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Abstract

Digital signal processing of the electroencephalogram (EEG) became 
important in monitoring depth of anesthesia (DoA) being used to provide 
a better anesthetic technique. The objective of this work was to conduct 
a review about nonlinear mathematical methods applied recently to the 
analyses of nonlinear non-stationary EEG signal. A review was conducted 
showing time- and frequency-domain nonlinear mathematical methods 
recently applied to EEG analysis: Approximate Entropy, Sample Entropy, 
Spectral Entropy, Permutation Entropy, Wavelet Transform, Wavelet Entropy, 
Bispectrum, Bicoherence and Hilbert Huang Transform. Some algorithms 
were implemented and tested in one EEG signal record from a patient at The 
Sabana University Clinic. Recently published results from different methods 
are discussed. Nonlinear techniques such as entropy analysis in time domain 
and combination with wavelet transform, and Hilbert Huang transform in 
frequency domain have shown promising results in classifications of depth 
of anesthesia stages.
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Resumen

El procesamiento digital de la señal de electroencefalograma (EEG) ha tomado 
importancia en el monitoreo de profundidad anestésica, contribuyendo a una 
mejor técnica anestésica. El objetivo es realizar una revisión de métodos 
matemáticos no lineales aplicados recientemente al análisis de EEG la cual 
presenta características no lineales y no estacionarias. Una revisión fue 
desarrollada abarcando métodos matemáticos no lineales en el dominio del 
tiempo y frecuencia, los cuales han sido aplicados recientemente al análisis 
de EEG: Entropía Aproximada, Entropía Muestral, Entropía Espectral, 
Entropía Permutada, Transformada Wavelet, Entropía Wavelet, Bispectro, 
Bicoherencia y Transformada Hilbert Huang. Los algoritmos implementados 
fueron probados en un registro EEG de un paciente en la Clínica Universidad 
de La Sabana. Resultados publicados en la literatura a fin del tema son 
discutidos. Técnicas no lineales como el análisis de entropía, y la combinación 
con transformadas Wavelet y Hilbert Huang en el dominio de la frecuencia 
han presentado resultados prometedores en clasificación de estados de 
profundidad anestésica.

----------Palabras clave: monitoreo de profundidad anestésica, 
extracción de patrones EEG, análisis no lineal de complejidad, 
procesamiento digital de señales

Introduction
General anesthesia (GA) is defined as a drug-
induced loss of consciousness during which 
patients are not arousable, even by painful 
stimulation [1]. GA takes an important role in 
surgical procedures; an anesthetic overdose may 
lead to coma, drug-associated toxicities and 
even death. On the other hand, a light anesthetic 
dose may lead to the well-known event of 
intraoperative awareness, which can cause sleep 
disorders, depression, night terrors, hospitals 
fears, and post-traumatic stress disorder [2-4].

Electroencephalographic (EEG) measures reflect 
the state of the central nervous system, and 
it has been widely used for monitoring depth 
of anesthesia. Electronic EEG indexes were 
developed based on observation that, in general, 
EEG of an anesthetized patient change from high 
frequency low amplitude during consciousness 
to low frequency high amplitude when deeply 
anesthetized. It is also noted that, during the 
anesthesia process, the human consciousness 
weakens gradually, as well as the brain activity 

level. In the thermodynamic perspective, the 
degree of EEG chaos is reduced. Therefore, the 
concept of “entropy” is introduced into the field 
of EEG signal processing [5-9].

In the 90s, bispectral analysis, a type of 
mathematical processing commonly used in 
geophysics and oil prospection was used to process 
the EEG signal. Bispectral Index technology 
(BIS) was developed from a closed algorithm and 
suggested to monitor brain activity in answer to 
different combinations of anesthetics. However, 
the bispectral analysis parameter used by BIS is 
the bispectrum, which by definition reflects not 
only the degree of phase coupling, but also the 
EEG amplitude. The bicoherence represents the 
normalization of the bispectrum, and as such is 
independent of signal amplitude; therefore, it 
could provide a more appropriate measure of 
phase coupling [10, 11].

