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Abstract

Compressive hyperspectral imaging systems (CSI) capture the three-
dimensional (3D) information of a scene by measuring two-dimensional 
(2D) coded projections in a Focal Plane Array (FPA). These projections are 
then exploited by means of an optimization algorithm to obtain an estimation 
of the underlying 3D information. The quality of the reconstructions is 
highly dependent on the resolution of the FPA detector, which cost grows 
exponentially with the resolution. High-resolution low-cost reconstructions are 
thus desirable. This paper proposes a Single Pixel Compressive Hyperspectral 
Imaging Sensor (SPHIS) to capture and reconstruct hyperspectral images. 
This optical architecture relies on the use of multiple snapshots of two time-
varying coded apertures and a dispersive element. Several simulations with 
two different databases show promising results as the reliable reconstruction 
of a hyperspectral image can be achieved by using as few as just the 30% of 
its voxels.

----------Keywords: Single-pixel detector, hyperspectral imaging, 
compressive sensing, optical imaging, coded aperture-based systems

Resumen

Los sistemas de sensado de imágenes espectrales (CSI) capturan información 
tridimensional (3D) de una escena usando mediciones codificadas en dos 
dimensiones (2D). Estas mediciones son procesadas posteriormente por un 
algoritmo de optimización para obtener una estimación de la información 
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tridimensional. La calidad de las reconstrucciones obtenidas depende 
altamente de la resolución del detector, cuyo costo aumenta exponencialmente 
a mayor resolución exhiba. Así, reconstrucciones de alta resolución son 
requeridas, pero a bajo costo. Este artículo propone una arquitectura óptica de 
sensado compresivo que utiliza un único pixel como detector para la captura 
y reconstrucción de imágenes hiperespectrales. Esta arquitectura óptica 
depende del uso de múltiples capturas de imágenes procesadas por medio 
de dos aperturas codificadas que varían en cada toma, y un elemento de 
dispersión. Diferentes simulaciones con 2 bases de datos distintas muestran 
resultados promisorios que permiten reconstruir una imagen hiperespectral 
utilizando tan solo el 30% de los vóxeles de la imagen original.

----------Palabras clave: Detector de único pixel, imágenes 
hiperespectrales, sensado compresivo, sensado y procesado óptico 
de señales, sistemas basados en aperturas codificadas

Introduction
Hyperspectral images consist of a large amount 
of spatial information across a multitude of 
wavelengths. Traditional hyperspectral imaging 
sensors scan adjacent spatial zones of a scene 
and merge the partial results to construct a 3D 
spatio-spectral data cube. Pushbroom spectral 
imaging sensors, for instance, capture a line of 
spectral information of the scene per snapshot 
by using a dispersive element such as a prism 
or grating, and a Focal Plane Array (FPA) 
detector [1]. Therefore, the captured lines are 
concatenated to construct the complete spatio-
spectral data cube. Hyperspectral sensors based 
on optical filters scan a scene by electronically 
tuning band-pass filters at wavelength steps 
such that a whole spectral region is covered 
[2]. Other scanning hyperspectral imaging 
sensors include Fabry-Pérot interferometers [3], 
filter patterned FPA detectors [4], integral field 
spectrometers [5], and whiskbroom scanners 
[6]. In wavelength regions of the infrared (IR) 
or the short wave infrared (SWIR), the cost 
and the dimensions of hyperspectral imaging 
sensors increase exponentially with the spatial 
resolution. For instance, the price of a 320x320 
hyperspectral scanning sensor can achieve the 
order of hundreds of thousands of dollars [7]. 
Furthermore, the scanning hyperspectral sensors 
have the disadvantage of requiring a number 

of samples proportional to the dimensions of 
the desired data cube. More specifically, these 
sensors are limited by the well-known Nyquist 
sensing criterion [8].

