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Abstract

We present a Pareto Genetic Algorithm (PGA), which finds the Pareto frontier 
of solutions to problems of robust design in multiobjective systems. The PGA 
was designed to be applied using Taguchi’s Parameter Design method, which 
is the most frequently used approach by practitioners to executing robust 
design studies. We tested the PGA using data obtained from a real single-
output system and from multiobjective process simulators with many control 
and noise factors. In all cases, the PGA delivered Pareto-optimal solutions 
that adequately achieved the objective of robust design. Additionally, the 
discussion of the results showed that having those Pareto solutions helps in 
the selection of the best ones to be implemented in the system under study, 
especially when the system has many control factors and responses.

----------Keywords: Parameter Design, Pareto genetic algorithms, 
multiobjective evolutionary algorithm

Resumen

Se presenta un Algoritmo Genético de Pareto (AGP), que encuentra la frontera 
de Pareto en problemas de diseño robusto para sistemas multiobjetivo. 
El AGP fue diseñado para ser aplicado usando el método de Diseño de 
Parámetros de Taguchi, el cual es el método más frecuentemente empleado 
por profesionales para ejecutar diseño robusto. El AGP se probó con datos 
obtenidos de un sistema real con una respuesta y de un simulador de procesos 
multiobjetivo con muchos factores de control y ruido. En todos los casos, 
el AGP entregó soluciones óptimas que cumplen con los objetivos del 
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Introduction
Robust design tries to adjust controllable input 
variables (control factors) of a system, so that 
its outputs stay as close as possible to their 
corresponding target values and with minimum 
variability, even in the presence of noise factors, 
which cannot be controlled [1, 2]. The most 
frequently used approach among practitioners to 
performing robust design is Taguchi’s Parameter 
Design (PD) [3-9]. PD carries out this process in 
two stages. First it attempts to manipulate control 
factors to achieve minimum possible variability 
in the system’s responses. Then it sets other 
control factors to locate the mean of the responses 
as close as possible to their corresponding target 
values.  Given that performing experiments in real 
systems may require huge resources and imply 
long non-productive periods, PD makes extensive 
use of fractioning of experiments. This reduces 
the number of experimental conditions that must 
be run and the corresponding execution time [2, 
10]. That is the reason why PD is so frequently 
used in real application of robust design [3-10]. 
Then, the manager takes into account time, costs 
and other economic factors associated with the 
setting of each of the control factors of the system 
to decide which solution to definitively implement 
[2]. If the system has many control factors with 
many possible levels and many responses that 
need to be simultaneously adjusted, that is a hard 
decision to make [1, 10-12]. Thus, to overcome 
some of the difficulties of applying PD to 
multiobjective systems with many control and 
noise factors, the work presented in [11] and [13] 
proposed the use of a Genetic Algorithm (GA). 
That GA automatically finds combinations of 
values for the control factors, which adequately 
locate the mean of the responses of the system 

as close as possible to their corresponding target 
values and with low variability. However, the 
manager still needs to select the best solution 
among the many ones delivered by the GA by 
trying to reach a compromise between variance 
reduction and mean adjustment [11, 13]. This 
is a rather complicated and time consuming 
analysis, especially when the system has many 
responses and needs to consider economic 
factors [13]. Thus, instead of manually dealing 
with the analysis, one could first compute a 
Pareto frontier with a Pareto GA (PGA) [14], 
which will show the compromise between 
variability reduction and mean adjustment for 
all of the responses. Then, the manager will use 
that frontier to consciously select a solution that 
efficiently deals with that balance, instead of just 
analyzing many solutions and choosing one that 
might not be a Pareto-efficient one. Thus, this 
paper presents an improvement to a previous GA 
[13], which consists in using a PGA that finds an 
approximate Pareto frontier for the problem of 
PD in multiobjective systems with many control 
and noise factors.

Other researchers have also explored the 
application of GA to robust design [15-20]. 
However, the present work differs from theirs in 
some important aspects. First, in general similar 
approaches have not used the application of PD 
and orthogonal arrays (OA) to the design and 
gathering of the experimental data. Given that 
the use of PD and internal and external OAs is 
the most frequently used method for conducting 
robust design studies by practitioners [3-10], the 
present work develops the PGA specifically for 
PD and OA. Second, much of previous work 
(see e.g. [16 - 19]) consists of particular tools 
applicable only to specific problems, and thus lack 

diseño robusto. Además, la discusión de resultados muestra que tener dichas 
soluciones ayuda en la selección de las mejores a ser implementadas en el 
sistema bajo estudio, especialmente cuando el sistema tiene muchos factores 
de control y salidas.

