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Abstract

This paper describes a library (XSGImgLib) that includes parameterizable 
blocks to implement low-level image processing tasks on FPGAs. A model-
based design technique provided by Xilinx System Generator (XSG) has been 
used to design the blocks, which implement point operation (binarization) and 
neighborhood operations (linear and non-linear filtering) in grayscale images. 
The blocks are parameterizable for input/output data precision, window 
size, normalization strategy, and implementation options (area versus speed 
optimization). The paper includes the implementation results obtained after 
fixing these options and exemplifies the combination of several blocks of the 
library to build a complete design for image segmentation purposes.

----------- Keywords: Digital image processing, fpga, xilinx system 
generator, MATLAB/Simulink

Resumen

Este artículo describe una biblioteca de bloques parametrizables (XSGImgLib) 
para la implementación de tareas de procesado de imágenes en FPGA. Se ha 
utilizado la técnica de diseño basado en modelos proporcionada por Xilinx 
System Generator (XSG) para diseñar diferentes bloques de procesado que 
implementan operaciones puntuales (binarización) y basadas en vecindad 
(filtros lineales y no-lineales) para imágenes en escala de grises. La 
parametrización de los bloques permite configurar la precisión de los datos 
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de entrada/salida, el tamaño de la ventana, la estrategia de normalización y 
distintas opciones de implementación (optimización en área o velocidad). 
El artículo muestra los resultados de implementación para las diferentes 
opciones de configuración y ejemplifica la combinación de los bloques de 
procesado en el desarrollo de un sistema para segmentado de imágenes.

----------- Palabras clave: Procesado digital de imágenes, FPGA, xilinx 
system generator, MATLAB/Simulink

Introduction
Computer vision systems include techniques 
for acquiring, processing, analyzing, and 
interpreting images. Many of the algorithms 
used for low-level image processing tasks are 
common, independently of the application field. 
These low-level image processing operations 
are computationally costly and they consume 
large amount of processing time on a CPU, 
which imposes serious restrictions to achieve 
real-time requirements. One solution to cope 
with this handicap is to accelerate these tasks 
by means of architectures suitable for hardware 
implementation on reconfigurable devices such 
as Field Programmable Gate Arrays (FPGAs) [1-
2].

Common low-level image processing tasks can be 
roughly classified, in terms of the locality of their 
data access requirements, into two categories: 
point operations and neighborhood operations. 
A fundamental operation for neighborhood 
tasks is convolution. Several architectures have 
been proposed in the literature for linear image 
filtering based on convolution techniques. These 
approaches employ multipliers and adders or 
MAC (Multiply and Accumulate) blocks. Both 
techniques are used in the two architectures 
presented in [3], which are parallel, programmable, 
scalable, and can be implemented on FPGAs 
or Digital Signal Processors (DSPs). Another 
example of a MAC-based architecture for VLSI 
integration to perform convolution is used in the 
Integrated Circuit IMSA110 [4]. A bi-dimensional 
convolution core for video applications suitable 
for low-cost FPGA implementation (Spartan XL 
family) and being capable of processing real-time 
PAL video is proposed in [5]. The work described 

in [6] presents a framework for developing 
efficient hardware solutions for image processing 
applications based on hardware skeletons. A 
hardware skeleton is a parameterized high-level 
description of a task-specific architecture.

Among neighborhood operations, non-linear 
image filtering is crucial to perform certain tasks 
such as noise removal. In median filters, the 
pixel under study is replaced by the median of 
the pixels in the processing window. Rank order 
filters are generalized forms of median filters 
where the output is the element with rank R, that 
is, the Rth smallest element. Thus, a median filter 
with window size 2N + 1 is a rank order filter with 
rank R = N + 1. In [7], pipeline architectures for 
computing non-recursive and recursive median 
filters are described. One of these architectures 
is used in [8] to develop an Intellectual Property 
(IP) block that implements a two-dimensional 
rank order filter for Xilinx FPGAs. This IP core is 
parameterizable for input/output data precision, 
color standard, window size, and maximum 
horizontal resolution. The user can also configure 
some implementation options. A particular 
architecture for median filters with a window size 
equal to 3x3 is described in [3].