Recently, the theory of Compressive Sensing 
(CS) [9, 10] has permitted to achieve sampling 
rates lower than those established by the Nyquist 
criterion, such that a hyperspectral signal 
can be sensed by using a number of samples 
proportional to the number of non-zero elements 
of the underlying signal (its sparsity). More 
formally, a hyperspectral signal F ϵ RM×N×L, or 
its vector representation f ϵ RMNL, is S sparse on 
some basis Ψ, if f=Ψθ can be approximated by 
a linear combination of S vectors from Ψ with 
S≪MNL. Here, M×N represents the spatial 
dimensions and L is the spectral depth of the 
hyperspectral image. CS allows f to be recovered 
from m random projections with high probability 
when m=Slog(MNL)≪MNL. Diverse optical 
architectures have been proposed to implement 
CS in imaging and hyperspectral imaging [1, 
2, 11-13]. In order to maximally exploit the CS 
theory, these architectures use just a single pixel 
detector. The optical architectures in Compressive 
Spectral Imaging (CSI) area use a spectrometer 
as a detector, which does not completely exploit 
the benefits of CS. Examples of CSI sensors can 
be found in [14, 15].
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This paper presents a new optical architecture for 
sensing a hyperspectral image by using a single 
pixel intensity detector. The sensing mechanism 
is based on the CS technique where the random 
projections are implemented by varying the random 
patterns of two coded apertures. More specifically, 
the projections in the new Single Pixel Compressive 
Hyperspectral Imaging Sensor (SPHIS) are given 
by y=Hf, where H represents the effect of the 
dispersive element and two coded apertures. The 
underlying data cube f is recovered by solving 
the optimization problem given by f=Ψ(arg 
minθ‖y-HΨθ‖2+τ‖θ‖1), where τ is a regularization 
parameter, and ‖.‖2 and ‖.‖1 are the 2 and 1 norm 
operators respectively. The principal contribution 
of this paper lies in establishing the mathematical 
model of the new SPHIS architecture. Further, this 
paper determines the optimal transmittance of the 
coded apertures needed to implement the SPHIS. 

Several simulations illustrate the peak-signal-to-
noise-ratio (PSNR) of the reconstructed data cubes 
as a function of the transmittance of the coded 
apertures and the size of the underlying data cubes. 
The considerable reduction in price and size of the 
proposed sensor makes it more suitable for diverse 
hyperspectral imaging applications in the IR and 
SWIR wavelength ranges.

Single pixel compressive 
hyperspectral imaging sensor 

(SPHIS)
The physical sensing phenomenon in the 
proposed system is optically realized by a couple 
of coded apertures, a dispersive element such as 
a prism, and a single pixel intensity detector as 
depicted in figure 1. 

Figure 1 Optical architecture of the SPHIS. Here, f_L1, f_L2 and f_L3 represent the focal length of the lenses, 
whereas d and d' accounts for the image formation distance of the imaging lens

Specifically, the coding is applied to the (spatial-
spectral) object data cube f0 (x,y,λ) by means of 
a fixed coded aperture T1(x,y); where x and y are 
the spatial coordinates and λ the wavelength. The 
resulting coded field f1 (x,y,λ) is subsequently 
modified by a dispersive element resulting on the 
field f2 (x,y,λ). As the coded field f1 (x,y,λ) traverses 
the prism, it is spatially sheared along one spatial 
axis. Hence, each coded image plane is shifted 
along the x axis, such that the amount of the shifts 
increases with the wavelength coordinate index. 
The field f2 (x,y,λ) is then modified by a second 

coded aperture T2 (x,y), and the corresponding 
output is then concentrated into a single pixel 
detector. The compressive measurements in the 
detector are realized by the integration of the 
concentrated field over the detector's spectral 
range sensitivity. Note that the M×N×L voxels 
of the spectral data cube are condensed into a 
single pixel detector. SPHIS encodes the spatial 
information by the use of the first coded aperture, 
whereas the second coded aperture encodes the 
spectral information. Figure 2 depicts the sensing 
process performed by the SPHIS.
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More formally, the two coded apertures used in 
the th snapshot of the sensing process are given 
by eq. (1) and (2), respectively, which can be 
written as:

	 (1)

	 (2) 

where, rect() represents the rectangular step 
function accounting for the features shape, (t l

 )
ij and (t 2

 )ij represent the binary value (blocking 
or translucent) of the first and second coded 
apertures in the (i,j)th position, respectively, and 
∆ is the side size of the features in the coded 
apertures. Remark in eq. (1) and (2) that T l is of 
size M×N, matching with the spatial resolution 
of the spectral datacube f0(x,y,λ), whereas T 2 is 
of size M×(N+L-1), matching with the dispersed 
field f2 (x,y,λ) dimensions, as shown in figure 2. 
The ratio between the number of translucent and 
the total number of elements in a coded aperture 
is defined as the transmittance (or density). For 
instance, 30% of transmittance means that 30% of 
the elements in the coded aperture are translucent 
and the remaining are blocking. By denoting the 
input spectral image in discrete form as fijk, where 

i and j index the spatial position and k indexes the 
spectral band, the measurements in the SPHIS 
can be succinctly written as in eq. (3).