----------Palabras clave: Diseño de Parámetros, algoritmos genéticos 
de Pareto, algoritmos evolucionarios multiobjetivo
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a more general view of robust design. Although 
previous research has its own merits, our work 
is readily generalizable to multiobjective systems 
with many outputs, control and noise factors, and 
uses Taguchi´s PD approach, the most frequently 
applied method in real studies of robust design 
[3-10]. Examples of such studies are the 
enhancement of copper refining methods to 
obtain a purer metal [1], an efficient scheduling 
of operators in a call-center [1], cost reduction in 
the processing of natural gas [21], improvement 
of end-milling operations to obtain a smoother 
surface of metal plates [22], to name just a few. 
Additionally, the present paper shows that the 
proposed PGA is robust against experimental 
design fractioning, resulting in further flexibility 
for applications in heavily constrained scenarios, 
which to our knowledge remains unaddressed in 
previous works.

Pareto Genetic Algorithm
Similar to the previous GA developed in [13], the 
proposed PGA represents the combinations of k 
control factors that may take s different levels 
(values) of a robust design experiment using 
an integer codification. Let flj be the factor j of 
chromosome l, with j = 1, 2, …, k and l = 1,2, 
…, N. Each flj can take the value of a given level 
of the factor j, i.e. 1, 2, …, s. One chromosome 
(or solution) is expressed as a row vector (see 
Eq. (1)). The matrix representing the total 
population of solutions X will be composed of N 
chromosomes (see Eq. (2)).

  (1)

  (2)

Multiobjective Optimization Problem for 
a single-output system

In a single-output system, the experimenter needs 
to optimize only one response y. Thus, the PGA 
will deliver solutions that represent the optimal 

trade-off between variance reduction (minimize 
s2 (xl)) and mean adjustment for y (minimize 

), and then the experimenter will select 
the solution that better meets his/her needs. In 
terms of a Multiobjective Optimization Problem 
(MOP) and following previous work [13], this 
problem can be expressed as follows (Eq. (3)):

  (3)

The restriction in (3) simply sets a lower (L) and 
upper tolerance limit (H), between which the 
mean of the response is acceptable. Following 
previous work [11, 13], the PGA uses the 
following penalty function for enforcing such 
limits (Eq. (4)):

 (4)

Incorporating the penalty function (4) in (3) and 
defining expression (5):

  and  

  (5)

the MOP can be stated as seen in expression (6):

 (6)

The algorithm can then use ϕ1 and ϕ2 to establish 
the dominance relations between pairs of 
chromosomes (solutions). For two chromosomes, 
x1 will dominate x2 if and only if  Eq. (7) is 
satisfied:
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  (7)

Multiobjective Optimization Problem for 
a Multiobjective System

A multiobjective system will have r responses (r 
= 1,…, R), so that now the PGA needs to decrease 

 and minimize , . Thus, the PGA 
will use two desirability functions D1 and D2 for 
aggregating ,  and ( )2, , respectively 
[13] [23, 24] (Eq. (8)):

 (8)

 

Where  is a vector with the mean of the 
responses  of a solution xl; and  is a 
vector of the variances  of that solution, with 
r=1,…, R, which can be seen in eqs. (9) and (10):

  (9)

  (10)

Each individual desirability dir (i = 1, 2; r = 1, 2, 
…, R) will be computed as suggested in [23, 24] 
by using expressions (11) and (12):

where air and bir (i = 1, 2; r = 1, 2, … , R) are the 
least and most desirable cases respectively for the 
R responses as equation (13) shows:

  (13)

In expression (13), Hr and Lr are the upper and 
lower tolerance limits for response r, and τr is the 
corresponding target value. Note that D1 and D2 in 
(8) and expressions (11) through (13) are defined 
so that larger values of D1 imply that the mean 
of the responses are closer to their corresponding 
target values. Similarly, D2 increases as the 
variance of the responses decreases. Thus, the 
MOP for the multiobjective case is stated as a 
maximization problem. Additionally, following 
the work presented in [23, 24], the PGA will use 
a penalty function P to penalize the infeasible 
solutions (those that provide a response beyond 
Hr or Lr) (Eq. (14)):