The development of Electronic Design 
Automation (EDA) tools and its integration 
with MATLAB/Simulink facilitate the design 
of DSP systems in FPGAs. Furthermore, these 
tools support the use of model-based techniques 
that speed up the description and verification 
stages in comparison with traditional designs 
that are described with Hardware Description 
Languages (HDL). XSG is one of these tools, 
which incorporates a wide variety of building 
blocks that are grouped into libraries according 
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to their function. In the DSP library, a 5 × 5 filter 
block that performs linear filtering in grayscale 
images is provided [9]. Up to nine different filters 
can be selected by changing the mask parameters 
on the block. The architecture is completely 
programmable since the user can rewrite the 
memory with new coefficients. In [10], a design 
flow based on XSG is used to implement a color 
space transform from RGB to YCbCr in video 
systems. An architecture for linear image filtering 
using XSG is presented in [11].

This paper describes the use of the model-based 
design technique provided by XSG to develop a 
cell library that includes parameterizable blocks 
for image processing tasks. First, its provides 
some fundamental concepts of digital image 
processing and introduces the model-based design 
technique provided by XSG. Also, its describes 
the image processing library, called XSGImgLib, 
as well as the main features of the architectures 
that implement the blocks. Finally, its exposes 
the implementation results of the library blocks, 
comparing them with other available similar 
blocks, and includes an example system design 
using XSGImgLib and some concluding remarks 
of this work .

Fundamentals of digital image 
processing

A digital image is defined as a bi-dimensional 
function, A(x, y), with finite amplitude values, 
where x and y are spatial coordinates. The 
function A can be represented as a m × n dot 
matrix (1) [12].
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Image processing methods perform different 
tasks, such as restoration and improvement 
of pictorial information, to facilitate image 
interpretation by humans or autonomous sensing 

systems [12]. These methods are based on the 
mathematical transformation of the image dots 
(pixels) depending on the processing window 

size ( 22
pxipx +≤≤− , 22

qyjqy +≤≤− ) with the 

usual values of p and q being 0, 2, 4, 6, etc.

Image processing techniques are usually 
classified by several aspects: operation complexity, 
window size, and linearity. The operation 
complexity includes low- (image acquisition 
and pre-processing), middle- (segmentation 
and characteristics extraction) and high-level 
processing (data recognition, classification and 
interpretation). The window size (p + 1 × q + 
1) involve point (p = q = 0) and neighborhood 
operations [2]. Operation linearity depends on the 
image transformation and is classified into linear 
(convolution and correlation) and non-linear 
(ranking, threshold and morphological operations).

Linear image processing includes two well-known 
operations: convolution (2) and correlation (3). 
Mathematically convolution (*) and correlation 
(ο) are operations on two functions A(x, y) and 
C(x, y) described as follows:
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where C(i, j) is the kernel filter (4), characterized 
by the coefficients Cij:
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A correlation kernel is a convolution kernel that 
has been rotated 180 degrees. The selection 
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of the convolution kernel defines the image 
transformation, which is used for different 
purposes.

Non-linear image processing replaces the current 
pixel by a non-linear operation result. Sorting is 
the main operation of these algorithms [7], [8]. 
Spatial sorting processing sorts the pixel values 
in the neighborhood. Depending on the desired 
position, the current pixel is replaced by the 
order th element in the sorted set of neighbors 
[7]. Median filter is a specific case of rank 
order algorithms where the output is the middle 
position.

Threshold is a non-linear point operation. It 
compares the value of the pixel (in a greyscale 
image) with a pre-defined value (Thr) and adjusts 
the output pixel to binary values (5).

  (5)

Mathematical morphology (MM) is the science 
that studies the spatial structures. MM is 
commonly used for image processing tasks like 
edge detection, restoration and texture analysis 
[1], [12–14]. A morphological operator uses a 
Structural Element (SE) to perform its operation. 
One simple change in the SE provides different 
results using the same operation.

The basic morphological operators are erosion 
and dilation. Erosion (6) is based on vector 
subtraction while dilatation (7) uses vector sum, 
described as follows:

 }:{)( XxBxBXXB <+=Θ=ε  (6)

 }:{)( BbbXBXXB ∈+=⊕= δ  (7)

Morphological operations can change the result 
applying erode and dilate operators in different 
order. The opening (γ) is the erosion of an object 
followed by a dilation and the closing (φ) is the 
opposite operation, recovering the original image 
after applying dilation [13].

Model-based design
Model-based design provides a useful strategy for 
development of embedded systems. It is based on 
the use of graphical programming environments 
(such as MATLAB/Simulink) and EDA tools, 
which allows considering the whole operational 
conditions of the system under development. 
This strategy facilitates the reusability of 
previous designs and eases the different synthesis 
and verification stages, thus accelerating the 
development of new microelectronic products.

