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Abstract

The Coded Aperture Snapshot Spectral Imaging system (CASSI) is a 
remarkable optical imaging architecture, which senses the spectral information 
of a three dimensional scene by using two-dimensional coded focal plane 
array (FPA) projections. The projections in CASSI are localized such that 
each measurement contains spectral information only from a specific spatial 
region of the data cube. Spatial resolution in CASSI is highly dependent 
on the resolution the FPA detector exhibits; hence, high-resolution images 
require high-resolution detectors that demand high costs. To overcome 
this problem, in this paper is proposed an optical model for spatial super-
resolution imaging called SR-CASSI. Spatial super-resolution is attained as 
an inverse problem from a set of low-resolution coded measurements by using 
a compressive sensing (CS) reconstruction algorithm. This model allows the 
reconstruction of spatially super-resolved hyper-spectral data cubes, where 
the spatial resolution is significantly enhanced. Simulation results show an 
improvement of up to 8 dB in PSNR when the proposed model is used. 

---------- Keywords: Super-resolution, hyper-spectral imaging, 
compressive sensing, optical imaging, CASSI, multi-shot, coded 
aperture-based systems

Resumen

El sistema de adquisición de imágenes espectrales basado en apertura 
codificada de única captura (CASSI) es una arquitectura óptica notable, 
que permite capturar la información espectral de una escena utilizando 
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proyecciones bidimensionales codificadas. Las proyecciones en CASSI se 
encuentran ubicadas de tal manera, que cada medición contiene únicamente 
información espectral específica de una región del cubo de datos. La 
resolución espacial en el sistema CASSI depende altamente de la resolución 
del detector utilizado; así, imágenes de alta resolución requieren detectores 
de alta resolución, que a su vez demandan altos costos. Como solución a este 
problema, en éste artículo se propone un modelo óptico de súper-resolución 
para el mejoramiento de la resolución espacial de imágenes hiperespectrales 
denominado SR-CASSI. Súper-resolución espacial se logra tras solucionar un 
problema inverso utilizando un algoritmo de compressive sensing (CS), que 
tiene como entrada las mediciones codificadas de baja resolución capturadas. 
Éste modelo permite la reconstrucción de cubos de datos hiperespectrales 
súper resueltos, cuya resolución espacial es aumentada significativamente. 
Los resultados de las simulaciones muestran un mejoramiento de más de 8 dB 
en PSNR cuando el modelo propuesto es utilizado.

---------- Palabras clave: Súper-resolución, imágenes hiperespectrales, 
Compressive Sensing, CASSI, multicaptura, sistemas basados en 
aperturas codificadas 

Introduction
In most applications where digital images are 
used, are necessary and often required that 
these exhibit high-resolution. High-resolution 
refers to a greater number of pixels per unit 
area in an image, which allows observing a 
greater amount of detail in images that can be 
critical and important in different areas such as 
astrophysics [1], environmental remote sensing 
[2], microscopy [3], identification of military 
objectives [4], biomedical image processing 
[5] and others. Images used in these areas are 
considered intrinsically multidimensional due 
to their representation require more than two 
dimensions; these dimensions include, spectral, 
time, spatial, etc. Hyper-spectral images are a 
specific kind of multidimensional images. These 
are usually captured by spectrometers, which are 
optical instruments that measure the intensity or 
polarization of electromagnetic waves across a 
broad range of wavelengths. They give precise 
wavelength information of a scene, but spatial 

information is restricted to the measurement 
location [6].

The objective of using spectrometers is to know 
the information comprised in a three-dimensional 
scene, in other words, in a hyper-spectral image 
(two dimensions represent the spatial domain, 
and the other the spectral or also known as 
wavelength domain). If a scene or object has 
many spectral and spatial characteristics, it is 
necessary to scan the entire object. Figure 1(a) 
depicts the three different kind of scanning 
options; one is referred as pushbroom scanning, 
the second as whiskbroom scanning and the last 
one as spectral filtering [7]. The former scan 
the scene pixel by pixel, while the remaining 
techniques scan the scene line by line; therefore, 
although the remaining scanning processes are 
done more rapidly, they are more expensive. On 
the other side, figure 1(b) shows the snapshot 
imaging spectrometer; in contrast, it collects the 
entire datacube information in a single integration 
period without scanning.
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In snapshot spectrometers the scene is encoded 
both spatially and spectrally using the theory 
of compressive sensing (CS) [8-10]. For this 
reason, for a coded aperture-based optical 
imagery system, the intensity on the detector 
cannot be directly correlated to spectral density. 
Instead, the image captured at the detector must 
be processed using an inverse model that requires 
some previous knowledge of the optical elements 
present in the compressive optical system. 
Spectrometers of this type are referred as spectral 
or hyper-spectral imagers. The premise to encode 
spatially and spectrally a hyper-spectral scene 
is due to hyper-spectral images are well suited 