(14)

where each pr is computed as expression (15) 
shows:

  (15)

 (11)

 (12)
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and c = 0.0001, which avoids pr from becoming 
zero, and thus ensures that a non-zero P is 
calculated for a non-feasible solution (Eq. (14)) 
[24]. Finally, by defining ϕ1 and ϕ2 as shown by 
equation (16):

  and  

  (16)

one can state a maximization problem for ϕ1 and 
ϕ2 (Eq. (17)):

  (17)

Where chromosome x1 will dominate x2 if and 
only if eq. (18) is satisfied,

  (18)

Multiobjective Evolutionary 
Algorithm

To solve the developed MOP we will apply the 
Multiobjective Evolutionary Algorithm (MOEA) 
Strength Pareto Evolutionary Algorithm 2 
(SPEA2) [25, 26]. To apply SPEA2 to the MOP, 
we needed to make minor adjustments to the 
MOP already defined in subsection 2.1 and to the 
code of SPEA2. First, we restated expression (6) 
as a maximization problem, given that the code 
of SPEA2 is designed for maximization MOPs. 
Second, SPEA2 uses a truncation method for 
selecting its environment of possible solutions, 
which are kept in an external file of fixed size 
[25, 26]. However, in this case, the experimenter 
wants to compute as many feasible solutions as 
possible. Moreover, since in robust design the 
experimenter generally uses highly fractioned 
experimental designs [2, 10], he/she will have 
a reduced amount of data and thus, SPEA2 will 
not need to deal with a large number of solutions. 
Therefore, the present PGA uses an external file 
of variable size. Third, in the calculation of the ϕ1 

and ϕ2 values for each chromosome (see Eq. (5) 
and (16)), the PGA needs to know the response/s 
corresponding to the experimental treatment, 
which each chromosome represents. However, 
remember that PD uses highly fractioned designs 
to reduce the size of the experiments [2, 10]. 
Hence, some of the treatments codified in some 
chromosomes might not have been part of the 
experiment that the manager conducted to gather 
the data. Thus, the PGA needs to estimate those 
responses. For estimating the mean and variance 
of the response for a non-tried treatment, the 
PGA calculates the main effect of each level of 
each control factor on both mean and variance. 
Then, for estimating the mean of a response, 
the PGA adds to the mean of all the responses 
of the experiment that was carried out, the 
corresponding main effects. For the variance, 
the PGA calculates a total variance considering 
all the replications of all the treatments tried in 
the original experiment and then the PGA adds 
to it, the corresponding variance main effects. 
Both procedures were successfully applied in 
previous GAs [13], and represent the usual form 
of estimating responses in PD [2]. Finally, we 
must note that the PGA uses a uniform crossover 
operator with probability pc equal to 0.3 and a bit 
by bit (factor by factor) mutation operator with 
probability pt equal to 0.05. Those operators and 
values are the same as the ones used in previous 
GAs with good results [11, 13].  The termination 
condition of the algorithm corresponds to reaching 
a fixed number of iterations, which was set at 15. 
The study tried larger values, but did not notice 
that the PGA obtained a better approximation to 
the Pareto frontier.

Application of the Pareto GA
To evaluate the performance of the PGA and also 
compare it to the previous GA (GA2) [13], two 
case studies were used. The first one corresponds 
to a real application of robust design. The 
second case study uses a multiobjective process 
simulator with four responses, ten control factors 
and five noise factors. This simulator is described 
in [11, 13]. For each of the test cases, PGA was 
run 30 times.
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Results obtained for the single-output 
real system

In this case, a robust design was carried out to 
adjust the width of the painted strip of a car 
painting system to a nominal width of 40.0 cm. 
In this process, it is very important to attain a 
specific width of the strip that is sprayed with 
paint. A narrow strip will leave parts of the car 
body with no paint and overspraying will result 
in waste of paint. This also means that the process 
should be very stable, i.e. the width of the painted 
strip should exhibit a small variability. In this 
study, the engineers and technicians identified 
four control factors each having three levels: 
type of spray gun used, speed of paint flow, fan 
airflow and atomizing airflow. The noise factors 
identified were three each with two levels: paint 
color, input air pressure and paint viscosity. 
The design of the experiment consisted of an 
orthogonal array L9(3

