.3
! =036
Li First peak: o i
125 ! no settling time ¥ =049
1.2
Second peak:
1.15 ine ti _
- settling tlme’r_for =049 Third peak:
Z 11 ! settling time for ¢ = 0.36
1.05r
1H
0.95
0.9

Figure 5 Settling time peaks for p = 0.36, p = 0.49

In this way, (6) can be generalized to find all the
discontinuities of the settling time vs. damping
ratio relation: such discontinuities occur when the
peaks of C(tpN) = 1xe, where tx is the normalized
peak time given in (8) for the peak n [5, 8], and
Poicn is the damping ratio to fulfill C(t V-1 =¢as
in (9) [5, 8], obtaining the critical dampmg ratios
given in (10) where the discontinuities take place.

nxiw

ty=—F—, n=12,3...
PN ’ )
\’l_pik.u (8)
X0y
C( pN) l=¢= exp( ﬁ , 2=123.. 9)
pk.n
'Oplcu:L(g) , n=12,3.. (10)

>t +1n(e)’

From (10) it is noted that n = 1 corresponds to the
first peak, therefore it defines the first discontinuity
previously specified by p_ as the limit between
m-cross and s-cross systems. In fact, (6) can be
obtained by replacing n = 1 in (10), which put in
evidence the generality of (10). Moreover, from
(10) it is concluded that exist infinite number
of discontinuities, but the corresponding limit
damping ratio p, ~decreases almost inversely
proportional to the number of peaks to be analyzed.

In conclusion, the continuous zones of the
settling time vs. damping ratio relation can be
defined from (10): all damping ratios p inside
[ppk’n, ppkm], with n = 1, 2, 3... and p < p,

20 ; ' ,
18 = —_— =%
-~ g=5%
16: ° — e=10% |
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generate continuous settling time values, while
at p =P, and Pn @ Step change on the
settling time occurs. Moreover, the settling time
of m-cross systems is found by solving C(t,) =
l1te using (5), selecting the higher t solution
t, (normalized settling time) and removing the
time normalization by calculating t =t/ ® .
Similarly, the settling time of s-cross systems
is found by solving C(t,) = 1-€ using (5) to find
the unique t_solution t, removing also the time
normalization by calculating t =t_ /o .

Figure 6 shows the previous analyses results,
which have been mathematically condensed in
(5-10), for under-damped second-order systems.
Such a figure depicts the normalized settling time
t (t = tXw ) for the classical bands of 2%, 5%
and 10%, where the predicted discontinuities on
the m-cross systems are observed. Moreover, it is
confirmed that no discontinuities occur for s-cross
systems. Finally, Fig. 6 also put in evidence
existence of a minimum t, for each band,
which could be used to optimize the response of
industrial systems, e.g. a photovoltaic system.

0.2 0.4 0.6 0.8 1

Figure 6 Normalized settling time of under-damped
second-order systems

Critically-damped and over-damped
systems

The critically-damped systems (p = 1) have the
poles of G,,(s) equal and real [5, 8]. Therefore,
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the inverse Laplace transform of G,(s) step-
response, C(t) = L "'[G,,(s)/s], normalized in
terms of the natural frequency using t = txm
is given by

Cty) =1-(1+1ty)-exp(-ty) (11)

Since (11) has no sinusoidal components, the
settling time of a critically-damped system occurs
in the same condition than in the s-cross systems:
C(tpN) =1-¢.

Similarly, the over-damped systems (p > 1) have
the poles of G, (s) different and real [5, 8], and
the normalized time response of G, (s) step-
response is given by

C(ty) = [AN/BN]' [l—exp(—BN 'tN)]+[CN/DN]' [l—exp(—DN 'tN)]

1

1
- Be=—~—
Ax 2w/p2—1’ : p+4/p’ -1

Again, (12) has no sinusoidal components,
therefore the settling time of an over-damped
system occurs in C(tpN) =1-e.From (11)and (12)it
is concluded that both critically and over-damped
systems have no discontinuities in the settling
time vs. damping ratio relation. In addition, since
the settling time of s-cross systems is calculated
at the same condition than in both critically and
over-damped systems, it is evident that p > 1
generates larger settling times than p_ <p <1 due
to the larger rising time of larger damping ratio
conditions.