Wavelet Transform (WT) is a popular method 
for EEG signal analysis in the frequency domain, 
which provides a constant resolution for all the 
frequencies; the WT provides multiresolution 
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scale, i.e. different frequencies are analyzed 
with different resolutions. the WT has been 
implemented in the depth of anesthesia monitoring 
with promising results [12-15]. A relative recent 
method called Hilbert Huang Transform has been 
applied to the field of signal processing [16]. This 
transform involves a signal decomposition based 
on the local characteristic of the data; therefore, 
it was designed specifically for analyzing data 
from nonlinear and non-stationary processes, 
which perfectly suits the characteristics of 
the EEG signal. Combination of the Hilbert 
frequency representation and the spectral entropy 
has been called Hilbert Huang Spectral Entropy 
[17]. In the present review, an EEG record with 
sampling frequency of 300Hz from a patient at 
The Sabana University Clinic, with previous 
informed consent, was used to test the algorithms 
and provide a better understanding.

Entropy analysis
Approximate Entropy: mathematically, two 
input parameters must be chosen to compute the 
approximate entropy [18] of the EEG sequence 
(SEEG); given the pattern length (m) and the 
criterion of similarity (r). Then, two different 
patterns are similar if the difference between 
corresponding measurements in the patterns is 
less than the criterion of similarity (Eq. 1).

 ,   (1)

Where:

s1  is the start point for pattern 1 (pm(1));

s2  is the start point for pattern 2 (pm(2));

k  is the variable that runs through the pattern.

Consider the set PM = [pm(1), pm(2), pm(3), …, 
pm(N-m+1)] formed by all patterns of specific 
length within the SEEG, then Cim(r) is defined as 
the fraction of patterns that resemble a specific 
pattern of the same length (Eq. 2).

  (2)

where:

N  is the length of SEEG;

nim(r) is the number of patterns in PM that are 
similar to pm(i).

Cim(r) is calculated for each pattern in the set PM, 
and Cm(r) is defined as the mean of these 
Cim(r) values, expressing the prevalence of 
repetitive patterns of length m in SEEG. 

The ApEn estimates the logarithmic likelihood 
that the next intervals after each of the patterns 
will differ (Eq. 3).

  (3)

Spectral Entropy: the spectral entropy (GE 
Healthcare Technologies, Waukesha, WI) 
describes the irregularity, complexity or 
unpredictability characteristic of a signal. The 
Datex-Ohmeda S/5 entropy Module (Datex-
Ohmeda, Inc., Madison, WI) is of public domain 
[19]. The concept of spectral entropy originates 
from a measure of information called Shannon 
entropy; when applied to the power spectrum of 
a signal, spectral entropy is obtained. In order to 
calculate the spectral entropy, the Fast Fourier 
Transform (FFT) is considered to obtain the 
spectrum. Mathematically, the following steps 
are required to compute the spectral entropy 
within a particular frequency range {f1, f2}. First, 
from the FFT, the power spectrum is calculated 
by squaring the amplitudes of each element of the 
Fourier transform (Eq. 4).

  (4)

Where:

P(fi) is the power spectrum of the signal;

X(fi) is the complex frequency components of the 
FFT;

X*(fi) is the conjugate complex of the FFT 
components.
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Then, the power spectrum is normalized (Eq. 
5) so that the sum of the normalized power 
spectrum over the selected frequency region {f1, 
f2} is unitary:

  (5)

The Shannon function is applied to calculate the 
spectral entropy corresponding to the frequency 
range {f1, f2} (Eq. 6):

  (6)

Thereafter, the entropy value is normalized (Eq. 
7) to range between 1 (maximum irregularity) 
and 0 (complete regularity). An algorithm for 
spectral entropy was implemented in Matlab, 
Figure 1 illustrates the process described before.

  (7)

Where:

SN (f1,f2) is the Normalized Spectral Entropy;

S(f1,f2) is the Spectral Entropy;

N(f1,f2) is the number of frequency components 
between f1 and f2.

Figure 1 Spectral entropy computation principle calculated in a segment of an EEG record from The Sabana 
University Clinic
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In real time, signals are analyzed within a finite 
time window (epoch) of a selected length; the 
time window is moved step by step to provide 
updated estimates of the spectrum. In order to 
optimize the tradeoff between time and frequency 
resolution, the Entropy Module considers a set 
of window lengths chosen in such a manner that 
each frequency component is obtained from a 
time window that is optimal for that particular 
frequency. Hence, information is extracted from 
the signal as fast as possible [19].

Response Entropy and State Entropy: the spectral 
entropy implemented in the M-entropy module is 
a combined analysis of EEG and EMG signals. 
Two spectral entropy indexes are calculated 
(Figure 2): (1) State Entropy (SE), computed 
over the frequency range {0.8-32} Hz, including 
the EEG dominant spectrum, and (2) Response 
Entropy (RE), computed over the frequency 
range {0.8-47} Hz, including the EEG dominant 
spectrum and the EMG dominant spectrum. 