4) for the four control factors 
and a L4(2

3) for the three noise factors. More 
details and the data may be found in [27]. The 
Pareto frontier obtained by the PGA is presented 
in figure 1, which was consistently found in all 
the 30 runs performed.  The points marked with a 
rhomb correspond to the solutions that define the 
frontier and were found by the PGA. The point 
marked with a triangle corresponds to one of the 
solutions delivered by the GA2 and selected as 
the best one, through a manual analysis [13]. 
That analysis consisted in calculating the mean 
adjustment and variance reduction attained by 17 
solutions obtained by the GA2, and then selecting 
the one that presented a good compromise 
between both objectives. As can be seen, that 
solution coincides with one of the points of the 
Pareto frontier found by the PGA. Given the 
small size of the experiment, the manager can 
manually compute the Pareto Frontier and that 
best solution, which corresponds to the treatment 

(combination of control factors) A = 2, B = 3, C = 
1 and D = 2 (chromosome x = [2 3 1 2]).

Figure 1 Pareto frontier for the solutions 
corresponding to the real single-output system

Given that the manually computed Pareto 
Frontier coincides with the one delivered by the 
PGA, it may be said that the PGA found a good 
approximation to the frontier. Table 1 shows the 
solutions that are part of the Pareto frontier found 
by the PGA. Having those figures, the manager 
can decide which of the solution best suits his/
her needs. If the manager takes into account 
only mean adjustment and variance reduction, 
most probably he/she will select solution 2-3-
1-2, which is a good trade-off between both 
objectives. Now, if the manager considers 
economic factors, that decision is not so simple 
to make. However, the Pareto frontier will help 
the manager to consider the trade-off between 
variance reduction and mean adjustment, and 
economic issues. For this system, note that 
solution 2-3-1-2 and 1-3-3-3 achieve comparable 
standard deviations. Hence, any of the two, may 
be selected for achieving a low variability. On the 
other hand, although solution 1-3-1-3 achieves 
a good mean adjustment, it does not do well in 
variance reduction. 
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Now, according to the case study, factor A 
corresponds to the type of spray gun used, which 
can be of three types [27]. Also, the case study 
says that it is more expensive to use spray gun 
type 2 than type 1 [27]. Therefore, the manager 
may decide to implement solution 1-3-3-3 (A = 1 
= spray gun type 1) rather than solution 2-3-1-2. 
This decision implies that it is tolerable and cost/
effective to achieve a width of the painted strip 
of 44.8 cm. [27] does not provide the figures to 
assess cost-effectiveness, but the analysis shows 
how having the Pareto frontier of solutions will 
help in making that type of decision. 

Results obtained for the single-output 
complex systems

To test both GA’s under a more complex situation, 
the study used the simulator described in detail in 
[13]. This process simulator has four responses, 

ten control factors and five noise factors. It 
also has interactions between control and noise 
factors. Those characteristics make the simulator 
similar to a real and difficult to optimize system 
[6]. The robust design for this situation considers 
using an inner array L64(4

10) for the ten control 
factors and an outer array L16(4

5) for the five 
noise factors. For the following case studies, the 
four responses of the simulator are optimized 
independently from each other, so that the PGA 
deals with four single-output systems. As in the 
previous case study, PGA was run 30 times for 
each test condition. For response one (y1), table 
2 shows the four best solutions obtained by 
analyzing the best 30 solutions found by GA2 
and selecting the ones that are a good trade-off 
between mean adjustment and variance reduction. 
Additionally, table 2 presents the solutions that 
lie on the approximate Pareto frontier obtained 
by the PGA. 

Table 1 Solutions lying on the Pareto frontier for the real single-output system

Chromosome
(solution)

Response mean [cm] Standard deviation [cm]
Target value Obtained Diff. (%)

1 – 3 – 1 – 3 40.0 39.058 -2.35 7.373
2 – 3 – 1 – 2 40.0 41.025 2.56 1.439
1 – 3 – 3 – 3 40.0 44.800 12.00 1.180

Table 2 Solutions obtained by the GA2 and Pareto-efficient solutions found by the PGA, for the single-output 
complex system, response Y1

Chromosome (solution) Y1 response mean Standard deviation
Target value Obtained Diff. (%)