XSG model-based design flow provides the 
interface between Simulink models and Xilinx 
tools for reconfigurable devices. Figure 1 shows the 
steps of the XSG design flow. The Simulink model 
(.mdl) describing the system is compiled by XSG 
for simulation (using Simulink internal or external 
simulators) or synthesis (by means of Xilinx’s XST 
synthesis tool). ISE implementation tools obtain the 
configuration (.bit) file to program the FPGA.

Figure 1 XSG model design flow

XSG offers three ways for the verification of 
the design: functional simulation with Simulink, 
functional and temporal HDL simulations using 
ISIM or ModelSIM simulators, and HW co-
simulation, where the HW part of the design is 
implemented on a FPGA development board and 
interacts with the rest of the Simulink model. 
This option creates a configuration file for the 
target device and associates it to a new Simulink 
block. The process allows checking the algorithm 
functionality using HW in the loop.
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XSGImgLib

XSGImgLib is a library for XSG to facilitate the 
model-based design of image processing systems. 
As shown in table 1, it includes different blocks 
for linear processing, non-linear processing 

Table 1 XSGImgLib processing blocks

Processing Type Operation Window size
Blocks Available

Generic Specific

Linear filtering 2D Convolution 3 × 3, 5 × 5 4 9

Non-linear filtering

Generic Sorting 3 × 3, 5 × 5 2 -

Median 3 × 3 - 1

Threshold - 1

Morphological operators
Dilation/Erosion 3 × 3, 5 × 5 4

Opening/Closing 3 × 3, 5 × 5 4

Control logic
Line Buffer 3 × 3, 5 × 5 2

Register 3 × 3, 5 × 5 2

Linear image processing

Blocks that perform linear filtering are based 
on the 2D convolution operation. Some square 
kernels have the property to be symmetric to the 
principal diagonal (cij = cji , i ≠ j, and p = q). This 
property is used to reduce dedicated multipliers 

and the occupied slices in the programmable 
device [16]. Figure 2 shows the difference 
between the convolution architectures. The 
symmetric architecture replaces 
multipliers by the same number of adders, reducing 
the use of specific resources of the FPGA.

and morphological operators. They are grouped 
according to the window size and the block type 
(generic or specific). Generic blocks perform 
more than one operation, while specific blocks 
are only used for a single optimized operation, 
increasing the execution speed and reducing the 
resource utilization.

a) b)

Figure 2 Convolution architectures: a) Non-symmetric b) Symmetric
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Hardware implementations of mathematical 
operations present an internal delay to obtain 
a result. When several blocks with different 
internal delays are combined in a design, the 
clock period of the system is determined by the 
slowest block. In order to increase the processing 
speed, XSG blocks can add pipeline stages that 
allow reducing the clock period of the design 
at expense of consuming more logic resources. 
Selecting the adequate number of pipeline 
stages, the processing block can be configured to 
optimize device occupation or system speed.

Some specific convolution kernels are commonly 
used for certain image processing tasks. This 
fact allows the creation of processing blocks 
with specific architectures optimized in area 
and execution speed [5]. Figure 3 shows the 
architecture of a specific filter for edge detection. 
Shift and adders are used in this design since they 
are faster and less expensive than multipliers.

Figure 3 Edge specific filter architecture

The result of the convolution must be usually 
normalized to maintain the intensity levels of the 
output image in the same range than the original 
image. This process is carried out by dividing the 
coefficients of the kernel by the sum of its elements 
or by the maximum value between the sum of all 
the positive elements and the sum of all the negative 
values of the kernel (this second option is employed 
when the sum of the kernel values is zero).

All the blocks included in XSGImgLib use fixed-
point operations. XSG allows the configuration 
of the number of bits used for the integer and 

decimal part in each one of the blocks. This makes 
possible the parameterization of the fixed-point 
data representation in each block of the processing 
algorithm, reducing the area used in the device at 
expense of an acceptably minor error. This error 
is calculated by performing the normalized mean 
square error (MSE) of the difference between 
the resultant image and the image obtained in 
MATLAB with double precision.

Non-linear image processing

XSGImgLib includes a generic sorting block 
based on the Chakrabarti’s architecture for a 
generic 2D ranking algorithm shown in figure 4 
[7]. It is composed of an initial comparator, two 
kinds of processors, and a rank detector. The 
initial comparator receives the k new samples in 
each clock cycle returning the comparison result 
for the new values. Processors 12 −

− kk PP  receive 
the k samples, which are compared with the older 
values in the windows, and update their position. 
Processors P0 - Pk - 1 calculate the position of the 
new elements and update the comparison with the 
other samples keeping a record of the comparison 
results. This strategy avoids re-comparing all the 
values to update the position of the elements. 
Finally, all the sorted values are addressed to the 
rank detector block which returns the value in the 
desired position [7].

