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Abstract

Compressive Sensing (CS) is a new technique that simultaneously senses and 
compresses an image by taking a set of random projections from the underlying 
scene. An optimization algorithm is then used to recover the initial image. 
In practice, these optimization algorithms have restricted CS techniques 
to be implemented on high performance computational architectures, such 
as personal computers or graphical processing units (GPU) due the huge 
number of operations required for the image recovery. This work extends 
the application of CS to be implemented in an extremely limited memory 
and processing architecture such as a mobile device. Specifically, overlapped 
blocking-based algorithms are developed such that it is possible to reconstruct 
an image on a mobile device. An analysis of the energy consumption of 
the block-based CS algorithms is presented. The results show the required 
computational time for reconstruction and the image reconstruction quality 
for images of 128x128 and 256x256 pixels.

---------- Keywords: Compressive sensing, sparse recovery, mobile 
handset devices

Resumen

Compressive Sensing (CS) es una nueva técnica que simultáneamente 
comprime y muestrea una imagen tomando un conjunto de proyecciones 
aleatorias de una escena. Un algoritmo de optimización es empleado para 
reconstruir la imagen utilizando las proyecciones aleatorias. Diferentes 
algoritmos de optimización se han diseñado para obtener de manera 
eficiente una correcta reconstrucción de la señal original. En la práctica estos 
algoritmos se han restringido a implementaciones de CS en arquitecturas de 
alto rendimiento computacional, como computadores de escritorio o unidades 

* Autor de correspondencia: telefax: + 57 + 7 + 634 40 00 ext. 2676, correo eletrónico: henarfu@uis.edu.co  (H. Arguello)



174

Rev. Fac. Ing. Univ. Antioquia N.° 70. marzo 2014

de procesamiento gráfico, debido a el gran número de operaciones requeridas 
por el proceso de reconstrucción. Este trabajo extiende la aplicación de  CS 
para ser implementado en una arquitectura con memoria y capacidad de 
procesamiento limitados como un dispositivo móvil. Específicamente, se 
describe un algoritmo basado en bloques sobrepuestos que permite reconstruir 
la imagen en un dispositivo móvil y se presenta un análisis del consumo 
de energía de los algoritmos utilizados. Los resultados muestran el tiempo 
computacional y la calidad de reconstrucción para imágenes de 128x128 y 
256x256 píxeles.

---------- Palabras clave: Compressive sensing, algoritmos de 
reconstrucción, dispositivos móviles

Introduction

In the acquisition of signals such as image or 
video, the traditional Nyquist sampling rate 
imposes that a large amount of data needs to be 
acquired. Traditionally, the enormous volume of 
information collected by satisfying the Nyquist 
criteria needs to be compressed for storing or 
transmission purposes. This process of first 
acquiring a large amount of information to 
then throw away a large portion of this data is 
inefficient. Conversely, the novel Compressive 
Sensing (CS) technique [1-3], contrast with 
the Nyquist process and only acquires relevant 
components of the underlying image by merging 
the sampling and compression processes in one 
step. CS exploits the sparsity property of an 
image F, or its vector representation f ∈ℝN, to 
acquire its relevant information using the inner 
products of the underlying image with random 
vectors. In CS, only M≪N samples of the image 
f are acquired. The image is then reconstructed 
by solving an inverse problem such as a linear 
program [1] or a greedy pursuit algorithm [2]. An 
image f is sparse on some basis Ψ ∈ ℝNxN, if f=Ψθ 
can be approximated by a linear combination of 
k vectors from Ψ with k≪N, where N represents 
the dimensions of the image and k represents 
the sparsity (number of non-zero elements) of 
the image. The theory of CS states that f can 
be recovered from M random projections with 
high probability when M≪k log(N)≪N [3]. The 
random projections are given by y=Φf=ΦΨθ, 
where Φ is a MxN random measurement matrix 