PREVIOUS GA (GA2)
1 – 4 – 4 – 4 – 4 – 4 – 4 – 4 – 4 – 1 200.0 200.3 0.15 5.883
3 – 3 – 1 – 2 – 4 – 3 – 1 – 2 – 4  – 1 200.0 201.2 0.60 6.048
1– 3 – 3 – 3 –  3 – 2 – 2 – 2 – 2 – 4 200.0 202.4 1.20 7.295
3 – 4 – 2 – 1 – 3 – 3 – 1 – 2 – 4 – 2 200.0 195.0 -2.50 6.331

PARETO GA (Pareto-efficient solutions)
1 – 4 – 4 – 4 – 4 – 4 – 4 – 4 – 4 – 1 200.0 200.3 0.15 5.883
2 – 2 – 1 – 4 – 3 – 4 – 3 – 2 – 1 – 3 200.0 207.4 3.70 5.591
2 – 4 – 3 – 2 – 1 – 2 – 1 – 4 – 3 – 3 200.0 208.9 4.45 5.497
2 – 2 – 1 – 4 – 3 – 1 – 2 – 3 – 4 – 2 200.0 190.2 -4.90 5.409
1 – 3 – 3 – 3 – 3 – 1 – 1 – 1 – 1 – 3 200.0 187.1 -6.45 4.176
1 –2 – 2 – 2 – 2 – 4 – 4 – 4 – 4 – 3 200.0 174.8 -12.60 3.913
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figure 2 depicts the ten solutions showed in 
table 2. Comparing the solutions found by the 
PGA with those computed using the output of 
the GA2, figure 2 shows that only one of those 
solutions lies on the frontier and the other three 
are Pareto-inefficient. Since the GA2 finds any 
reasonably adequate, not necessarily Pareto-
efficient solutions; it is not surprising that some 
of the solutions found by the GA2 are Pareto-
inefficient. Thus, although in the application of 
GA2, about 30 of its solutions were manually 
compared for selecting the best ones, the manager 
cannot be completely sure that those solutions 
will be the Pareto-efficient ones. Moreover, the 
manual analysis is prone to human errors, which 
could make the selection process even worse. 
That is why the PGA is so useful in this case: the 
manager will already have approximately Pareto-
efficient solutions and then needs only to select 
among them, the one that best suits his/her needs.

Figure 2 Pareto frontier for the solutions 
corresponding to the single-output complex system, 
response 1

Similarly, table 3 presents the solutions for 
response two (y2).

Table 3 Solutions obtained by the GA2 and Pareto-efficient solutions found by the PGA, for the single-output 
complex system, response Y2

Chromosome (solution) Y2 response mean Standard deviation
Target value Obtained Diff. (%)

PREVIOUS GA (GA2)
1 - 4 - 4 - 4 - 4 - 2 - 2 - 2 - 2 – 3 50.0 49.9 -0.20 2.381
1 - 1 - 1 - 1 - 1 - 4 - 4 - 4 - 4 - 4 50.0 48.9 -2.20 1.894
2 - 2 - 1 - 4 - 3 - 3 - 4 - 1 - 2 - 4 50.0 48.4 -3.20 2.135
1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 1 50.0 52.4 4.80 1.712

PARETO GA (Pareto-efficient solutions)
1 - 2 - 2 - 2 - 2 - 1 - 1 - 1 - 1 - 2 50.0 50.1 0.20 2.167
1 - 1 - 1 - 1 - 1 - 4 - 4 - 4 - 4 - 4 50.0 48.9 -2.20 1.894
1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 1 50.0 52.4 4.80 1.712

Figure 3 shows that two of the solutions, which 
were manually selected from the approximate 
forty obtained by the GA2, lie on the Pareto 
frontier. The other two are Pareto-inefficient. 
From table 3 one can also note that the PGA 

found a solution (1 - 2 - 2 - 2 - 2 - 1 - 1 - 1 - 1 -2), 
which adjusts the mean of the response as close 
to its target value, but with less variability, than 
the best solution in mean adjustment found by the 
GA2 (1 - 4 - 4 - 4 - 4 - 2 - 2 - 2 - 2 – 3).
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Figure 3 Pareto frontier for the solutions 
corresponding to the single-output complex system, 
response 2

In the case of response three (y3), the PGA also 
obtained three points of the efficient frontier. 
One of those points matches one of the manually 
selected solutions, which was chosen from the 30 
solutions delivered by the GA2. This can be seen 
in figure 4.