Q 5 10 15 20
1 [

(a) Step response for p=1, p=1.5and =2.

12
Cy=—Ay, DN:L (12
By
Figure 7 illustrates the previous concepts: figure
7(a) presents the normalized step responses for
p=1,p=1.5and p = 2, where the settling time
increases with the damping ratio. Also, figure
7(a) contrasts the settling time for 2%, 5% and
10% bands, where it is verified that a single
cross with the band limits occurs. In addition,
figure 7(b) provides a more general view of the
normalized settling time for 2%, 5%, and 10%
bands, presenting a sweep on the damping ratio
for1 <p<3.

il
(b) Settling time for 1 <p < 3

Figure 7 Normalized time response for critically-damped and over-damped systems
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Figure 7 confirms that both critically and over-
damped systems are continuous in the settling
time vs. damping ratio relation, also they confirm
that increment/decrement in P generates an
increment/decrement in the settling time.

Evaluation of classical settling
time criteria

Taking into account the complexity of solving
the implicit relations between mnormalized
settling time t and the p given in (5), (11) and
(12), some authors have proposed calculation
procedures to approximate the t, by means of
explicit equations. However, such expressions
could introduce significant errors depending on
both p and ® . In particular, the widely adopted
relation given in (13) was proposed by Ogata
[5], which provides a continuous relation that
interpolates the intermediate points of figure 6,
therefore it is only valid for 0 < p < 1. Similarly,
Kuo et al. [8] propose the continuous relation
given in (14), based on the exponential decay of
under-damped systems (5), which again is valid
for 0 <p <1 only. Kuo et al. also provide a set
of relations for a wider range of p (15), which are
only applicable to the 5% band (€ = 0.05).

—In(é)

tsNOgata:—p , O<p<l (13)
—ln(é‘x«/l—pz)
tsN,Kuo:fa 0<p<l (14)
2, 0<p<0.69
Lon kuo_s% = | P (15)
4.5x0, p>0.69

Other interesting relations where proposed
by Bert in [11], where (16) approximates the
settling time by means of the first two terms of
a power series representation of (5). But Bert’s
expression requires to calculate the constants a
and b by means of a precise solution of (5), which
reduces its simplicity. In particular, Bert provides
a=2.99 and b = 0.56 for the 5% band. Then,
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Piche improves Bert’s solution by expanding
(5) into McLaurin series instead of power series
[12], obtaining (17), which provides an equation
more general since no external, or offline,
parameterization is required to fit any settling
time band. In general, Bert and Piche works
have the same accuracy if Bert‘s parameters are
externally calculated. Moreover, Bert and Piche
are continuous and simple relations applicable to
under-damped systems only.

a+b-p’
tsN,Bert =—p’0<p <l (16)
p
—Inle
sN,Piche:A+%’0<p<l 17)

In any case, relations given in (13)-(15) are the
most widely adopted ones in control systems
textbooks: in example, Carstens [6] and Dorf [7]
books use the Ogata relation (13), while Nise
[10] and Mandal [9] books use the Kuo relation
(14). Figure 8 shows the evaluation of relations
(13)-(17) for 2%, 5% and 10% bands. The 5%
is evaluated in figure 8(a) and figure 8(b), where
large errors are caused by the classical criteria in
comparison with the real settling time measured
using the exact time response of the system. It is
observed that Kuo’s criterion is the only one for
p > 1 using (15), which is valid for € = 0.05 only.
Moreover, figure 8(b) put in evidence the large
errors introduced by such explicit equations, which
can be up to 60 % at damping ratios around 0.7.