with its rows incoherent with the columns of Ψ, 
i.e., all the inner products between Φ and Ψ are 
small [1]. Measurement matrices are selected 
such that they satisfy the restricted isometry 
property (RIP) [3], which provides sufficient 
conditions to ensure near optimal performance 
of reconstruction algorithms. The literature 
has proposed several matrices that fulfill the 
RIP condition, including the independent and 
identically distributed (i.i.d) Gaussian and 
Bernoulli matrices. The main advantage of these 
matrices is that they are universally incoherent 
with any sparse signal and thus, the number of 
compressed measurements required for exact 
reconstruction is minimal [3]. However, those 
matrices have several drawbacks related to 
computation time and storage, and therefore need 
to be analyzed prior to being implemented on 
limited-resource devices. Some commonly used 
measurement matrices Φ include the Gaussian 
ensemble (GE) [4], the symmetric signs ensemble 
(SSE) [4] and the scrambled block hadamard 
ensemble (SBHE) [5], among others. 

Once the CS measurements in y have been 
acquired, a recovery process is employed to get 
an approximation of the original image. This 
recovery involves finding the approximation 
vector f satisfying the equation y =Φf. Because y  
is a M-long vector, where M≪N, there is an infinite 
number of solutions satisfying that equation. 
Hence, it is common to search for a vector f 
optimizing a sparsity measure. The problem of 
finding a vector with the smallest number of non-



175 

Overlapped block-based compressive sensing imaging on mobile handset devices

zero elements is given by equation (1), where the 
l0 norm represented by ‖ . ‖0 counts the number of 
non-zero elements in f , and ε is a tolerance value. 
Note that (1) is a nonlinear optimization problem, 
which is shown to be NP hard [2].

 min‖ f ‖0  subject to ‖y -Φf ‖2 < ε (1)

Hence, different sub-optimal strategies have been 
used to solve the problem described in (1). In 
practice, the most common strategies to solve (1) 
include convex relaxation [6], non-convex local 
optimization [7] and greedy search strategies [2]. 
These methods find an approximate solution of the 
original problem with an algorithm of complexity 
O(MN) or O(NlogM), depending on the approach 
[2]. Several recovery algorithms using the 
previously mentioned strategies have been 
proposed in the literature. Specifically, greedy 
approaches, which basic operation is to find the 
supports of the unknown image sequentially, have 
been shown to be relatively fast in comparison 
with other approaches and are often considered 
the only practical way to solve very large sparse 
approximation problems [2]. Iterative hard 
thresholding (IHT) [8] and orthogonal matching 
pursuit (OMP) [9] are two examples of recovery 
algorithms that have demonstrated their potential 
to recover a compressed signal through the CS 
technique.

CS has been widely applied in different fields 
such as imaging (e.g., single-pixel camera 
[10]), optics (e.g., hyper-spectral imaging 
[11-12]), and communications (e.g., Wireless 
Networks [13]). Applications involving the use 
of CS in embedded devices commonly include 
transmission of data in Wireless Sensor Networks 
(WSN) [13], Telecardiology Sensor Networks 
(TSN) [14] and wireless body sensor networks 
(e.g., using an iPhone device [15]). However, 
these works are limited to one-dimensional 
signals and are mainly centered on the collection 
of data and the transmission of compressed data. 
Conversely, there is few research on CS applied 
on embedded devices like smartphones. Hence, 

considering the advantages of CS in compressing 
data and the growing interest in mobile 
technologies and applications, it is important to 
analyze the implications of runtime and recovery 
quality using a CS implementation on a mobile 
device. This paper develops and analyzes the 
computational resources and implementation of 
the compression/recovery processes of an image 
on a smartphone platform using an overlapped 
block-based (OBB) CS approach. This paper 
assumes the incorporation of a CS sensor, such as 
the single pixel camera [10], on the mobile device 
to acquire the image measurements. Details about 
the optical implementations of CS sensors can be 
found in [16].