Figure 4 Pareto frontier for the solutions 
corresponding to the single-output complex system, 
response 3

The other three selected points are located rather far 
from the frontier. Table 4 shows the solutions along 
with the mean adjustment and standard deviation 
obtained by implementing each solution in the 
system simulator. The PGA found one new solution 
(1 - 1 - 1 - 1 - 1 - 4 - 4 - 4 - 4 – 4) that exhibits a better 
mean adjustment than the ones obtained by the 
GA2. However, in this case, the variance is higher.

Table 4 Solutions obtained by the GA2 and Pareto-efficient solutions found by the PGA, for the single-output 
complex system, response Y3

Chromosome (solution) Y3 response mean Standard deviation
Target value Obtained Diff. (%)

PREVIOUS GA (GA2)

2 - 1 - 2 - 3 - 4 - 3 - 4 - 1 - 2 - 3 1000.0 1005.5 0.55 42.93
4 - 1 - 4 - 2 - 3 - 1 - 4 - 2 - 3 - 1 1000.0 968.3 -3.17 70.63
4 - 4 - 1 - 3 - 2 - 4 - 1 - 3 - 2 - 1 1000.0 891.3 -10.87 51.18
3 - 3 - 1 - 2 - 4 - 3 - 1 - 2 - 4 - 1 1000.0 864.9 -13.51 58.78

PARETO GA (Pareto-efficient solutions)

1 - 1 - 1 - 1 - 1 - 4 - 4 - 4 - 4 - 4 1000.0 999.0 -0.10 48.98
2 - 1 - 2 - 3 - 4 - 3 - 4 - 1 - 2 - 3 1000.0 1005.5 0.55 42.93
3 - 3 - 1 - 2 - 4 - 4 - 2 - 1 - 3 - 2 1000.0 924.2 -7.58 34.46
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Finally, figure 5 and table 5 display the solutions 
for response four (y4). The manual analysis 
selected four solutions among the fifty found 
by the GA2 and the PGA obtained four Pareto-
efficient solutions. As can be seen in figure 5, two 
solutions of the GA2 coincide with the solutions 
of the PGA. In this case, the figures presented in 
table 5, show that the PGA found one solution 
(4 - 3 - 2 - 4 - 1 - 4 - 1 - 3 - 2 – 2) that adjusts 
the mean of response number four closer to 
its target value than the solutions obtained by 
analyzing the output of the GA2. However, the 
variance delivered by that solution is rather high. 
On the other hand, the PGA found the solution 
4 - 4 - 1 - 3 - 2 - 2 - 3 - 1 - 4 – 3, which achieves 
the lowest standard deviation, but has the worst 
mean adjustment. Thus, the solutions obtained 
by the PGA allow the manager to assess the 
trade-off between mean adjustment and variance 

reduction. Note also that for the four responses, 
PGA consistently found the Pareto-efficient 
solutions in all the 30 runs performed.  

Figure 5 Pareto frontier for the solutions 
corresponding to the single-output complex system, 
response 4

Table 5 Solutions obtained by the GA2 and Pareto-efficient solutions found by the PGA, for the single-output 
complex system, response Y4

Chromosome (solution) Y4 response mean Standard deviation
Target value Obtained Diff. (%)

PREVIOUS GA (GA2)
3 - 4 - 2 - 1 - 3 - 3 - 1 - 2 - 4 - 2 500.0 508.2 1.64 37.20
3 - 2 - 4 - 3 - 1 - 3 - 1 - 2 - 4 - 4 500.0 482.8 -3.44 31.27
2 - 3 - 4 - 1 - 2 - 4 - 3 - 2 - 1 - 2 500.0 469.6 -6.08 39.63
3 - 3 - 1 - 2 - 4 - 4 - 2 - 1 - 3 - 2 500.0 531.6 6.32 32.55

PARETO GA (Pareto-efficient solutions)
4 - 3 - 2 - 4 - 1 - 4 - 1 - 3 - 2 - 2 500.0 501.9 0.38 46.27
3 - 4 - 2 - 1 - 3 - 3 - 1 - 2 - 4 - 2 500.0 508.2 1.64 37.20
3 - 2 - 4 - 3 - 1 - 3 - 1 - 2 - 4 - 4 500.0 482.8 -3.44 31.27
4 - 4 - 1 - 3 - 2 - 2 - 3 - 1 - 4 - 3 500.0 593.3 18.66 28.94