Figure 4 Generic sorting algorithm

An optimized element for a 3 × 3 median filter 
is performed using a three-input comparison 
block, which returns the values in the sorted 
order, as shown in figure 5 [3]. The three new 
values received from the line buffers (L1 - L3) 
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in each clock cycle are sorted by the first block. 
The results are input to new comparison blocks, 

which reject the values farthest from the middle 
position in each operation stage.

Figure 5 Median specific filter

Morphological operators

Morphological operators are realized using the 
same architectures employed for sorting blocks 
but selecting the minimum or maximum values in 
the processing window. Erosion is implemented 
by detecting the minimum value of the pixels in 
the processing window. The architecture in figure 
6a stores the pixels in the processing window and 
every column is addressed to p + 1 minimum value 
detector blocks where the inputs are fixed by the 
respective column of the SE. Then, the minimum 

values of each column in the processing window 
are obtained and addressed to a minimum value 
detector block that obtains the final result of the 
operation. 

Dilation is developed in a similar form 
detecting the maximum value of the pixels in 
the processing window (figure 6b). Finally, 
opening and closing operators are implemented 
combining erosion and dilation blocks and 
including a parallelization unit (Line Buffer) 
between the two operations.

a) b) 

Figure 6 Architecture of morphological operators: a) Erode b) Dilate
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Implementation results
The results presented in this section correspond to 
post-implementation reports of single processing 
blocks included in XSGImgLib over a Spartan-
3A DSP 1800 development board. They depend 
on the size of the processing image, but allow 
illustrating some of the configuration options 
for the generic blocks and optimized specific 
architectures available in the library.

Non-symmetric vs. symmetric kernels
Symmetric kernels reduce the use of specific 
multiplier blocks, allowing the implementation 
of systems with larger window size on small- and 
medium-size FPGA. The consumption of logic 
cells (Slices) decreases by between 18% and 22% 
for blocks with speed optimization, and by 11% 
for blocks with area optimization. The use of this 
architecture reduces the number of multiplier 
from 9 to 6 for a 3 × 3 kernel and from 25 to 
15 for a 5 × 5 kernel. On a 3 × 3 convolution 
block this value represents a 33.33% of specific 
resource savings (table 2).

Table 2 Resource consumption: non-symmetric vs. 
symmetric convolution

Resources Non-symmetric Symmetric
Slices 215 176

DSP48A 9 6
Frequency 182.216 MHz 181.389 MHz

Area vs. speed optimization
The configuration of the latency parameter in 
each calculation block allows selecting the area 
vs. speed optimization. The multipliers calculate 
the optimal latency value for a proper design. On 
a generic convolution filter the optimal latency 
for a maximum execution speed requires 4 clock 
cycles to perform an optimized multiplication 
operation. Using this value as reference, the 
latency value for area optimization is obtained 
experimentally. These values are used in the area/
speed optimization adding certain delay cycles to 
synchronize each mathematical operation.

This optimization criterion reduces by a factor 
between 29% and 60% the number of used 
logic cells or increases the execution speed by a 
factor between 9% and 65%, depending on the 
processing window size, the kernel type, and the 
precision of the calculation blocks. Table 3 shows 
the resource consumption and execution speed 
for both optimization criteria in a 3 × 3 non-
symmetric convolution kernel. Area optimization 
reduces by 34.42% the number of slices, while 
the execution frequency increases by 33.93% for 
speed optimization.

Table 3 Resource consumption: area vs. speed 
optimization

Resources Speed Area

Slices 215 146

DSP48A 9 9

Frequency 182.216 MHz 136.054 MHz

Normalized kernel

The selection of precision parameters in the 
processing blocks can reduce the resources 
required by a particular design. Table 4 shows 
the resource consumption for full precision 
and normalized convolution blocks. The error 
introduced by the limitation in the number of 
bits for fixed-point representation depends on the 
operation. The block configuration options can 
be used to obtain an adequate trade-off between 
resource consumption and MSE.

Table 4 Resource consumption: full precision vs. 
normalized

Resources
Full 

Prec.
Norm. 8 

bits
Norm. 3 

bits
Slices 215 214 154

DSP48A 9 9 9

Frequency
182.216 

MHz
191.755 

MHz
183.419 

MHz
MSE 0 0.029 9.8
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Generic vs. specific convolution filters

The development of specific filters optimized for 
a fixed operation considerably reduces the design 
resources and increases its execution speed. 
As shown in table 5, the use of these blocks 
decreases the resource consumption by a factor 
between 17% and 60%, eliminates the need 
for specific DSP48A blocks, and increases the 
frequency form 1.33 up to 3.20 times, depending 
on the filter.

