
36

Rev. Fac. Ing. Univ. Antioquia N.° 68 pp. 36-47. Septiembre, 2013

Library for model-based design of image
processing algorithms on FPGAs

Biblioteca para diseño basado en modelos de
algoritmos de procesado de imágenes en FPGA

Luis Manuel Garcés-Socarrás1*, Santiago Sánchez-Solano2, Piedad Brox
Jiménez2, Alejandro José Cabrera Sarmiento1

1Grupo de investigación de Sistemas Digitales Empotrados, Departamento
de Automática, Instituto Superior Politécnico José Antonio Echeverría
(CUJAE). CP: 19390. La Habana, Cuba
2Grupo de Investigación TIC180, Instituto de Microelectrónica de Sevilla
(IMSE-CNM), CSIC-Universidad de Sevilla. CP. 41092, Sevilla, España

(Recibido el 23 de abril de 2012. Aceptado el 5 de agosto de 2013)

Abstract

This paper describes a library (XSGImgLib) that includes parameterizable
blocks to implement low-level image processing tasks on FPGAs. A model-
based design technique provided by Xilinx System Generator (XSG) has been
used to design the blocks, which implement point operation (binarization) and
neighborhood operations (linear and non-linear filtering) in grayscale images.
The blocks are parameterizable for input/output data precision, window
size, normalization strategy, and implementation options (area versus speed
optimization). The paper includes the implementation results obtained after
fixing these options and exemplifies the combination of several blocks of the
library to build a complete design for image segmentation purposes.

----------- Keywords: Digital image processing, fpga, xilinx system
generator, MATLAB/Simulink

Resumen

Este artículo describe una biblioteca de bloques parametrizables (XSGImgLib)
para la implementación de tareas de procesado de imágenes en FPGA. Se ha
utilizado la técnica de diseño basado en modelos proporcionada por Xilinx
System Generator (XSG) para diseñar diferentes bloques de procesado que
implementan operaciones puntuales (binarización) y basadas en vecindad
(filtros lineales y no-lineales) para imágenes en escala de grises. La
parametrización de los bloques permite configurar la precisión de los datos

 Autor de correspondencia: teléfono: + 5 + 37 + 266 33 29, correo electrónico: lmgarcess@electrica.cujae.edu.cu (L. Garcés)

37

Library for model-based design of image processing algorithms on FPGAs

de entrada/salida, el tamaño de la ventana, la estrategia de normalización y
distintas opciones de implementación (optimización en área o velocidad).
El artículo muestra los resultados de implementación para las diferentes
opciones de configuración y ejemplifica la combinación de los bloques de
procesado en el desarrollo de un sistema para segmentado de imágenes.

----------- Palabras clave: Procesado digital de imágenes, FPGA, xilinx
system generator, MATLAB/Simulink

Introduction
Computer vision systems include techniques
for acquiring, processing, analyzing, and
interpreting images. Many of the algorithms
used for low-level image processing tasks are
common, independently of the application field.
These low-level image processing operations
are computationally costly and they consume
large amount of processing time on a CPU,
which imposes serious restrictions to achieve
real-time requirements. One solution to cope
with this handicap is to accelerate these tasks
by means of architectures suitable for hardware
implementation on reconfigurable devices such
as Field Programmable Gate Arrays (FPGAs) [1-
2].

Common low-level image processing tasks can be
roughly classified, in terms of the locality of their
data access requirements, into two categories:
point operations and neighborhood operations.
A fundamental operation for neighborhood
tasks is convolution. Several architectures have
been proposed in the literature for linear image
filtering based on convolution techniques. These
approaches employ multipliers and adders or
MAC (Multiply and Accumulate) blocks. Both
techniques are used in the two architectures
presented in [3], which are parallel, programmable,
scalable, and can be implemented on FPGAs
or Digital Signal Processors (DSPs). Another
example of a MAC-based architecture for VLSI
integration to perform convolution is used in the
Integrated Circuit IMSA110 [4]. A bi-dimensional
convolution core for video applications suitable
for low-cost FPGA implementation (Spartan XL
family) and being capable of processing real-time
PAL video is proposed in [5]. The work described

in [6] presents a framework for developing
efficient hardware solutions for image processing
applications based on hardware skeletons. A
hardware skeleton is a parameterized high-level
description of a task-specific architecture.