Results obtained for the Multiobjective 
Complex System

In this case the study used the same simulator and 
the same experimental design as before, but the 

PGA optimized the four responses at the same 
time. This means that the PGA is optimizing a 
four–dimensional multiobjective system. Table 6 
presents the solutions for this case. 
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Table 6 Solutions obtained by the GA2 and Pareto-efficient solutions found by the PGA, for the multiobjective 
complex system

Resp. Chromosome (solution)
Response mean Standard deviation

Target value Obtained Diff. (%)
PREVIOUS GA (GA2)

y1

3– 4– 2– 1– 3– 3– 1– 2– 4– 2
ϕ1 = 0.857 ϕ2 = 0.844

200.0 195.0 -2.50 6.33
y2 50.0 51.7 3.40 2.52
y3 1000.0 910.0 -9.00 356.82
y4 500.0 508.2 1.64 117.63
y1

3– 3– 1– 2– 4– 3– 1– 2– 4– 1
ϕ1 = 0.580 ϕ2 = 0.922

200.0 200.7 0.35 2.13
y2 50.0 47.2 -5.60 0.81
y3 1000.0 782.2 -21.78 36.3
y4 500.0 612.3 22.46 34.9

PARETO GA (Pareto-efficient solutions)
y1

3– 4– 2– 1– 3– 3– 1– 2– 4– 2
ϕ1 = 0.857 ϕ2 = 0.844

200.0 195.0 -2.50 6.33
y2 50.0 51.7 3.40 2.52
y3 1000.0 910.0 -9.00 356.82
y4 500.0 508.2 1.64 117.63
y1

2 -1 -2 -3 - 4 - 3 - 4 - 1 - 2 - 3
ϕ1 = 0.665  ϕ2 = 0.893

200.0 180.5 -9.75 2.12
y2 50.0 48.9 -2.20 0.93
y3 1000.0 978.6 -2.14 44.2
y4 500.0 515.8 3.16 45.5
y1

3 -3 -1 -2 - 4 - 4 - 2 - 1 - 3 - 2
ϕ1 = 0.641   ϕ2 = 0.924

200.0 168.3 -15.85 2.10
y2 50.0 49.9 -0.20 0.81
y3 1000.0 989.1 -1.09 47.50
y4 500.0 509.5 1.90 31.89

Table 6 shows the best solutions selected from 
about fifty of them found by the GA2, along 
with the three efficient solutions obtained by 
the PGA, which were consistently found in the 
30 runs performed. For the solutions, table 6 
reports the value of ϕ1 and ϕ2, which correspond 
to the aggregation of the desirability and penalty 
functions for the four responses (see expression 

(16)). For discussing the results, it is convenient 
to remember that ϕ1 is related to mean adjustment 
and ϕ2  is associated with variance reduction, 
where the PGA tries to simultaneously maximize 
those two figures, according to expression (17). 
Figure 6 shows the solutions, which were plotted 
using the corresponding values of ϕ1 and ϕ2.
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Figure 6 Pareto frontier for the solutions 
corresponding to the multiobjective complex system

In Figure 6, the points marked with a rhomb 
correspond to the solutions that define the frontier 
and were found by the PGA. The points marked 
with a triangle correspond to the solutions 
delivered by the GA2 and selected as the better 
ones, through a manual analysis [13]. Since in 
this case the PGA is maximizing ϕ1 and ϕ2, the 
solution 3– 3– 1– 2– 4– 3– 1– 2– 4– 1 (ϕ1=0.580 
and ϕ2=0.922) is Pareto-inefficient because it is 
dominated by solution 3 -3 -1 -2 - 4 - 4 - 2 - 1 -3 
-2 (ϕ1=0.641 and ϕ2=0.924), and thus it is located 
to the left of the Pareto frontier. This frontier is 
not totally concave, as one should expect for a 
maximization problem. Given that the PGA 
was fed with a relatively small number of data 
points, one should expect to obtain a rough 
approximation to the Pareto frontier [28].