The main contributions of this paper are the OBB-
CS approach, the extension of CS applied to 2D 
signals (i.e., images) on mobile devices, and the 
analysis of the energy consumption of recovery 
algorithms for CS reconstruction on a smartphone 
device. The experiments comprise simulations 
and implementations of the recovery algorithms, 
which are executed on ARM Cortex architecture, 
which is a representative design of several kinds 
of mobile devices such as smartphones. 

Sparse recovery algorithms

The theory of CS uses sparse recovery algorithms 
for the reconstruction of the original image. 
Different recovery algorithms use varying 
strategies to find the image that best approximates 
the original image. Greedy algorithms are a type 
of sparse approximation algorithms designed 
to find a solution of the k-sparse optimization 
problem given by equation (2).

 min ‖y-Φ f ‖2
2  subject to       ‖ f ‖0 ≤ k.  (2)

The solution of (2) obtains the best approximation 
of f using only k columns of the measurement 
matrix Φ, and were the elements of the image f 
must be equal or less than a given constant k that 
determines its sparsity level.
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Greedy strategies constitute one class of sub-
optimal techniques used in practice to find 
the vector f  with the smallest number of non-
zero elements. In general, the reconstruction 
complexity of the greedy algorithms is lower 
than that of the l1 minimization methods [2]. 
Some drawbacks of greedy algorithms are 
related with the computational cost involved 
in the computation of the projection operation, 
which limits the application to small problems. 
However, greedy strategies efficiently 
reconstruct signals from compressed sensing 
observations and succeed with a minimum 
number of observations [8]. On the other hand, 
iterative thresholding algorithms, such as the 
Iterative Hard Thresholding (IHT), are another 
class of greedy algorithms that has demonstrated 
good performance and are capable to succeed 
with a minimum number of observations [8]. 
IHT relaxes the l0 penalty and replaces it by the 
l1 penalty, and it is designed to solve the convex 
problem presented in equation (3), where λ is a 
regularization parameter which can be adjusted 
to promote the sparsity of the optimized signal f.

 min  ‖y - Φ f ‖2
2   +   λ‖ f ‖1,  (3)

                               

f

 

In this paper, greedy methods are studied 
as they have fast implementations and are 
less demanding computationally than other 
strategies such as the Basis Pursuit De-
noising (BPDN) method [2] and therefore, 
more appropriate for mobile devices. In this 
paper two algorithms are analyzed: Iterative 
Hard Thresholding (IHT) [8] and Orthogonal 
Matching Pursuit (OMP) [9]. 

Iterative Hard Thresholding Algorithm

Iterative Hard Thresholding (IHT) Algorithm is 
an iterative greedy method that does not require 
matrix inversion and provides near optimal error 
guarantees [8]. The algorithm computes the 
solution f (t) at iteration (t) as f (t+1) in equation 
(4), where the matrix A is the product of the 
measurement and representation matrices, A = 

ΦΨ. Hk (.) is a non-linear operator that sets all but 
the k largest elements in magnitude of a vector to 
zero and AT represents the transpose of the matrix 
A. The parameter λ represents the step size, and  
f (0) is set to a zero-valued vector.

 f (t+1) = Hk (f
 (t) + λAT (y - A f (t)), (4)

Table 1 column (a) shows the steps required by 
the IHT algorithm to find the solution f. Two 
main characteristics of this algorithm include that 
it converges in linear time due to the fact that it 
is based on a gradient descend strategy, and the 
selection of the step size parameter, which needs 
to be chosen appropriately [6, 17].

Orthogonal Matching Pursuit 

Orthogonal Matching Pursuit (OMP) Algorithm 
is a greedy strategy that iteratively selects the 
elements in the approximation vector. At iteration 
(t) the approximation of the image represented 
by f (t+1) is calculated by equation (5), where Γ 
represents a set of selected indices based on the 
inner product of the current residual r(t) and the 
columns in A. The submatrix A Γ(t) is formed 
using only the columns of A with indices from Γ 
in the iteration (t), and A † Γ(t) represents the pseudo-
inverse of the matrix AΓ(t) . 

 f (t+1)=A† 
Γ(t)y, (5)