Figure 2 Concept of State Entropy and Response Entropy in the power spectrum of an EEG record from The 
Sabana University Clinic

SE primarily reflects the cortical state of the 
patient, and RE is useful as an indicator of 
frontal EMG activity. Sudden appearance of 
EMG signal data often indicates that the patient 
is responding to some external stimulus, such as 
a painful stimulus (i.e. nociception) due to some 
surgical event. Such a response may result if the 
level of analgesia is insufficient. If stimulation 
continues and no additional analgesic drugs are 
administered, it is highly likely that the level of 

hypnosis eventually starts to lighten. EMG can 
thus provide a rapid indication of impending 
arousal.

Permutation Entropy: Permutation Entropy (PE) 
was introduced as a complexity parameter for 
time series based on comparison of neighboring 
values; the advantages are its simplicity, 
extremely fast calculation and robustness [20]. 
The algorithm to compute the PE can be divided 
into four basic steps [21]:
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1. Fragment the continuous EEG signal into 
segments containing m samples (m is called 
the embedding dimension); for a given 
embedding dimension m = 3 there will be 
m! Possible permutations called motifs, so in 
this case six different motifs are obtained.

2. Identify each motif as belonging to one of 
the six different categories.

3. Obtain the probability of occurrence of 
each motif in the signal (pi) by counting the 
number of motifs of each of the six different 
categories.

4. Apply the standard Shannon uncertainty 
formula to calculate the PE of the resultant 
normalized probability distribution of the 
motifs (Eq. 8):

  (8)

Frequency-domain analysis
Wavelet Transform: A wave is an oscillating 
function of time or space and is periodic. In 
contrast, wavelets are localized waves. They 
have their energy concentrated in time or space 
and are suited to analysis of transient signals. 
While Fourier Transform uses waves to analyze 
signals, the Wavelet Transform (WT) uses 
wavelets of finite energy. In general, the signal to 
be analyzed is multiplied with a wavelet function, 
and then the transform is computed for each 
segment generated. The width of the wavelet 
function changes with each spectral component. 
The Continuous Wavelet Transform (CWT) is 
provided in equation 9.

  (9)

where

x(t)  is the signal to be analyzed;

ϕ(t)  is the mother wavelet or basis function;

s  if the inverse of frequency or the scaling 
parameter;

τ  is the translation parameter.

All the wavelet functions used in the 
transformation are derived from the basis function 
through translation (shifting) and scaling (dilation 
or compression). The translation parameter 
relates to the location of the wavelet function 
as it is shifted through the signal, corresponding 
to time information, while the scale parameter 
corresponds to frequency information. Scaling 
either dilates or compresses a signal. Large 
scales (low frequencies) dilate the signal and 
provide global information hidden in the signal, 
while small scales (high frequencies) compress 
the signal and provide detailed information about 
the signal. In the case of DWT, a time-scale 
representation of the digital signal is obtained 
using digital filtering techniques. The signal 
is passed through filters with different cutoff 
frequencies at different scales. The resolution 
is determined by the filtering operations and 
the scale by upsampling and downsampling 
operations (Figure 3). The Mallat algorithm 
[22] computes the DWT by successive lowpass 
and highpass filters applied to the discrete time 
domain signal.

Figure 3 DWT based on successive low pass (Lo_D) 
and High pass (Hi_D) digital filters and downsampling 
operations. s: signal to be decomposed, cAj: 
Approximation coefficient, cDj: detail coefficient

Hilbert Huang Transform: Hilbert Huang 
Transform (HHT) is the NASA´s designated 
name for the combination of Empirical Mode 
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Decomposition (EMD) and the Hilbert spectral 
analysis (HSA). The decomposition is based 
on the local characteristic time scale of the 
data. Therefore, it was designed specifically 
for analyzing data from nonlinear and non-
stationary processes. A clear example is the 
EEG signal analysis. When EMD is applied 
to a signal, any complicated data set can be 
decomposed into a finite number of components, 
called Intrinsic Mode Functions (IMF), defined 

as any function having the same (or differing 
at most by one) numbers of zero crossing and 
extrema, and also having symmetric envelopes 
defined by the local maxima and minima. With 
the Hilbert Transform (HT), the IMF’s provides 
instantaneous frequencies as a function of time. 
The final representation of the result is an energy-
frequency-time distribution, called the Hilbert 
Spectrum (Figure 4).