for sparse representations as they exhibit high 
correlation between spectral bands [11, 12]. 

Coded aperture snapshot spectral imager 
(CASSI) [13-15] is an imaging system that 
effectively exploits CS principles. In CASSI 
the coded measurements captured by the FPA 
are mathematically equivalent to compressive 
random projections in CS. Notice that in CS, 
traditional sampling is replaced by measurements 
of inner products with random vectors. For sensing 
purpose, CASSI uses a single measurement to 
capture a complete spatial-spectral data cube. 
The CASSI instrument is depicted in figure 2.

Figure 1 Scanned sections collected during an integration period for (a) scanning, and (b) snapshot devices [7]

Figure 2 Coded aperture snapshot spectral imager (CASSI)
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CASSI is composed by an objective lens 
that focuses the 3D scene in the plane of the 
coded aperture, which modulates it spatially. 
Additionally, a band-pass filter is used between, 
to limit the spectral range of action. CASSI also 
has a dispersive element (commonly a prism), 
which shears horizontally each spectral band 
respect to its wavelength, and a FPA detector that 
integrates, and captures the 3D scene. For energy 
transmission between optics elements detailed 
above, a set of relay lenses is used. 

Recent studies have shown that using multiple 
CASSI measurements [16-19] instead of a 
single measurement provides better datacube 
reconstructions [20-22]. High quality in data 
cube reconstructions depends directly on the 
resolution of the detector. However, high-
resolution detectors demand high costs. Spatial 
super-resolution in coded aperture-based optical 
hyper-spectral imaging systems (SR-CASSI) 
is of high interest because high-resolution 
reconstructions can be attained from low-
resolution/cost detectors. Spectral imaging in 
infrared (IR) wavelengths is one of the principal 
examples where FPAs are critical components, 
because they become very costly when resolution 
increases [23].

In this paper, we propose the mathematical 
matrix model for spatial super-resolution in 
coded aperture-based optical hyper-spectral 
imaging systems. Spatial super-resolution is 
attained by solving an inverse problem that 
accounts for the high-resolution coded aperture, 
the dispersive element and the decimation 
induced by the low-resolution detector. 
Simulations and experiments are performed, 
obtaining significantly enhancement in spatial 
data cube reconstructions.

Spatial super-resolution in CASSI
Firstly, it is important to notice the role of CS 
theory in hyper-spectral image processing, 
particularly in coded aperture-based optical 
imaging systems. Formally, a hyper-spectral 
signal F∈RN×M×L, with N and M representing 
the spatial resolution and L the spectral depth, 
or its vector representation f∈RN.M.L is S-sparse 
on some basis Ψ=Ψ1⨂Ψ2⨂Ψ3 such that f=Ψθ 
can be approximated by a linear combination of 
S vectors from Ψ with S<N.M.L. The operator 
⨂ represents the Kronecker product and Ψ the 
Kronecker basis representation of f [24]. The 
theory of CS shows that f can be recovered with 
high probability from m random projections, when 
m<Slog(N.M.L)<N.M.L. Specially for CASSI, 
the random projections are given by g=Hf, where 
H represents the transmission optical function 
of the system, accounting for the coded aperture 
and the dispersive element. On the other hand, 
the random projections for SR-CASSI are given 
by g=DHf, with D being the decimation due to 
the low-resolution detector and H representing 
the effect of the high-resolution coded aperture 
and the dispersive element.