	 (3)

where =1,…,K determines the th single pixel 
measurement for a multiple-snapshot approach. 
Notice that the coded apertures are time-varying 
and change for every th measurement. The single 
pixel measurements can be arranged into a vector 
y = [y0,…,yK-1]

T, which can be written as given in 
eq. (4) in a system of linear equations. 

	 y = Hf = HΨ3D θ = Aθ	 (4)

where A=HΨ3D∈RK×MNL is the sensing matrix, 
K is the total number of measurements, L is 
the number of spectral bands, and θ is a sparse 
representation of the data cube in the three-
dimensional basis Ψ3D. A Kronecker basis 
Ψ3D=Ψ1⨂Ψ2⨂Ψ3 is often used, where the product 
Ψ1⨂Ψ2 is the 2D-Wavelet Symlet 8 basis and Ψ3 
is the discrete cosine basis [16]. The matrix H  
in eq. (4) accounts for the effects of both coded 
apertures and the dispersive element. This matrix 
can be expressed as in eq. (5).

Figure 2 SPHIS sensing process. The objective scene is first coded, then dispersed and finally coded again and 
condensed onto a single-pixel detector
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	 	 (5)

where h  is particularly detailed in eq. (6), taking 
the form

	 	 (6)

such that μ is a one-valued row vector of 
dimension 1×M(N+L-1), H 2 is a M(N+L-1)× 
M(N+L-1) matrix related to the second coded 
aperture in which its diagonal accounts for the 
values of T 2, and H 1 is a M(N+L-1)×MNL matrix 
related to the first coded aperture T 1 and the 
dispersive element. For simulations, the entries 
of both coded apertures are considered binary and 
change for every snapshot , and the dispersive 
element exhibits a linear dispersion behavior. 
In practice, however, it is necessary to take into 
account the various optical artifacts and non-
idealities of the optical system [17]. The recovery 
of the underlying hyperspectral signal in the 
SPHIS entails solving an underdetermined linear 
system of equations stated in eq. (7). Given the 
set of measurements y, the inverse compressive 
sensing problem consists on recovering f such 
that the 1- 2 cost function is minimized as

	 	 (7)

where τ is a regularization constant. Notice that the 
sensing matrix A plays a pivotal role and thus its 
design is critical in this imaging problem [18, 19].

Simulations and results
To test the SPHIS system developed in this paper, 
two hyperspectral data cubes F which serve as 

the input images of the system were first captured 
in the laboratory using a wide-band Xenon lamp 
as the light source, a visible monochromator 
which spans the spectral range between 450 and 
650 nanometers, and a CCD camera exhibiting 
a pixel pitch of 9.9 micrometers. These data 
cubes exhibit either 64×64 or 128×128 pixels of 
spatial resolution, and both of them L=8 spectral 
bands (Figure 3). The entries of the time-varying 
coded apertures presented in eq. (1) and (2) are 
realizations of a Bernoulli random variable with 
parameter p set as 0.1 (10%), 0.25 (25%) and 0.5 
(50%), representing the total transmittance (Tr) or 
translucent elements of the codes. The dispersive 
element is a double-amici prism exhibiting linear 
dispersion [20], and the detector is a single 
pixel which integrates the intensity focused 
by the condenser. The compressive sensing-
based reconstruction GPSR algorithm [21] is 
employed to solve the optimization problem in 
eq. (7) and optimized to admit large amounts of 
data. The basis representation Ψ3D is set to be 
the Kronecker product as stated in eq. (4). All 
simulations were conducted and timed on the 
same workstation with an Intel Core i7 processor 
(8 cores at 3.40 GHz), 32 GB of memory (DDR3 
at 1067 MHz), running Windows 7 Enterprise 
Edition and Matlab R2012a. The quality of the 
reconstructions is measured through the peak-
signal-to-noise-ratio (PSNR) evaluated per each 
band, and defined in eq. (8) as, 

	 (8)

where Fk represents the kth original band and F̂k is 
the kth reconstructed band.
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Figure 4 shows the PSNR behavior as well as 
the reconstruction results mapped to an RGB 
profile for different transmittance/snapshot 
configurations. The number of snapshots K is 
indicated as a percentage of the total size of the 
source datacube. Thus, 10% of snapshots for the 
smaller data cube refer to 0.1*(64*64*8)≃3277 
snapshots, whereas for the larger data cube 
refers to 0.1*(128*128*8)≃13107 snapshots. 