Table 1 column (b) shows the pseudocode of 
the OMP strategy to find a better approximation 
vector f in each iteration. Table 2 describes 
the OMP and IHT algorithms in terms of the 
number of operations, storage and computational 
complexity required, where p represents the 
number of iterations in the OMP algorithm; κ 
denotes the complexity of applying the operator 
A and AT, which can be O (MN) or O (NlogM) 
depending on whether the operator is structured 
(e.g., Gaussian ensemble) or not structured (e.g., 
the Scramble Block Hadamard Ensemble), and c 
represents the number of selected columns which 
varies from 1 to k for the OMP algorithm.
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Table 1 Recovery Algorithms. (a) IHT recovery 
algorithm (b) OMP recovery algorithm

(a) IHT Algorithm (b) OMP Algorithm
function IHT(y,A, k, λ,f(0),e,nIter)
   for t←0, nIter do
          v(t)= y - Af(t)

          u(t+1)=f(t) +λAT v(t)

          f(t+1)=Hk (u(t+1))
            if ||v(t)) ≤e then
              return f^((t+1))
     end if
       end for
       return f(t+1)

end function

function OMP(y, A, k, f(0), e) 
   Γ(0)=∅
   for t←1, nIter do
          g(t)=AT r(t)

          j=max|g(t)|
          Γ(t)=Γ (t-1))∪j
          f(t+1)=A † 

Γ(t) y
          r(t+1)=y - Af (t)

            if || r(t+1) ||≤e then
               return f(t+1)

            end if
    end for
    return f(t)

end function

Table 2 Computational requirements of IHT and 
OMP sparse recovery algorithms. The O(ν) operator 
represents the complexity of applying the A and AT 
operator, and c represents the number of selected 
columns for the OMP algorithm

Algorithm IHT OMP 

Number of 
Operations

M +N +k+O(v) + [N log N ] 2M +N + 
4O(ν) + 

[N log N ]

Storage Cost [M+N+MN ]+ k [M+N+MN ]+ 
Mc+c

Computational 
Complexity

O(qν) O(pν)

Measurement matrices

The measurement matrix Φ takes the projections 
of the underlying signal. In general, measurement 
matrices need to satisfy the Restricted Isometry 
Property (RIP) defined in [6, 18], as this is a 
sufficient condition for sparse reconstruction. 
Random matrices, where the entries are i.i.d. 
from a normal distribution or a bernoulli 
process, satisfy the sufficient condition for 
sparse reconstruction. Popular ensembles of 
measurement matrices include the Gaussian 

Random Ensemble, the Partial Fourier Ensemble 
(PFE), the Symmetric Signs Ensemble (SSE), the 
Bernoulli Matrix Family (semi-Hadamard, Partial 
Hadamard), the Sparse Binary Matrix (SBM) 
and the Rademacher matrix [4]. Gaussian and 
Bernoulli matrices have two major drawbacks in 
practical applications: large memory buffering for 
storing matrix elements and high computational 
complexity due to being completely unstructured. 
Measurement matrices as the SBHE [5] or the 
SBM [4] are considered more adequate for their 
implementation than the Gaussian ensemble due 
to the fact that these measurement ensembles 
are highly sparse and allow a fast computation 
compared to the traditional Gaussian ensemble. 
Considering the limited resource characteristic 
of mobile devices and the properties of 
measurement matrices described above, only 
Gaussian and SBHE matrices are analyzed for 
the implementation of the CS image system using 
mobile devices.