Among neighborhood operations, non-linear
image filtering is crucial to perform certain tasks
such as noise removal. In median filters, the
pixel under study is replaced by the median of
the pixels in the processing window. Rank order
filters are generalized forms of median filters
where the output is the element with rank R, that
is, the Rth smallest element. Thus, a median filter
with window size 2N + 1 is a rank order filter with
rank R = N + 1. In [7], pipeline architectures for
computing non-recursive and recursive median
filters are described. One of these architectures
is used in [8] to develop an Intellectual Property
(IP) block that implements a two-dimensional
rank order filter for Xilinx FPGAs. This IP core is
parameterizable for input/output data precision,
color standard, window size, and maximum
horizontal resolution. The user can also configure
some implementation options. A particular
architecture for median filters with a window size
equal to 3x3 is described in [3].

The development of Electronic Design
Automation (EDA) tools and its integration
with MATLAB/Simulink facilitate the design
of DSP systems in FPGAs. Furthermore, these
tools support the use of model-based techniques
that speed up the description and verification
stages in comparison with traditional designs
that are described with Hardware Description
Languages (HDL). XSG is one of these tools,
which incorporates a wide variety of building
blocks that are grouped into libraries according

38

Rev. Fac. Ing. Univ. Antioquia N.° 68. Septiembre 2013

to their function. In the DSP library, a 5 × 5 filter
block that performs linear filtering in grayscale
images is provided [9]. Up to nine different filters
can be selected by changing the mask parameters
on the block. The architecture is completely
programmable since the user can rewrite the
memory with new coefficients. In [10], a design
flow based on XSG is used to implement a color
space transform from RGB to YCbCr in video
systems. An architecture for linear image filtering
using XSG is presented in [11].

This paper describes the use of the model-based
design technique provided by XSG to develop a
cell library that includes parameterizable blocks
for image processing tasks. First, its provides
some fundamental concepts of digital image
processing and introduces the model-based design
technique provided by XSG. Also, its describes
the image processing library, called XSGImgLib,
as well as the main features of the architectures
that implement the blocks. Finally, its exposes
the implementation results of the library blocks,
comparing them with other available similar
blocks, and includes an example system design
using XSGImgLib and some concluding remarks
of this work .

Fundamentals of digital image
processing

A digital image is defined as a bi-dimensional
function, A(x, y), with finite amplitude values,
where x and y are spatial coordinates. The
function A can be represented as a m × n dot
matrix (1) [12].

=

−−−−

−

−

1,11,10,1

1,11,10,1

1,01,00,0

nmmm

n

n

aaa

aaa
aaa

A

 (1)

Image processing methods perform different
tasks, such as restoration and improvement
of pictorial information, to facilitate image
interpretation by humans or autonomous sensing

systems [12]. These methods are based on the
mathematical transformation of the image dots
(pixels) depending on the processing window

size (22
pxipx +≤≤− , 22

qyjqy +≤≤−) with the

usual values of p and q being 0, 2, 4, 6, etc.

Image processing techniques are usually
classified by several aspects: operation complexity,
window size, and linearity. The operation
complexity includes low- (image acquisition
and pre-processing), middle- (segmentation
and characteristics extraction) and high-level
processing (data recognition, classification and
interpretation). The window size (p + 1 × q +
1) involve point (p = q = 0) and neighborhood
operations [2]. Operation linearity depends on the
image transformation and is classified into linear
(convolution and correlation) and non-linear
(ranking, threshold and morphological operations).

Linear image processing includes two well-known
operations: convolution (2) and correlation (3).
Mathematically convolution (*) and correlation
(ο) are operations on two functions A(x, y) and
C(x, y) described as follows:

),(),(),(),(
2

2

2

2

jyixAjiCyxCyxA

pi

pi

qj

qj

−−=∗ ∑ ∑
=

−=

=

−=

 (2)

),(),(),(),(
2

2

2

2

jyixAjiCyxCyxA

pi

pi

qj

qj

++= ∑ ∑
=

−=

=

−=

 (3)

where C(i, j) is the kernel filter (4), characterized
by the coefficients Cij:

 .