In addition, figure 8(b) also highlights that,
classical criteria given in (13)-(17), could either
underestimate or overestimate the settling time, it
depending on the p. Therefore, a system designed
with such criteria could exhibit a settling time
shorter or larger than the expected one. Figure
8(c) and figure 8(d) show the behavior of the
classical criteria for both 2% and 10% bands,
where Bert criterion is not presented since a and
b parameters are not reported for 2% and 10%
bands, and also because Piche criterion is close
to Bert approximation. Figure 8(c) and figure
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8(d) show the same characteristics than figure
8(a): the classical criteria do not reproduce the
settling time vs. damping ratio discontinuities,
introducing large errors. Moreover, the settling
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Figure 8 Evaluation of classical settling-time criteria

Method to accurately calculate the
settling time in second-order
systems

The normalized settling time can be accurately
calculated by using (5), (11) or (12), depending

on the p value, at the cross of C(t,) with the band
limits.
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time is estimated for 0 < p < 1 only. Therefore,
to perform an accurate design of a second-order
system, a more precise settling-time calculation
procedure is required.
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(d) Normalized settling-time for 10% band.

In m-cross systems, i.e. 0 < p < p, the settling
time is the higher t that fulfills C(t) = 1£€. From
C(t,) expression for m-cross systems given in (5),
the settling time is obtained from the solutions
of (18). But due to the implicit nature of such
an equation, an optimization technique must be
used to find the solutions. This paper adopts the
Newton-Raphson (NR) method [1], which can be
easily automatized.



£t )= exp(=p-ty)

— (13)
sin[tN Al=p° = tan‘l[l_;pp] te=0

The derivative of (18), given in (19), is equal
to zero in multiple points, therefore multiple
solutions of f(t ) exist as illustrated in figure
5. Such a characteristic makes impossible to
guarantee that the NR algorithm finds all the
solutions to select the higher t, since the NR
trajectory and the NR solution depends on the
adopted initial condition.

dty -p

o (|

1-p p

df(t,) = exp(—p-tN){COSI:tN y1-p® —tan'l[ 1-p° ]]
(19)

Taking into account that the first relation
proposed by Kuo (14) is based on the exponential
envelop of C(t,) in (5), it provides a good initial
condition for the NR algorithm: relation (14)
gives an overestimation of t, even for a 5%
band where (15) provides underestimations.
Therefore, starting from (14), the NR algorithm
will find the nearest solution, which corresponds
to the maximum t that fulfills (18), i.e. the
settling time t . Similarly, in s-cross systems (p,
< p < 1) the settling time is obtained from the
negative solution of (18), where again the NR
initial condition is calculated from (14).

For critically-damped systems (p = 1), the settling
time is found from C(t,) = 1-€ considering C(t,)
expression given in (11). C(t,) = 1-¢ in this
case corresponds to the solution of (20), which
derivative is given in (21). Since in p = 1 there is
a single cross with the band limits, as previously
concluded, the NR algorithm must be able to find
the solution starting from any initial condition.
This is verified by analyzing (21), which is
negative for t > 0 and zero for t = 0; hence (20)
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is a monotonically decreasing function with f(0)
= 1-€¢ > 0. Therefore, (20) has a unique solution
and (21) is continuous, which ensures that the
NR method will converge to t from any initial
condition. For practical purposes, the initial
condition can be set from (14) with p = 1- & and
0 <& < 1, where the near & to 1- makes faster the
convergence of the NR algorithm.

f(tN)=(l+tN)'eXp(_tN)_8=0 (20)

df(ty )

dt =ty ~exp(-ty) @1

For over-damped systems (p > 1), in the same
way as in critically-damped systems, there is a
single cross with the band limits; hence the NR
algorithm must be able to find the solution starting
from any initial condition. In this case the settling
time is found from C(t,) = 1-& (22) considering
C(t,) expression given in (12). Therefore, a
single-solution is obtained from (22). Moreover,
from (12) it is noted that 0 < B, < I due to
p > 1, therefore the derivative of (22), given in
(23), is positive for t >0 and zero for t = 0, which
implies that (22) is a monotonically increasing
function with f(0) = -1+€& < 0. Such conditions
guarantee that (22) has a unique solution, and
taking into account that (23) is continuous, the
NR method will converge to t from any initial
condition.