Image compression and recovery 
with overlapped blocks

The CS overlapped blocking approach presented 
in this paper is designed to recover images 
of higher dimensions on a mobile device 
by exploiting the image and sensing matrix 
structures. Given the limited memory of the 
mobile device, the block approach permits to 
analyze high-resolution images and extend the 
results obtained in [19] where images of 32x32 
were recovered using CS. Previous work in 
block-based image CS analysis include the 
block-based OMP algorithm [20] proposed by 
Parichat et al, in which the algorithm recovers 
each block of an image and then rearranges an 
image of 64x64 pixels using each of the recovered 
blocks. However, the description of Parichat’s 
block-based approach uses M=N measurements, 
which leads to no compression of the image due 
to the number of measurements is equal to the 
length of the original image. Similarly, Lu Gan 
proposes a block-based image CS approach 
in [21], which divides the original image in 
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small non-overlapped blocks of 32x32 pixels. 
However, the recovery algorithm used in [21] 
uses a 3x3 Wiener filter to reduce the blocking 
artifact and smooth the image, which involves 
more computational requirements to compute 
the solution and therefore is not suitable for its 
implementation in a mobile device. Conversely, 
this paper proposes an overlapped block-based 
(OBB) CS approach for the reconstruction of 
images in mobile devices, using different CS 
configurations and two greedy algorithms. The 
implementation on mobile devices assumes that 
the device has a CS camera, which takes the 
compressed measurements of the image. The 
main feature of the blocking process is to divide 
an image into small blocks of b x b pixels. Each 
predefined block is compressed and stored or 
transmitted to other device. Then, an iterative 
process using a Greedy algorithm recovers each 
block of the image, and an approximation of 
the original image is obtained rearranging the 
recovered blocks.

Overlapped Block-Based (OBB-CS) 

The model presented here uses an Overlapped 
Block-Based (OBB-CS) strategy that exploits the 
structure of the sensing matrix Φ for recovering 
the image from several measurements. The 
image F is expressed as a qxq ensemble of bxb 
submatrices Fm,n defined by equation (6), where 
each submatrix Fm,n is an overlapped block of the 
image F. The size b of each block is a selectable 
parameter which must be a non prime number 
and also a divisor of the total number of pixels 
N; the rationale behind this selection is to divide 
the image into a number of overlapped blocks of 
equal size and avoid zero padding due to blocks 
with incomplete number of pixels.

  (6)

The number of blocks q of the image depends 
on the total number of pixels N, and the size of 
the block b; This value is calculated by . The overlapping factor ∆ defines the amount of 
overlapped pixels, i.e. pixels shared between 
consecutive blocks in F. This overlapping factor 
is calculated by . Figure 1 a) shows 
the structure of an overlapped block Fm,n of the 
image F. The sections Am,n, Bm,n, Cm,n, Dm,n, Zxm,n, 
Zym,n, Zwm,n and Zzm,n represent the shared parts 
between consecutive blocks of the image, while 
the section Em,n represents the unshared region of 
the block. Each overlapped block Fm,n has a vector 
representation fm,n∈ ℝ(b2)x1, and the measurement 
vector of each overlapped block ym,n is calculated 
as ym,n=Aγ

m,n fm,n, where Aγ
m,n  ∈ Rhx(b2) is the block 

measurement matrix with h=[M/q].

Overlapped Block-Based Recovery

The measurement vector ym,n corresponding to 
each overlapped block Fm,n is used to obtain an 
approximation block F̂m,n with the OMP and  IHT 
algorithms. The reconstructed block F̂m,n is also 
in the sections Âm,n, B̂m,n, Ĉm,n, D̂m,n, Ẑ xm,n, Ẑ ym,n,  
Ẑ wm,n and Ẑ zm,n as indicated in Figure 1. A full size 
recovered image F' is formed using rearranged 
versions of the blocks F̂m,n. Figure 2 shows the 
block diagram of the compression and recovery 
process of the image using the approximation 
blocks F̂m,n. Let the whole recovered image be 

, where F'
m,n are the 

rearranged versions of the blocks F̂m,n. More 
specifically, for each rearranged block F'

m,n, the 
average of the shared areas Âm,n, B̂m,n, Ĉm,n, D̂m,n,  
Ẑ xm,n, Ẑ ym,n, Ẑ wm,n and Ẑ zm,n  between subsequent 
blocks is computed; this average helps to reduce 
the edge artifacts produced in the recovered image 
and thus increase the quality of the complete 
reconstructed image F'.
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Figure 1 b) shows an image with nine blocks 
that represents the types of blocks in the 
overlapped block structure. The types of blocks 
are numbered from I up to IX, and each block has 
an overlapping factor ∆ and block size b. For a 
reduced dimension of the block size b, the total 
number of blocks increases but the block types 
illustrated in Figure 1 remain the same. 