Figure 4 The final representation of the HHT of an EEG record (from The Sabana University Clinic) is the Hilbert 
Spectrum, Frequency-Time-Power

Empirical Mode Decomposition: HHT is based 
on an empirical approach; the first part is the 
decomposition of the analyzing signal into IMF’s. 
An IMF is defined as a function that satisfies the 
following requirements:

1.  In the whole data set, the number of extrema 
and the number of zero-crossings must either 
be equal or differ at most by one.

2.  At any point, the mean value of the envelope 
defined by the local maxima and the envelope 
defined by the local minima is zero.
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Note that, instead of constant amplitude and 
frequency in a simple harmonic component, an 
IMF can have variable amplitude and frequency 
along the time axis, which is usefull for 
nonlinear nonstationary EEG analysis. The EMD 
decomposing process begins with the calculation 
of the upper and lower envelopes. For the upper 
envelope all the local maxima are connected by 
a cubic spline. The procedure is repeated for the 
local minima to obtain the lower envelope. The 
envelopes mean are taken and are observed in 
Figure 5. The first component is defined as (Eq. 
10):

 h1 = x(t) - m1 (10)

Where

x(t) is the signal;

m1 is the mean of the upper and lower envelopes;

h1 is the first component.

Figure 5 Empirical Mode Decomposition in a 3 
seconds segment of an EEG record from The Sabana 
University Clinic

The first component (h1) is treated as a proto-IMF, 
and it follows the sifting process up to k times. 
For each sifting step, the resulting component is 
the next corresponding data (Eq. 11):

 h1k = h1(k-1) - m1k. (11)

The sifting process will stop only if for S 
consecutive times the numbers of zero-crossings 
and extrema stay the same, and are equal or at 
most differ by one, the first IMF component is 
presented in equation 12.

 c1 = h1S . (12)

The first IMF should contain the finest scale or 
the shortest period component of the signal; in 
the next step, IMF is separated from the rest of 
the data and a residue is obtained (Eq. 13).

 r1 = x(t) - c1. (13)

Then the residue is treated as the new data and 
submitted to the same sifting process described 
before. The sifting process stops finally when 
the residue becomes a monotonic function from 
which no more IMF can be extracted, finally the 
EMD of a signal x(t) is presented as equation 14.

  (14)

The instantaneous amplitude (a) and the 
instantaneous frequency (ω) can be computed 
using the Hilbert Transform (Eq. 15). A complex 
analytic function is defined taking the original 
signal (IMF) as the real part, and the imaginary 
part is the principal Cauchy value (denoted by 
P) of the improper integral in equation 16. The 
equation 17 shows the relationship between polar 
and rectangular form.

  (15)

Where, 
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  (16)

 (17)

Bispectrum and Bicoherence 
Bispectrum: Based on the Fourier transform; 
it quantifies the relationship between the 
underlying sinusoidal components of the EEG. 
Specifically, biespectral analysis examines 
the relationship between the sinusoids at two 
primary frequencies, f1 and f2, and a modulation 
component at the frequency f1+f2. This set of three 
frequency components is known as a triplet (f1, f2 
and f1+f2). Calculation of the bispectrum begins 
with an FFT to generate complex spectral values, 
X(f). For each possible triplet, the complex 
conjugate of the spectral value at the modulation 
frequency is multiplied against the spectral value 
of the primary frequencies of the triplet (Eq. 18):

  (18)

If there is large spectral magnitude at each 
frequency in the triplet, and if the phase angles are 
aligned, then the product will be large; if one of the 
sinusoidal components is small or absent or if the 
phase angles are not aligned, the product will be 
small. An example is illustrated in Figure 6:

The bispectrum incorporates both phase and 
power information; it can be decomposed to 
separate the magnitude of the members of the 
triplet, as the real triple product (Eq. 19), and the 
phase information, as the bicoherence (Eq. 20).

 (19)

  (20)

A high bicoherence value indicates that there is 
a phase coupling within the triplet. Strong phase 
coupling implies that the sinusoidal components 
at f1 and f2 may have a common generator, or that 
the neural circuit they drive may, through some 
nonlinear interaction, synthesize a new dependent 
component at the modulation frequency [23].

BIS index uses a parameter called SynchFastSlow 
derived from bispectral analysis. Which is the 
logarithmic relation between the sum of all 
bispectrum peaks in bands from 0.5 to 47 Hz 
and 40 to 47 Hz. BIS number is obtained from 
weighted analysis of four sub parameter: burst 
suppression ratio, QUAZI suppression, beta 
relative power and fast/slow synchronization [24]. 
A comparison study with clinical assessment of 
level of sedation show that EEG-based monitors 
cannot reliably distinguish between light and 
deep sedation [25].