2
,

2
1

2
,

22
,

2

2
,1

2
1

2
,1

22
,1

2

2
,

2
1

2
,

22
,

2

=

+−−

+−+−+−−+−

−+−−−−

qpqpqp

qpqpqp

qpqpqp

CCC

CCC

CCC

C

 (4)

A correlation kernel is a convolution kernel that
has been rotated 180 degrees. The selection

39

Library for model-based design of image processing algorithms on FPGAs

of the convolution kernel defines the image
transformation, which is used for different
purposes.

Non-linear image processing replaces the current
pixel by a non-linear operation result. Sorting is
the main operation of these algorithms [7], [8].
Spatial sorting processing sorts the pixel values
in the neighborhood. Depending on the desired
position, the current pixel is replaced by the
order th element in the sorted set of neighbors
[7]. Median filter is a specific case of rank
order algorithms where the output is the middle
position.

Threshold is a non-linear point operation. It
compares the value of the pixel (in a greyscale
image) with a pre-defined value (Thr) and adjusts
the output pixel to binary values (5).

 (5)

Mathematical morphology (MM) is the science
that studies the spatial structures. MM is
commonly used for image processing tasks like
edge detection, restoration and texture analysis
[1], [12–14]. A morphological operator uses a
Structural Element (SE) to perform its operation.
One simple change in the SE provides different
results using the same operation.

The basic morphological operators are erosion
and dilation. Erosion (6) is based on vector
subtraction while dilatation (7) uses vector sum,
described as follows:

 }:{)(XxBxBXXB <+=Θ=ε (6)

 }:{)(BbbXBXXB ∈+=⊕= δ (7)

Morphological operations can change the result
applying erode and dilate operators in different
order. The opening (γ) is the erosion of an object
followed by a dilation and the closing (φ) is the
opposite operation, recovering the original image
after applying dilation [13].

Model-based design
Model-based design provides a useful strategy for
development of embedded systems. It is based on
the use of graphical programming environments
(such as MATLAB/Simulink) and EDA tools,
which allows considering the whole operational
conditions of the system under development.
This strategy facilitates the reusability of
previous designs and eases the different synthesis
and verification stages, thus accelerating the
development of new microelectronic products.

XSG model-based design flow provides the
interface between Simulink models and Xilinx
tools for reconfigurable devices. Figure 1 shows the
steps of the XSG design flow. The Simulink model
(.mdl) describing the system is compiled by XSG
for simulation (using Simulink internal or external
simulators) or synthesis (by means of Xilinx’s XST
synthesis tool). ISE implementation tools obtain the
configuration (.bit) file to program the FPGA.

Figure 1 XSG model design flow

XSG offers three ways for the verification of
the design: functional simulation with Simulink,
functional and temporal HDL simulations using
ISIM or ModelSIM simulators, and HW co-
simulation, where the HW part of the design is
implemented on a FPGA development board and
interacts with the rest of the Simulink model.
This option creates a configuration file for the
target device and associates it to a new Simulink
block. The process allows checking the algorithm
functionality using HW in the loop.

40

Rev. Fac. Ing. Univ. Antioquia N.° 68. Septiembre 2013

XSGImgLib

XSGImgLib is a library for XSG to facilitate the
model-based design of image processing systems.
As shown in table 1, it includes different blocks
for linear processing, non-linear processing

Table 1 XSGImgLib processing blocks

Processing Type Operation Window size
Blocks Available

Generic Specific

Linear filtering 2D Convolution 3 × 3, 5 × 5 4 9

Non-linear filtering

Generic Sorting 3 × 3, 5 × 5 2 -

Median 3 × 3 - 1

Threshold - 1

Morphological operators
Dilation/Erosion 3 × 3, 5 × 5 4

Opening/Closing 3 × 3, 5 × 5 4

Control logic
Line Buffer 3 × 3, 5 × 5 2

Register 3 × 3, 5 × 5 2

Linear image processing

Blocks that perform linear filtering are based
on the 2D convolution operation. Some square
kernels have the property to be symmetric to the
principal diagonal (cij = cji , i ≠ j, and p = q). This
property is used to reduce dedicated multipliers

and the occupied slices in the programmable
device [16]. Figure 2 shows the difference
between the convolution architectures. The
symmetric architecture replaces
multipliers by the same number of adders, reducing
the use of specific resources of the FPGA.