The average calculation of the shared regions 
between the rearranged blocks F'

m,n depends on 

the position of the related approximation block 
F̂m,n. The estimation of the rearranged blocks F̂m,n 
is performed as follows: for the block types I, II, 
IV and V, the rearranged block F'

m,n is expressed 
by equation (7).

 ,   (7)

a) b)

Figure 1 Overlapped blocks of an image. a) Structure of the overlapped block  with block size  and overlapping 
factor . b) Basic block types of an image using a block size b

Figure 2 Block diagram for a) OBB-CS compression and b) and recovery processes in OBB-CS
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In equation (7), E'm,n, D'm,n, C'm,n and Z'm,n are 
defined by equations (8) - (11) for the block type 
I:

 (8)

  

  (9)

   

  (10)

 

  (11)

The block type II has a smaller unshared region 
E'm,n when compared with block type I; thus this 
section of the block and the shared region D'm,n 
are computed by equations (12) and (13):

  (12)

  (13)

The regions C'm,n and Z'm,n are calculcated as 
in (10) and (11). The regions E'm,n and C'm,n are 
calculated for the block type IV as shown in 
equations (14) and (15).

 (14)

  (15)

and the regions D'm,n and Z'm,n are computed as 
in (9) and (11) respectively. The block V has the 
region E'm,n=Êm,n and the shared regions Z'm,n, D'm,n 
and C'm,n and are computed by equations (11), 
(13) and (15) respectively.

For the block types III and VI, the recovered 
block only shares the section D'mn with the 
adjacent block. Hence, the rearranged block F'm,n 

is expressed as in equation (16), where D'm,n= 
(D̂m,n +Ẑwm,n +B̂m,(n+1) + Ẑym,(n+1))/2; E'm,n = B̂m,n+ 
Ẑym,n + Ĉm,n + Êm,n for the block type III, and E'm,n 
= Ĉm,n + Êm,n for the block type VI.

 F'm,n= [E'm,n D'm,n], (16)

For block types VII and VIII, the rearranged 
block  is calculated by equation (17).

 , (17)

where C'm,n= (Ĉm,n+Ẑwm,n +Â(m+1),n + Ẑz(m+1),n))/2; 
E'm,n= Âm,n+Ẑzm,n+Êm,n+D̂m,n, for the block type 
VII, and E'm,n= Êm,n+D̂m,n, for the block type VIII. 
Block type IX does not need to compute averages 
for the recovered image as this portion of the 
block does not have any subsequent blocks, and 
therefore any shared regions, thus F'm,n=F̂m,n.

Simulations and Results

The simulations comprise the compression and 
recovery of two squared standard images, i.e., 
Lena and Boat, using the OBB-CS approach 
described in this paper. The resolution of the 
images is 128x128 and 256x256 pixels. The 
Wavelet Symmlet of order 8 was used as the 
representation matrix Ψ because it is one of the 
best sparse representations for images [5-10]. The 
images were approximated using different levels 
of sparsity. Thus, the images were approximated 
by maintaining only a percentage of the more 
representative Wavelet coefficients. Two 
different architectures were used to implement 
the CS scheme: An iPhone 4 with 512 MB of 
memory which has an ARM Cortex-A8 with 1 
GHz processor (iOS platform); and a PC with 
2GB Memory and 2.4 GHz processor, along 
with the iOS simulator for iPhone (PC platform). 
The implementation in the PC platform uses 
the Matlab software and its programming 
language to ease the CS implementation in the 
PC. After the PC version of the CS system was 
tested, the Objective-C language was used to 
do the implementation in the mobile device. 
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The standard metric Peak Signal to Noise Ratio 
(PSNR) was used to measure the image quality. 