This percentage representation of the snapshots 
permits to analyze the amount of information 
required to reconstruct the data cube. Notice that 
higher PSNR values are attained using greater 
number of snapshots, reaching the Nyquist 
criterion when 100% of snapshots are used. The 
results in figure 4 vary the amount of snapshots 
between 10% and 50%.

(a) Spectral data cube exhibiting 64×64×8 voxels

(b) Spectral data cube exhibiting 128×128×8 voxels
Figure 3 Spectral data cubes used for simulations
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(a)  Reconstruction results for the 64×64×8 spectral data cube

(b) Reconstruction results for the 128×128×8 spectral data cube
Figure 4 Reconstruction PSNR comparison varying the number of snapshots between 10% to 50% and the 
transmittance (Tr) levels between 10%, 25% and 50%. Notice that these pictures are RGB representations of the 
reconstructed data cubes.

Results show that there exists a trade-off between 
the number of single pixel measurements and 
the transmittance (Tr) of the corresponding 
coded apertures used in the sensing process. For 
instance, results in figure 4 show that greater 
spatial PSNR values are achieved with lower 
transmittance percentages as the number of 

captured snapshots grows. Figure 5 depicts the 
full spectral data cubes reconstructions achieved 
with the best transmittance (10%), comparing the 
results obtained using 10% and 50% of snapshots. 
These results indicate the improvement achieved 
along the whole range of wavelengths.
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(a) 64×64×8 reconstruction using (1st row) 10% of shots and (2nd row) 50% shots

(b) 128×128×8 reconstruction using (1st row) 10% of shots and (2nd row) 50% shots

Figure 5 Reconstructed spectral data cubes when capturing 10% and 50% of snapshots, fixing the transmittance to 10%

(a) Spectral signatures for the 64×64×8 spectral data cube

(b) Spectral signatures for the 128×128×8 spectral data cube

Figure 6 Spectral signatures comparison when using 30% of snapshots and different transmittance levels for 
both spectral data cubes. The spectral signatures are presented for the spatial locations indicated by the points 
P1 and P2 in the figures
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The spectral quality of the reconstructed data 
cubes was also analyzed, by picking 2 points 
from the scene and plotting their corresponding 
spectral signatures. Figure 6 shows the spectral 
signatures of the original data cubes compared 
with the corresponding reconstructions obtained 
for different levels of transmittance using 30% 
of snapshots. Notice that the reconstructed 
spectral signatures get closer to the original as 
the transmittance decreases, being approximately 
similar the ones with 10% and 25%. Thus, good 
reconstruction results can be achieved by using 
just 30% of the original data when the coded 
apertures exhibit 10% of transmittance.

Conclusions
The optical design and matrix model of a Single 
Pixel Compressive Hyperspectral Imaging Sensor 
(SPHIS) have been presented. Simulations show 
promising results as the reconstruction of a 
hyperspectral image can be achieved by using just 
the 30% of the number of samples required by the 
Nyquist criterion. The spectral data cubes can be 
reconstructed exhibiting mean PSNR values up to 
30 dB. Spectral signatures comparison confirms 
the outstanding quality of the reconstructions, 
thus leading towards low-cost, low-complexity 
compressive hyperspectral imaging sensors. 
Despite the paper focuses on spectral images 
lying on the visible electromagnetic spectrum, the 
proposed idea along with the optical design can 
be easily extrapolated to operate on the infrared 
electromagnetic spectrum where the cost of the 
sensors increase as higher resolution they exhibit.

Acknowledgments
This research was supported in part by Fulbright 
and COLCIENCIAS, and by the Vicerrectoría de 
Investigación y Extension from the Universidad 
Industrial de Santander (VIE-UIS) under the 
grants 1363 and 1368.

References
1.	 W. Chan, K. Charan, D. Takhar, K. Kelly, R. Baraniuk, 

D. Mittleman. “A single-pixel terahertz imaging 

system based on compressed sensing”. Applied 
Physics Letters. Vol. 93. 2008.  pp. 121105-121105-3.

2.	 M. Duarte, M. Davenport, D. Takhar, J. Laska, T. 
Sun, K. Kelly, R. Baraniuk. “Single-Pixel Imaging 
via Compressive Sampling”. IEEE Signal Processing 
Magazine. Vol. 25. 2008. pp. 83–91.

3.	 D. Hays, A. Zribi, S. Chandrasekaran, S. Goravar, S. 
Maity, L. Douglas, K. Hsu, A. Banerjee. “A hybrid 
mems–fiber optic tunable fabry–perot filter”. IEEE 
Journal of Microelectromechanical Systems. Vol. 19. 
2010. pp. 419 – 429.