and morphological operators. They are grouped
according to the window size and the block type
(generic or specific). Generic blocks perform
more than one operation, while specific blocks
are only used for a single optimized operation,
increasing the execution speed and reducing the
resource utilization.

a) b)

Figure 2 Convolution architectures: a) Non-symmetric b) Symmetric

41

Library for model-based design of image processing algorithms on FPGAs

Hardware implementations of mathematical
operations present an internal delay to obtain
a result. When several blocks with different
internal delays are combined in a design, the
clock period of the system is determined by the
slowest block. In order to increase the processing
speed, XSG blocks can add pipeline stages that
allow reducing the clock period of the design
at expense of consuming more logic resources.
Selecting the adequate number of pipeline
stages, the processing block can be configured to
optimize device occupation or system speed.

Some specific convolution kernels are commonly
used for certain image processing tasks. This
fact allows the creation of processing blocks
with specific architectures optimized in area
and execution speed [5]. Figure 3 shows the
architecture of a specific filter for edge detection.
Shift and adders are used in this design since they
are faster and less expensive than multipliers.

Figure 3 Edge specific filter architecture

The result of the convolution must be usually
normalized to maintain the intensity levels of the
output image in the same range than the original
image. This process is carried out by dividing the
coefficients of the kernel by the sum of its elements
or by the maximum value between the sum of all
the positive elements and the sum of all the negative
values of the kernel (this second option is employed
when the sum of the kernel values is zero).

All the blocks included in XSGImgLib use fixed-
point operations. XSG allows the configuration
of the number of bits used for the integer and

decimal part in each one of the blocks. This makes
possible the parameterization of the fixed-point
data representation in each block of the processing
algorithm, reducing the area used in the device at
expense of an acceptably minor error. This error
is calculated by performing the normalized mean
square error (MSE) of the difference between
the resultant image and the image obtained in
MATLAB with double precision.

Non-linear image processing

XSGImgLib includes a generic sorting block
based on the Chakrabarti’s architecture for a
generic 2D ranking algorithm shown in figure 4
[7]. It is composed of an initial comparator, two
kinds of processors, and a rank detector. The
initial comparator receives the k new samples in
each clock cycle returning the comparison result
for the new values. Processors 12 −

− kk PP receive
the k samples, which are compared with the older
values in the windows, and update their position.
Processors P0 - Pk - 1 calculate the position of the
new elements and update the comparison with the
other samples keeping a record of the comparison
results. This strategy avoids re-comparing all the
values to update the position of the elements.
Finally, all the sorted values are addressed to the
rank detector block which returns the value in the
desired position [7].

Figure 4 Generic sorting algorithm

An optimized element for a 3 × 3 median filter
is performed using a three-input comparison
block, which returns the values in the sorted
order, as shown in figure 5 [3]. The three new
values received from the line buffers (L1 - L3)

42

Rev. Fac. Ing. Univ. Antioquia N.° 68. Septiembre 2013

in each clock cycle are sorted by the first block.
The results are input to new comparison blocks,

which reject the values farthest from the middle
position in each operation stage.

Figure 5 Median specific filter

Morphological operators

Morphological operators are realized using the
same architectures employed for sorting blocks
but selecting the minimum or maximum values in
the processing window. Erosion is implemented
by detecting the minimum value of the pixels in
the processing window. The architecture in figure
6a stores the pixels in the processing window and
every column is addressed to p + 1 minimum value
detector blocks where the inputs are fixed by the
respective column of the SE. Then, the minimum

values of each column in the processing window
are obtained and addressed to a minimum value
detector block that obtains the final result of the
operation.