One of the solutions manually selected from the 
fifty best solutions obtained by the GA2 lies on 
that frontier. Note that the solution 2 -1 -2 -3 - 
4 - 3 - 4 - 1 - 2 – 3, found by the PGA, may be 
a good compromise between mean adjustment 
and variance reduction. On the other hand, if a 
manager favors variance reduction, at the expense 
of mean adjustment, the solution 3 -3 -1 -2 - 4 - 4 
- 2 - 1 - 3 - 2 might be the best to choose. On the 
contrary, if the manager favors mean adjustment, 
he/she might select the solution 3– 4– 2– 1– 3– 
3– 1– 2– 4– 2. In any case, looking at the values 
of the mean response for the four responses 
and their corresponding standard deviations in 

Table 6, it can be seen that having the values 
of ϕ1 and ϕ2 and knowing which solutions are 
Pareto-efficient, helps in selecting the solution 
which better suits the manager’s needs for mean 
adjustment and variance reduction. Additionally, 
remember that a manual analysis of about fifteen 
solutions delivered by GA2 was conducted for 
selecting the two solutions presented for that 
algorithm in table 6. It is easy to imagine how 
burdensome and prone to human errors it is to 
manually conduct that analysis for a system with 
many responses and control factors and many 
levels for each of them. Moreover, if the manager 
requires taking into account economic factors in 
his/her decision, that manual analysis becomes 
even harder. Thus, a graph like figure 6 and/or 
a table like table 6, may be of great assistance. 
That graph and table will show the manager the 
balance achieved by each solution regarding 
mean adjustment and variance reduction. Based 
on that, the manager can consciously select a 
solution that is cost/effective when factoring in 
the cost of implementing each solution.

Conclusions
The case studies involving the real system and 
the single-output and multiobjective process 
simulators showed that the Pareto GA (PGA) 
found a reasonable approximation to the Pareto 
frontier. That frontier contained solutions, which 
exposed the trade-off between the two objectives 
of robust design: adjusting the mean of the 
responses of a system to their corresponding 
target values and achieving a low variance for 
each response. Based on that frontier, the study 
analyzed the best solutions that were selected 
through a manual examination of between 17 and 
50 solutions obtained by the previous GA2. In 
most cases, the Pareto frontier contained one or 
two of those solutions, but other solutions were 
not located nearby that frontier, i.e. were Pareto-
inefficient. Since the GA2 finds good solutions, 
not the best and/or efficient ones, it is reasonable 
to have obtained that result. Moreover, the PGA 
automatically finds the Pareto-efficient solutions, 
whereas one has to manually evaluate many 
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solutions obtained by the GA2 for selecting the 
best ones. Since that process is rather difficult 
and prone to human errors, especially when 
dealing with systems with many responses, 
control factors and levels for each factor, it is 
helpful to have the PGA. Additionally, in some 
of the single-output and multiobjective systems, 
the PGA found new solutions that achieved a 
closer adjustment of the mean of each response to 
their corresponding target values and attained an 
adequate low standard deviation of the responses. 
Note also that the performance of the PGA was 
consistently rather good under very different 
levels of fractioning of the experimental designs 
used to gather the data (e.g. case study one, which 
used a L9(3

4) for the four control factors and a 
L4(2

3) for the three noise factors; versus the other 
case studies that used a L64(4

10) for the ten control 
factors and a L16(4

5) for the five noise factors). 
This results in further flexibility for applications 
in heavily constrained scenarios.

Since the PGA seemed to work reasonably well 
in the case studies, it is meaningful to continue 
developing and improving it. One of such 
enhancements could be to try to achieve a better 
approximation of the Pareto frontier. Although 
robust design uses highly fractioned experimental 
designs, and thus the PGA works with a relatively 
small number of data points, the PGA could try 
to counterbalance that by using additional points 
calculated by response surface methodology 
(RSM) [29]. In this case, RSM may be applied 
for estimating the response surface of the system 
using the experimental data and then employing 
the response surface to calculate new points that 
will be used by the PGA. Second, the PGA can 
also consider economic factors in the calculation of 
the Pareto frontier. This might involve introducing 
desirability and penalty functions related to 
economic factors in the formulation of the MOP. 
By using equations similar to expressions (8) to 
(17), and considering the cost of each solution, one 
could begin to develop such MOP. Alternatively, 
the algorithm may incorporate a third objective 
that expresses the cost of each solution xl and state 
a three-objective MOP.
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