4.	 J. Brauers, T. Aach. A color filter array based 
multispectral camera. Proceedings of the 12 Workshop 
Farbbildverarbeitung, October 5-6. Ilmenau, Germany. 
2006.

5.	 C. Vanderriest. “Integral field spectroscopy with 
optical fibers”. 3D Optical Spectroscopic Methods in 
Astronomy, G. Comte and M. Marcelin, eds Astron. 
Soc. Pac. Vol. 71. 1995. pp. 209-218.

6.	 R. Green, M. Eastwood,  C. Sarture,  T. Chrien,  M. 
Aronsson,  B. Chippendale, et al.  “Imaging 
spectroscopy and the airborne visible/ infrared imaging 
spectrometer (AVIRIS)”. Rem. Sens. Environ. Vol. 65. 
1998. pp. 227-248.

7. 	 R. Willett, R. Marcia, J. Nichols. “Compressed sensing 
for practical optical systems: a tutorial”. Optical 
Engineering. Vol. 50. 2011. pp. 072601 1-13.

8. 	 H. Nyquist. “Certain topics in telegraph transmission 
theory”. IEEE Trans. Vol. 47. 1928. pp. 617-644.

9. 	 E. Candès, J. Romberg, T. Tao. “Robust uncertainty 
principles: Exact signal reconstruction from 
highly incomplete frequency information”. IEEE 
Transactions on Information Theory. Vol. 52. 2006. 
pp. 489–509.

10. 	 D. Donoho. “Compressed sensing”. IEEE Transactions 
on Information Theory. Vol. 52. 2006.  pp. 1289–1306.

11.	 V. Durán, P. Clemente, M. Fernández-Alonso, E. 
Tajahuerce, J. Lancis. “Single-pixel polarimetric 
imaging”. Optics Letters. Vol. 37. 2012. pp. 824–826.

12.	 F. Magalhães, M. Abolbashari, F. Raújo, M. Correia, 
F. Farahi. “High-resolution hyperspectral single-
pixel imaging system based on compressive sensing”. 
Optical Engineering. Vol. 51. 2012. pp. 1–6.

13.	 Y. August, C. Vachman, Y. Rivenson, A. Stern. 
“Compressive hyperspectral imaging by random 
separable projections in both the spatial and the 
spectral domains”. Applied Optics. Vol. 52. 2013. pp. 
D46-D54.



143 

Single-pixel optical sensing architecture for compressive hyperspectral imaging

14.	 H. Rueda, H. Arguello. “Spatial super-resolution in 
coded aperture-based optical compressive hyperspectral 
imaging systems”.  Revista Facultad de Ingeniería 
Universidad de Antioquia. Vol. 67.  2013. pp. 7-18.

15.	 A. Wagadarikar, R. John, R. Willett, D. Brady. “Single 
disperser design for coded aperture snapshot spectral 
imager”. Applied Optics. Vol. 47. 2008. pp. B44-B51.

16.	 H. Arguello, G. Arce. “Rank Minimization Code 
Aperture Design for Spectrally Selective Compressive 
Imaging”.  IEEE Transactions on  Image Processing. 
Vol. 22. 2013. pp. 941-954.

17.	 H. Arguello, H. Rueda, Y. Wu, D. Prather, G. Arce. 
“Higher-order computational model for coded aperture 
spectral imaging”. Applied Optics. Vol. 52. 2013. pp. 
D12-D21.

18.	 H. Arguello, C. Correa, G. Arce.  “Fast lapped block 
reconstructions in compressive spectral imaging”. 
Applied Optics. Vol. 52. 2013. pp. D32-D45.

19. 	 H. Arguello, G. Arce. “Code aperture optimization for 
spectrally agile compressive imaging”. J. Opt. Soc. 
Am. A. Vol. 28. 2011.  pp. 2400-2413.

20. 	 Y. Wu, I. Mirza, P. Ye, G. Arce, D. Prather. Development 
of a DMD-based compressive sampling hyperspectral 
imaging (CS-HSI) system. Proceedings of the SPIE 
7932, Emerging Digital Micro-mirror Device Based 
Systems and Applications III, 79320I. San Francisco, 
USA. 2011.

21.	 M. Figueiredo, R. Nowak, S. Wright. “Gradient 
projection for sparse reconstruction: Application to 
compressed sensing and other inverse problems”. 
IEEE Journal of Selected Topics in Signal Processing. 
Vol. 1. 2007. pp. 586–597.