The principal objective in spatial super-resolution 
is to obtain high-resolution reconstructions from 
sets of measurements captured by low-resolution 
FPAs. Figure 3 shows the optical architecture 
proposed for spatial SR-CASSI to achieve 
this objective. There, the image source density 
denoted as f0 (x,y,λ) is first coded by the high-
resolution coded aperture T(x,y). The resulting 
coded field f1 (x,y,λ) is subsequently sheared 
horizontally by a dispersive element before it 
impinges onto the FPA, resulting in the signal 
f2 (x,y,λ). The output f2 (x,y,λ) is then optically 
relayed into the FPA, where the compressive 
measurements are realized by the integration 
over the detector’s spectral range sensitivity.
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Assuming a N×M×L hyper-spectral data cube, 
the SR-CASSI model is represented as follows. 
The spatial modulation realized by the coded 
aperture can be written as in equation (1),

	 f1 (x,y,λ) = T(x,y) f0 (x,y,λ)	 (1)

The modulated spatio-spectral information is then 
sheared horizontally by the dispersive element. 
Then the signal obtained after dispersion is given 
by equation (2) as

f2 (x,y,λ) = ∫∫ f1 (x,y,λ)h(x'-x-S(λ),y'-y)dx' dy	 (2)

where h(x'-x-S(λ),y'-y) represents the dispersive 
element operation with S(λ)being the dispersion 
function which depends on the spectral band 
wavelength. The measurements across the FPA 
are realized by the integration of the field f2 (x,y,λ) 
over the detector’s spectral range sensitivity as 
g(x,y) = ∫ f2 (x,y,λ)dλ. Hence, replacing f2 (x,y,λ) 
from Eq. (2), we obtain in equation (3),

g(x,y)=∫∫∫T(x-S(λ),y) f0 (x-S(λ),y,λ)dxdydλ	 (3)

Since the FPA detector is spatially pixelated, the 
measurement at the (m,n)th  pixel is given by the 
integration of Eq. (3) as presented in equation (4),

	 Gm,n=∫∫p(m,n:x,y)g(x,y)dxdy+ωm,n	 (4)

where ωm,n represents additive noise from the 
capturing process, and p(m,n:x,y) the detector 
pixelation function given by p(m,n:x,y) = 

, with Δd being the pixel width 
of the detector. By replacing equation (3) in 
equation (4) the (m,n)th measurement can be 
expressed as in equation (5), 

	

  (5)

where the FPA pixelation function is replaced by 
re-defining the spatial integration limits, taking 
into account the size mismatch between the high-
resolution coded aperture features and the low-
resolution FPA pixels.

A critical requirement for achieving super-
resolution is that the pitch of the modulating 
coded aperture must be lower than the one of the 
detector. Letting Δc be the spatial width between 
elements in the coded aperture, then, the pitch 
ratio between the coded aperture and the detector 
is defined as Δ=  Assuming the side length of 
the detector spans an integer number of coded 
aperture features, the horizontal and vertical 
spatial super-resolution are thus limited by Δc. 
Hence, the compressive sensing measurement at 
the (m,n)th detector pixel can be written in discrete 
form as in equation (6),

Figure 3 SR-CASSI architecture. The coded aperture pitch is smaller than the FPA pixel pitch
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	 (6)

In matrix notation, a snapshot measurement at 
the detector is represented in equation (7) as,

	 g=DHf,	 (7)

where, H is a N(M+L-1)×NML matrix representing 
the transmission function of the system, and 
D a  ×N(M+L-1) matrix representing 
the decimation. Notice that f and g are vector 
representations of F and G respectively. For a 
multiple-shot approach, equation (7) changes as 
stated in equations (8) and (9),

	 	 (8)

	  .	 (9)

where ∈{0,1}N(M+L-1)K×NML, for K shots. Notice 
that the coded aperture pattern Ti as given in 
equation (10) changes for each ith snapshot. The 
optical transmission function of the system for 
the ith snapshot in equation (8) can be expressed 
in matrix form as,

	 Hi = PTi	 (10)

with P being a N(M+L-1)×NML matrix 
representing the dispersive element operation, 
and Ti a NML×NML block-diagonal matrix 
accounting for the ith coded aperture as given in 
equation (11),

	 (11)

where ti represents the ith N×Mcoded aperture 
in lexicographical notation, and diag(ti) is a 

function which places the elements of ti in 
the diagonal of a matrix. Note that 0NM×NM is a 
zero-valued matrix with NM rows and columns. 
Besides, the dispersive element operation when 
linear dispersion is considered, is represented by 
a matrix P which is given by equation (12),