Dilation is developed in a similar form
detecting the maximum value of the pixels in
the processing window (figure 6b). Finally,
opening and closing operators are implemented
combining erosion and dilation blocks and
including a parallelization unit (Line Buffer)
between the two operations.

a) b)

Figure 6 Architecture of morphological operators: a) Erode b) Dilate

43

Library for model-based design of image processing algorithms on FPGAs

Implementation results
The results presented in this section correspond to
post-implementation reports of single processing
blocks included in XSGImgLib over a Spartan-
3A DSP 1800 development board. They depend
on the size of the processing image, but allow
illustrating some of the configuration options
for the generic blocks and optimized specific
architectures available in the library.

Non-symmetric vs. symmetric kernels
Symmetric kernels reduce the use of specific
multiplier blocks, allowing the implementation
of systems with larger window size on small- and
medium-size FPGA. The consumption of logic
cells (Slices) decreases by between 18% and 22%
for blocks with speed optimization, and by 11%
for blocks with area optimization. The use of this
architecture reduces the number of multiplier
from 9 to 6 for a 3 × 3 kernel and from 25 to
15 for a 5 × 5 kernel. On a 3 × 3 convolution
block this value represents a 33.33% of specific
resource savings (table 2).

Table 2 Resource consumption: non-symmetric vs.
symmetric convolution

Resources Non-symmetric Symmetric
Slices 215 176

DSP48A 9 6
Frequency 182.216 MHz 181.389 MHz

Area vs. speed optimization
The configuration of the latency parameter in
each calculation block allows selecting the area
vs. speed optimization. The multipliers calculate
the optimal latency value for a proper design. On
a generic convolution filter the optimal latency
for a maximum execution speed requires 4 clock
cycles to perform an optimized multiplication
operation. Using this value as reference, the
latency value for area optimization is obtained
experimentally. These values are used in the area/
speed optimization adding certain delay cycles to
synchronize each mathematical operation.

This optimization criterion reduces by a factor
between 29% and 60% the number of used
logic cells or increases the execution speed by a
factor between 9% and 65%, depending on the
processing window size, the kernel type, and the
precision of the calculation blocks. Table 3 shows
the resource consumption and execution speed
for both optimization criteria in a 3 × 3 non-
symmetric convolution kernel. Area optimization
reduces by 34.42% the number of slices, while
the execution frequency increases by 33.93% for
speed optimization.

Table 3 Resource consumption: area vs. speed
optimization

Resources Speed Area

Slices 215 146

DSP48A 9 9

Frequency 182.216 MHz 136.054 MHz

Normalized kernel

The selection of precision parameters in the
processing blocks can reduce the resources
required by a particular design. Table 4 shows
the resource consumption for full precision
and normalized convolution blocks. The error
introduced by the limitation in the number of
bits for fixed-point representation depends on the
operation. The block configuration options can
be used to obtain an adequate trade-off between
resource consumption and MSE.

Table 4 Resource consumption: full precision vs.
normalized

Resources
Full

Prec.
Norm. 8

bits
Norm. 3

bits
Slices 215 214 154

DSP48A 9 9 9

Frequency
182.216

MHz
191.755

MHz
183.419

MHz
MSE 0 0.029 9.8

44

Rev. Fac. Ing. Univ. Antioquia N.° 68. Septiembre 2013

Generic vs. specific convolution filters

The development of specific filters optimized for
a fixed operation considerably reduces the design
resources and increases its execution speed.
As shown in table 5, the use of these blocks
decreases the resource consumption by a factor
between 17% and 60%, eliminates the need
for specific DSP48A blocks, and increases the
frequency form 1.33 up to 3.20 times, depending
on the filter.