Table 5 Resource consumption: generic convolution 
and specific filter

Resources
Slices DSP48A Frequency

Filter

Generic 3 × 3 215 9 182.216 MHz

Edge 88 0 392.619 MHz

Sobel X-Y 65 0 361.795 MHz

Prewitt X-Y 65 0 406.174 MHz

Laplace 49 0 449.640 MHz

Sharpen 94 0 393.391 MHz

Generic 5 × 5 543 25 148.214 MHz

Blur 166 0 332.447 MHz

Smooth 318 0 210.970 MHz

Gaussian 251 0 251.067 MHz

Generic ranking and specific median 
filters

As mentioned previously, Chakrabarti’s 
architecture [7] is used to implement the generic 
sorting filters included in XSGImgLib, while 
Golston’s algorithm [3] supports the specific 
median filter. The resource consumption for 
specific and generic blocks (using different 
window sizes) is shown in table 6. The 5 × 5 filter 
uses more than 5 times the resources of the 3 × 3 
filter. The specific median filters reduces 35% of 

the logic cells and increases more than 4 times 
the execution speed compared to the generic 3 × 
3 rank filter.

Table 6 Resource consumption: generic sorting 
filters

Resources Median
Generic 

3 × 3
Generic 

5 × 5
Slices 164 253 1339

Frequency 293.341 MHz 71.083 MHz 62.992 MHz

Morphological operators

Table 7 shows the resources consumption for 
erosion and dilation operators (the values are 
similar for both blocks). An increase of the size 
in processing window requires three more times 
resources and decreases the speed by 28%. The 
use of logic cells for the opening and closing 
operators also depends on the image size. The 
line buffer block adds several slices related to the 
size of the image. Table 8 shows the results for an 
image with 64 columns.

Table 7 Resource consumption: erosion/dilation 
operators

Resources Erosion/Dilation window size
3 × 3 5 × 5

Slices 8 25

Frequency 506.329 MHz 361.402 MHz

Table 8 Resource consumption: opening/closing 
operators

Resources Opening/Closing window size

3 × 3 5 × 5

Slices 15 47

Frequency 213.721 MHz 156.104 MHz
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Image segmentation using XSGImgLib

Segmentation is a key task in digital image 
processing that can be easy implemented using 
the model-based design strategy provided by 
XSGImgLib (figure 7). In the first stage of the 
segmentation system the original image (figure 
8a) is pre-processed using a specific median 

filter for noise removal (figure 8b). This stage 
is followed by a Sobel X-Y filter, for edge 
detection, and a threshold block, to binarize the 
image (figure. 8c). The smoothing stage reduces 
the isolate dots in the image and the erosion joins 
the objects separated in previous steps. Finally, 
the result is processed through a dilation operator 
to obtain the segmented image (figure 8d).

Figure 7 Image segmentation using XSGImgLib

a) b)

c) d)

Figure 8 Image resulted from the segmentation process: a) Original gray scale image b) Noise reduced image 
c) Binary image d) Segmented image
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As shown in table 9, the system uses the 7.21% 
of the logic cells available in the FPGA and the 
17.26% of multipliers (used in the smoothing 
phase). The execution speed is 33.612 MHz 
for 512 × 384 image size, processing a pixel in 
almost 30 ns and a frame in 5.8 ms (171 fps). This 
design allows processing images up to WVGA 
resolution (1024 × 600) in real-time.

Table 9 Resource consumption: image segmentation 
system using XSGImgLib

Spartan-3A DSP 1800

Sl
ic

es

D
SP

48
A

B
R

A
M

Resources

Total 16640 84 84

Used 1200 15 0

Percent 7.21% 17.26% 0%

Conclusions
XSGImgLib includes blocks that perform point 
and neighborhood operations to implement low-
level image processing algorithms on FPGAs. 
Blocks for linear image filtering are parametrizable 
for input/output data precision, window size, 
normalization strategy, and implementation 
options. The implementation results on a Xilinx 
Spartan 3A-DSP shows that a filter with a specific 
kernel requires fewer resources than a filter with a 
generic kernel. A 3 × 3 median filter also requires 
fewer FPGA slices than a generic sorting filter 
with the same dimensions. In terms of timing, 
specific architectures for linear and non-linear 
blocks offer a higher frequency processing. A 
model-based design, which combines several 
blocks from the library, is employed for image 
segmentation purposes.
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