  (12)

where 1NM×1 is a NM long one-valued column 
vector. Finally, let define d=[(11×Δ 01×(N-Δ) ] and 

=μΔ⨂d, where μΔ is a Δ-long one-valued row 
vector. Then, let define  as in equation (13),

	 	 (13)

with ΘR being a permutation matrix as in equation 
(14),

  (14)

where  is the identity matrix. Notice, the matrix 
operation A(ΘR

T )k shifts the columns of matrix 
A, k positions to the right. By using the equation 
(13) and (14), the decimation operation due to the 
low-resolution detector can be modeled as given 
in equation (15),

 	 (15)

A graphical scheme of the multi-shot approach is 
depicted in figure 4. There, each coded aperture 
in a particular shot spatially modulates the data 
cube. After modulation, the data cube is relayed 
onto the prism, which shifts horizontally each 
spectral band S(λ) spatial units. Finally, after the 
prism shears the modulated data cube, the N'×M' 
low-resolution detector integrates it. Notice that 
N' =  and M'= .
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After detailed the sensing model, an estimation 
of the hyper-spectral signal can be obtained by 
solving an inverse problem. Precisely, hyper-
spectral image data cube reconstruction  for 
SR-CASSI can be achieved by solving the 
optimization problem stated in equation (16),

  (16)

where Ψ represents the projection basis where 
the hyper-spectral signal becomes sparse, and θ 
are its representative sparse coefficients (refers 
to the beginning of spatial super-resolution in 
Cassi). Furthermore, τ > 0 is a regularization 
parameter which balances the conflicting tasks 

of minimizing the least square of the residuals, 
while at the same time, yielding a sparse solution 
[25].

Simulations and results
A high-resolution hyper-spectral datacube 
considered as the digital reality, is experimentally 
obtained and depicted in figure 5. The acquisition 
process is performed by using a high-resolution 
256×256 FPA detector exhibiting a 9.9 μm pixel 
pitch, and assuming a linear dispersive element 
(as in Eq. 12) in the spectral range between 
451 nm and 642 nm (the band pass filter allows 
only visible spectra to pass through the optical 
system). 

Figure 4 Multi-shot spatial super-resolution sensing model. The datacube is coded spatially by the set of coded 
apertures T1,…,Tk. Subsequently, the prism disperses the modulated data. Finally, the low-resolution detector 
integrates the dispersed and coded information. Note that Δc and Δd represent the coded aperture and detector 
pixel width respectively
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Due to the pixel pitch and the linear dispersion, 
24 spectral bands compose the data cube. From 
the high-resolved datacube (figure 5, right) is 
obtained a spectrally coarse 256×256×6 version 
by assuming an integration step of 4 bands; this is 
considered as the incoming scene for both CASSI 
and SR-CASSI approaches. Additionally, a 64×69 
low resolution FPA is used in all the experimental 
simulations. Particularly for SR-CASSI, the 

high-resolution coded aperture exhibits 256×256 
pixels as spatial resolution, while on the other 
hand CASSI uses a 64×64 low-resolution coded 
aperture matching with the FPA pixel pitch. 
The entries for both coded apertures as given in 
Eq. (11) are random realizations of a Bernoulli 
random variable with parameter p=0.5. In figure 
6 is depicted the method used for comparison 
purposes.

Figure 5 Original scene (left) and 256×256×24 hyper-spectral data cube (right). The hyper-spectral data cube 
is obtained by using a 256×256 coded aperture, and by considering a linear prism in the spectral range between 
451 nm and 642 nm

Figure 6 Comparison method between CASSI and SR-CASSI. Both methods use identical optical elements 
except for the coded aperture. Due to the low-resolution coded aperture used in CASSI, the inverse reconstruction 
only reaches 64×64 as spatial resolution; then, a spatial interpolation step is required for comparison purposes
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Notice, the spectral range remains fixed for the 
high/low resolution, and coarse data cubes. In 
consequence, the bandwidth of each spectral 
slice in the high-resolution data cube is 8 
nanometers, while the low-resolution data cube 
exhibits 32 nanometers per band. For datacube 
reconstructions, the Gradient Projection for 
Sparse Reconstruction algorithm (GPSR) [26] is 
used to solve the inverse problem given in Eq. 
(16), by considering the representation basis 
Ψ as the Kronecker product [22] of three basis 
Ψ=Ψ1⨂Ψ2⨂Ψ3, where the combination Ψ1⨂Ψ2 
is the 2D-Wavelet Symlet 8 basis, and Ψ3 is the 
Discrete Cosine basis.