Table 5 Resource consumption: generic convolution
and specific filter

Resources
Slices DSP48A Frequency

Filter

Generic 3 × 3 215 9 182.216 MHz

Edge 88 0 392.619 MHz

Sobel X-Y 65 0 361.795 MHz

Prewitt X-Y 65 0 406.174 MHz

Laplace 49 0 449.640 MHz

Sharpen 94 0 393.391 MHz

Generic 5 × 5 543 25 148.214 MHz

Blur 166 0 332.447 MHz

Smooth 318 0 210.970 MHz

Gaussian 251 0 251.067 MHz

Generic ranking and specific median
filters

As mentioned previously, Chakrabarti’s
architecture [7] is used to implement the generic
sorting filters included in XSGImgLib, while
Golston’s algorithm [3] supports the specific
median filter. The resource consumption for
specific and generic blocks (using different
window sizes) is shown in table 6. The 5 × 5 filter
uses more than 5 times the resources of the 3 × 3
filter. The specific median filters reduces 35% of

the logic cells and increases more than 4 times
the execution speed compared to the generic 3 ×
3 rank filter.

Table 6 Resource consumption: generic sorting
filters

Resources Median
Generic

3 × 3
Generic

5 × 5
Slices 164 253 1339

Frequency 293.341 MHz 71.083 MHz 62.992 MHz

Morphological operators

Table 7 shows the resources consumption for
erosion and dilation operators (the values are
similar for both blocks). An increase of the size
in processing window requires three more times
resources and decreases the speed by 28%. The
use of logic cells for the opening and closing
operators also depends on the image size. The
line buffer block adds several slices related to the
size of the image. Table 8 shows the results for an
image with 64 columns.

Table 7 Resource consumption: erosion/dilation
operators

Resources Erosion/Dilation window size
3 × 3 5 × 5

Slices 8 25

Frequency 506.329 MHz 361.402 MHz

Table 8 Resource consumption: opening/closing
operators

Resources Opening/Closing window size

3 × 3 5 × 5

Slices 15 47

Frequency 213.721 MHz 156.104 MHz

45

Library for model-based design of image processing algorithms on FPGAs

Image segmentation using XSGImgLib

Segmentation is a key task in digital image
processing that can be easy implemented using
the model-based design strategy provided by
XSGImgLib (figure 7). In the first stage of the
segmentation system the original image (figure
8a) is pre-processed using a specific median

filter for noise removal (figure 8b). This stage
is followed by a Sobel X-Y filter, for edge
detection, and a threshold block, to binarize the
image (figure. 8c). The smoothing stage reduces
the isolate dots in the image and the erosion joins
the objects separated in previous steps. Finally,
the result is processed through a dilation operator
to obtain the segmented image (figure 8d).

Figure 7 Image segmentation using XSGImgLib

a) b)

c) d)

Figure 8 Image resulted from the segmentation process: a) Original gray scale image b) Noise reduced image
c) Binary image d) Segmented image

46

Rev. Fac. Ing. Univ. Antioquia N.° 68. Septiembre 2013

As shown in table 9, the system uses the 7.21%
of the logic cells available in the FPGA and the
17.26% of multipliers (used in the smoothing
phase). The execution speed is 33.612 MHz
for 512 × 384 image size, processing a pixel in
almost 30 ns and a frame in 5.8 ms (171 fps). This
design allows processing images up to WVGA
resolution (1024 × 600) in real-time.

Table 9 Resource consumption: image segmentation
system using XSGImgLib

Spartan-3A DSP 1800

Sl
ic

es

D
SP

48
A

B
R

A
M

Resources

Total 16640 84 84

Used 1200 15 0

Percent 7.21% 17.26% 0%

Conclusions
XSGImgLib includes blocks that perform point
and neighborhood operations to implement low-
level image processing algorithms on FPGAs.
Blocks for linear image filtering are parametrizable
for input/output data precision, window size,
normalization strategy, and implementation
options. The implementation results on a Xilinx
Spartan 3A-DSP shows that a filter with a specific
kernel requires fewer resources than a filter with a
generic kernel. A 3 × 3 median filter also requires
fewer FPGA slices than a generic sorting filter
with the same dimensions. In terms of timing,
specific architectures for linear and non-linear
blocks offer a higher frequency processing. A
model-based design, which combines several
blocks from the library, is employed for image
segmentation purposes.

Acknowledgment
The authors acknowledge the Spanish Agency
for International Development (MAEC-AECID)
for partially funding this work in the projects PCI
D/024124/09 and PCI D/030769/10 (http://www.
imse-cnm.csic.es/fortin). P. Brox is currently

hired under the post-doctoral grant “Juan de la
Cierva” from the Spanish government.