Two random ensembles as measurement matrices 
were studied for comparison purposes. Figure 3 
shows the PSNR of the reconstructed images 
Lena and Boat when compressed using the 
Gaussian and SBHE ensembles respectively on 
the PC platform using Matlab™ and with the IHT 
and OMP algorithms; the PSNR results are given 

for different sparsity levels and for different 
percentage of measurements for the images.  
Based on the results of figure 3, the SBHE 
ensemble provided almost the same quality 
reconstruction as the Gaussian ensemble, but 
it requires less storage due to its sparse nature, 
such that SBHE was selected for the CS mobile 
implementation. Additionally, the results indicate 
that the OMP algorithm recovers the images with 
a higher PSNR quality than the IHT algorithm.

Figure 3 Quality of CS image recovery using two different measurement matrices, several sparsity levels for the 
image and different percentages of measurements. I) Lena PSNR results. a) (Left Column) Lena image recovery 
with Gaussian matrix; b) (Right Column) Lena image recovery with a SBHE matrix. II) Boat PSNR results.  a) (Left 
Column) Boat image recovery with Gaussian matrix; b) (Right Column) Boat image recovery with a SBHE matrix

Figure 4 shows the original and recovered 
versions of the Lena and Boat images. This figure 
shows the results obtained in the PC and iOS 
platforms described above and using the OBB-
CS approach.

The recovery time required for the OMP and IHT 
algorithms is illustrated in Figure 5 the required 

time per iteration for a block of 32x32 pixels is 4.9 
seconds on the iOS simulator and 30.5 seconds on 
the mobile device using the iOS platform. As the 
dimension of the image increases from 128x128 
to 256x256 the computational time increases as 
well since to more blocks need to be processed.
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Energy Consumption Analysis

The energy consumption of the recovery 
algorithms on the mobile device platform was 
measured using the Instruments application 
provided by Apple. Instruments provides an 
Energy Usage Instrument (EUI) to measure 
the energy consumption of algorithms on the 
iOS device. The EUI application takes samples 
of energy consumption in the mobile device 
comparing the available amount of battery charge 
before and after the execution of an application 
on the device. EUI provides the values of 
energy usage by each application running on the 

iOS device in a range from 0, which means no 
energy consumption, to 20 that indicates that the 
maximum amount of energy is being consumed 
by the application.

Figure 6 shows the box plots of the energy 
consumption levels required by the recovery 
algorithms implemented for the image 
compression and recovery process. Comparing 
the energy consumption on the iOS platform, 
the OMP algorithm has the largest variability. 
However, the energy consumption of the OMP 
and IHT greedy algorithms yield to similar 
average results.

  (a) Lena Recovery   (b) Boat Recovery 

Figure 4 CS Reconstruction results for (a) Lena and (b) Boat images using OBB-CS and the OMP algorithm; (Left 
columns) Original images of resolution 128x128 and 256x256; (Center columns) Recovery images on PC platform; 
(Right columns) Recovery images on iOS platform using an overlapping factor  for images of 128x128 and  for images 
of 256x256. The percentage of measurements is 60%, blocks of size were used for the reconstruction of the image
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Figure 6 Box plot of the energy consumption levels for OMP and IHT recovery algorithms on iOS platform taking 
different amounts of measurements

Conclusions

The mathematical model of the Overlapped 
Block-Based CS (OBB-CS) strategy to recover 
images on a Smartphone platform has been 
presented. The results indicate that the SBHE 
sensing matrix is more suitable for the mobile 
implementation. The OMP algorithm presents 
a higher PSNR image quality reconstruction, 
a faster reconstruction time, and similar power 
consumption than the IHT reconstruction 
algorithm. The image reconstructions on the 
mobile device using the SBHE matrix, the 
OMP algorithm, and the OBB-CS block model 
achieves similar PSNR quality than those on the 
PC architecture. Additionally, the reconstruction 
time for images of 256x256 pixels is in the order 
of 30 seconds on the mobile device.
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