In order to evaluate the efficiency of SR-
CASSI, the decimation ratio between the high-
resolution coded aperture features and the low 
resolution FPA pixels was varied between 2, 4 
and 8 (Δ=2,4,8) in Eq. (13). The PSNR of the 
reconstructed data cubes, as a function of the 
number of FPA measurements captured, is shown 
in figure 7. SR-CASSI obtains better PSNR than 
CASSI when more than 40 FPA measurements are 
taken for Δ=2,4 and more than 80 for Δ=8. This 
improvement is approximately 8 dB, 6 dB and 2.6 
dB for Δ=2,4,8 respectively. The PSNR in CASSI 
remains static as number of shots increase, due 
to the fact that no sub-pixel information can be 
exploited.

Shots PSNR (dB)
CASSI SR-CASSI

1 11.76 11.36 11.66 11.79
8 21.70 14.47 16.37 16.22
16 24.72 18.48 19.61 17.35
24 24.94 20.33 21.18 18.75
32 24.95 23.37 23.52 20.75
48 24.95 27.92 26.95 22.60
96 24.96 32.84 30.63 26.42
192 24.96 33.16 31.15 27.84

Figure 7 PSNR comparison between CASSI and SR-CASSI. The pitch ratio between the detector and the 
coded aperture for SR-CASSI was varied between 2, 4 and 8, achieving improvements of up to 8, 6 and 2.6 dB 
respectively when 192 shots were taken, as shown in the table. SR-CASSI achieves better reconstruction PSNR 
when more than 40 shots are measured for Δ=2,4 and more than 80 for Δ=8

Results in figure 7 show an effectively way to 
exploit sub-pixel information from the hyper-
spectral scene as more shots are captured. Also, 
it can be seen that even when using extreme pitch 
ratios as Δ=8, the system continues overcoming 
CASSI results. SR-CASSI requires at least 
40 shots to reach CASSI due to the amount 
of information collected is less and depends 

directly on the pitch ratio; as higher it is, more 
FPA shots are required (dotted square vs. dotted 
circle SR-CASSI curves). In figure 8 a zoomed 
version of the six original hyper-spectral bands 
is shown. Furthermore, in order to show the 
visual improvement, figure 9 and 10 depict the 
reconstructed spectral channels when 16 and 192 
measurements are captured respectively. 
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Figure 8 Zoomed portion of the original hyper-spectral bands

Figure 9 Zoomed portion of reconstructed data cube when 16 shots are measured. First row depicts CASSI 
results (PSNR = 24.72 dB). While second, third and fourth row show SR-CASSI results for pitch ratios of 2, 4 and 
8 respectively (PSNR = 18.48 dB, 19.61 dB, 17.35 dB)

Figure 10 Zoomed portion of reconstructed data cube when 192 shots were measured. First row depicts CASSI 
results (PSNR = 24.96 dB). While second, third and fourth row show SR-CASSI results for pitch ratios of 2, 4 and 
8 respectively (PSNR = 33.16 dB, 31.15 dB, 27.84 dB)
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Finally, the complete reconstructed data cubes 
are integrated and visualized in figure 11 as seen 
by a Stingray F-033C CCD color camera. The 

enhancement achieved by using the proposed 
model can be easily identified.

Figure 11 Reconstructed data cubes as seen by a Stingray F-033C CCD color camera. The first image is the 
original hyper-spectral data cube. The second represents the CASSI result; and the third and fourth are the SR-
CASSI results for Δ=2,4 when 192 shots are measured.

Conclusions
A super-resolved methodology for coded 
aperture-based multi-shot hyper-spectral imaging 
systems has been proposed. The mathematical 
matrix model was developed to simulate the 
effect of SR-CASSI optical elements, including 
the decimation transformation induced by 
the low-resolution detector. The proposed 
optical architecture allows exploiting sub-pixel 
information from the original hyper-spectral 
signal at the cost of capture multiple FPA 
measurements. Improvements of 8 dB, 6 dB and 
2.6 dB in PSNR were achieved for pixel pitch 
ratios of 2, 4 and 8, respectively.
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