The image used in Fig. 8 has been provided with
MATLAB Image Processing Toolbox.

References
1. D. Bailey. Design for Embedded Image Processing on

FPGAs. 1st ed. Ed. John Wiley & Sons (Asia) Pte Ltd.
Solaris South Tower, Queenstown, Singapore. 2011.
pp. 72-74, 231-261, 264-271.

2. C. Johnston, D. Bailey, P. Lyons. “A Visual
Environment for Real-Time Image Processing in
Hardware.” EURASIP Journal on Embedded Systems,
Vol. 2006. pp. 1-8.

3. M. Wnuk. “Remarks on Hardware Implementation of
Image Processing Algorithms.” International Journal
of Applied Mathematics and Computer Science. Vol.
18. 2008. pp. 105-110.

4. Datasheet of IMSA110 Image And Signal Processing
Sub-System. SGS-Thomson Microelectronics, pp. 1-27.
1992. [Online] Available: http://www.datasheetcatalog.
com. Accessed: Nov 4th, 2010.

5. K. Benkrid, S. Belkacemi. Design and implementation
of a 2D convolution core for video applications on
FPGAs. 3rd International Workshop on Digital and
Computational Video, 2002. DCV 2002. Proceedings,
Clearwater Beach. Florida, USA. 2002. pp. 85-92.

6. K. Benkrid, D. Crookes, J. Smith, A. Benkrid. High
Level Programming for FPGA Based Image and Video
Processing using Hardware Skeletons. 9th Annual
IEEE Symposium on Field-Programmable Custom
Computing Machines. Rohnert Park. California, USA.
2001. pp. 1-8.

7. C. Chakrabarti. “High sample rate array architectures
for median filters.” IEEE Transactions on Signal
Processing. Vol. 42. 1994. pp. 707-712.

8. G. Szedo. “Two-dimensional rank-order filter by using
max-min sorting network.” Xilinx Application Notes.
Vol. 953. 2006. pp. 1-17.

9. Documentation of Xilinx, User Guides. Xilinx Sytem
Genetaror for DSP Reference Guide. 2010. pp. 44-47,
51-54, 75, 86-88, 116-119, 207-210, 223, 22. [Online]
Available: http://www.xilinx.com/tools/sysgen.htm
Accessed: Nov 21st. 2011.

10. T. Saidani, D. Dia, W. Elhamzi, M. Atri, R. Tourki.
“Hardware Co-simulation For Video Processing Using

47

Library for model-based design of image processing algorithms on FPGAs

Xilinx System Generator.” Proceedings of the World
Congress on Engineering 2009. Vol. 1. 2009. pp. 3-7.

11. A. Sánchez, R. Alvarez, S. Sánchez. “Architecture
for filtering images using Xilinx system generator.”
International Journal of Mathematics and Computer
in Simulation. Vol. 1. 2007. pp. 101-107.

12. R. González, R. Woods, Digital image processing. 2nd
ed. Ed. Prentice Hall. Upper Saddle River, NJ, USA.
2002. pp. 66-70, 116-134, 205-208, 283-302, 308-313,
519-560.

13. P. Soille. Morphological Image Analysis: Principles
and Applications. 2nd ed. Ed. Springer-Verlag. Berlin

Heldelberg, Germany. 1999. pp. 1-4, 6-8, 17-26, 63-
70, 80, 105-109, 267-268, 319.

14. A. Nelson. Implementation of image processing
algorithms on FPGA hardware. Master Thesis,
Vanderbilt University. Tennessee, United States of
America . 2000. pp. 11-22, 28-39.

15. A. Adario, E. Roehe, S. Bampi. Dynamically
reconfigurable architecture for image processor
applications. Proceedings 1999 Design Automation
Conference (Cat. No. 99CH36361). New Orleans, LA,
USA. 1999. pp. 623-628.

16. R. Turney. “Two-Dimensional Linear Filtering”. Xilinx
Application Notes. Vol. 933. 2007. pp. 1-8.