=g i-ewlBon)l

—A, -By[l—exp(=t,/By)]-1+e=0

df(ty)
dt

=Ay '[eXp(_ By 'tN)_eXp(_ tN/BN)] (23)

Similar to the critically-damped case, for
practical purposes the initial condition of the
NR algorithm can be set from (14) with p=1-&
and 0 < < 1, this taking into account that over-
damped systems have larger normalized settling
times than critically-damped systems.
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To solve f(t,) given in (18), (20) or (22), selecting
the proper one depending on the system damping
ratio, the NR method starts from the initial
condition t =t previously defined. Then, f(t )
is calculated to evaluate the present value t , and
the NR algorithm stops if [f{t )| <5, where § is a
threshold to balance the calculation precision and
the processing time: smaller & produces higher
precision but longer processing times. If [f(t_ )| >
d, a new t value to test is obtained using (24)
[1] (non-constant modification to t ), where told
is the value previously evaluated. New t  values
are sequentially tested until [f(t )| <& is achieved.

sNyold — df(tN) (24)

=t old

The simplicity of both NR method and relations
(18)-(24) allow to implement the proposed
solution in any programming language to
accurately calculate the settling time. The
proposed method (named Method) was
implemented in Matlab, where figure 9 shows
the comparison between Method and the stepinfo
function (named Real) from the Matlab control
systems toolbox for 2%, 5% and 10% bands.
Figure 9(a) shows the normalized settling time,
where the high accuracy of Method is evident.

Such an accurate calculation is verified by the
small error between Method and Real data
presented in figure 9(b), which is constrained up
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to 0.6 % for all the bands with an average value
of 0.1 %. To perform a fair comparison between
the bands, the NR threshold & was balanced to
achieve the same error spectrum: 8 was modified
proportionally to the band, therefore J is larger
for larger bands. Such a condition is illustrated
in figure 9(b), where the errors distribution is
similar for all bands tested. Moreover, figure
9(c) presents the processing time required by
Method, in comparison with Real, to calculate
the settling time. Such results put in evidence the
improvement achieved by the proposed solution,
in comparison with Matlab stepinfo, since the
former requires a small fraction of the time to
obtain a small prediction error, which is almost
negligible. In such an example, smaller bands
use smaller d to provide comparable prediction
errors, which increases the processing time when
the band is decreased.

Application example: accurate PO
design

To design the Ta parameter of the PO algorithm
it is required to define the appropriate irradiance
(S) condition. In [3] the authors propose to design
at the lowest irradiance in which the PV system
will operate. To test such a consideration, the PV
system of figure 2 was parameterized with L =
600 pH, C =100 pF, V, =48V, and considering
six BP585 PV panels connected in parallel.
Moreover, the PV system was considered with
irradiances between 500 W/m? <'S <1000 W/m?.
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Figure 9 Evaluation of proposed method for 2%, 5% and 10% bands

The accurate settling times of the PV system were
calculated using Method, and their results are
reported in figure 10(a). Those results validate
the consideration given in [3] because lower
irradiances produce larger settling times. To avoid
the condition Ta < t, Ta must be designed at the
lower irradiance required by the application. In
this way, figure 10(a) is used to select the accurate
Ta for the system.

From Method results, the PV system exhibits a
settling time of 11.71 ms at S = 500 W/m?, while

at S =750 W/m? and S = 1000 W/m? the settling
times are 8.55 ms and 6.40 ms, respectively. Figure
10(b), figure 10(c) and figure 10(d) illustrate
the performance of Method for the PO design,
where the settling times previously calculated
predict the PV system behavior under different
conditions. In such figures the settling times
are measured in the average PV voltage, since
the voltage ripple do not degrade significantly
the system power [3]. This application example
shows the usefulness and high accuracy of the
Method in PV applications.
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Figure 10 Settling time of the PV system for 2% band

Conclusions

This paper proposes a method to accurately
calculate the settling time in second-order
systems. Approximations reported in textbooks
and research papers are reviewed illustrating the
prediction error generated for those methods. The
new method, named Method, was used to calculate
the Ta parameter designing a PO algorithm in a
PV application. The analytical results show that
Method accurately calculates the settling time
predicting the PV system behavior. Moreover,
due to the accurate results, Method can be used
to automatize the settling time calculation in any
second order system such as excitation system,
operational amplifiers, dc/dc converters, etc.
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