Figure 6 Bispectrum representation of an EEG record from a patient with GA, higher BIS values are observed 
in the low frequency region. The only group of frequency combinations to calculate bispectrum is represented 
by a triangle; the possible combinations out of the triangle are not necessary due to symmetry, and the possible 
modulation frequency is limited to frequencies less than half of sampling frequency.
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Discussion
It has been suggested that entropy measures 
correctly classify the depth of anesthesia. 
The use of PE and ApEn to classify between 
‘awake’ and ‘anesthetized’ state from the EEG of 
patients recovering from general anesthesia has 
been investigated [8]. Entropy measures were 
estimated over 2-s non-overlapping windows; 
for PE the embedding dimension was m=3 and 
the parameters r and m were set as 0.1 and 2, 
respectively, to calculate ApEn. Results show 
that there is no significant difference between 
linear and nonlinear support vector machine 
classification, which implies that both measures 
provide linearly separable features and mean 
classification accuracy greater than 96%. Thus 
the authors conclude that there is no need for a 
complex nonlinear classifier to be used. PE and 
ApEn show similar high performance, although 
ApEn is more computationally complex and its 
estimation takes longer than PE.

In a comparison study [5], the following entropy 
methods: spectral entropy, approximate entropy, 
sample entropy and permutation entropy, were 
used to track changes from continuous EEG to 
burst suppression in a surrogate analysis from a 
40-years old male patient to test the sensitivity of 
measures to phase randomization and amplitude 
adjusting. Entropy measures were calculated in 
a moving window of length 4s and the step size 
was 1s, m=2, r=0.2SD (Standard deviation over 
the whole signal and it was also calculated over 
the segment). The symbol length parameter was 
set to 4 in the calculation of PE; it was highly 
sensitive to phase information and nonlinearities. 
Another comparison study of nonlinear features 
shows that with deepening of anesthesia degree, 
approximate entropy, Shannon entropy, and 
Lempel-Ziv complexity from EEG signal 
decrease gradually [6]. 

The introduction of nonlinear Entropy provided 
a new perspective to EEG analysis. Several 
techniques such as Artificial Neural Networks, 
logistic regression and support vector machine 
could be used to develop a model for anesthesia 

monitoring for classification of anesthesia depth 
level.

In a frequency domain, the degree of phase 
coupling between different spectral components 
has been studied as a marker of nonlinear EEG 
generators and is claimed to be an important 
aspect of BIS technology (Aspect Medical, 
USA). A study done by [10] evaluates the 
performance of the BIS and the bicoherence 
(BIC), since BIC is the most direct measure of 
phase coupling not affected by the components 
amplitudes, in order to analyze the interactions 
between frequency bands, the bifrequency plane 
was divided into regions. The biggest changes in 
the bicoherence values across depth of anesthesia 
states (10 states were clinically defined) occurred 
in the lower bifrequency regions (delta and 
theta). These results coincide with other works 
[11]. The ability to track graded changes in levels 
of anesthesia was significantly smaller than that 
obtained by BIS values, which indicates that 
the use of only Bicoherence parameters of any 
bifrequency region to monitor depth of anesthesia 
was inferior to BIS technology.

Wavelet entropy is defined as the application of 
the Shannon function to each frequency scales 
in the wavelet domain; this technique has been 
implemented with some variations [12-14]. The 
importance of preprocessing the EEG signal was 
remarked; in order to reduce the amplitude effect 
in the brain waves, detrend of each epoch by 
its mean value and normalization by energy of 
the signal was applied [12]. This normalization 
minimizes the effect of signal amplitude on 
the frequency content, which leads to a better 
performance of the index. EOG and ECG are 
removed by wavelet techniques. Authors also 
suggest a method to choose the mother wavelet 
proposed by [15], the wavelet which maximizes 
the correlation coefficient between EEG signal, 
and the wavelet filter would be selected as 
the optimum mother wavelet. The study [14] 
combined wavelet transform, eigenvector and 
normalization techniques to develop a ZDoA 
Index which corresponds one of the five depths 
of anesthesia states to very deep anesthesia, 
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deep anesthesia, moderate anesthesia, light 
anesthesia and awake. Simulation results based 
on real anesthetized EEGs demonstrate that the 
new index generally parallels the BIS index. In 
particular, the ZDoA index is often faster than 
the BIS index to react to the transition period 
between consciousness and unconsciousness for 
their data set in particular.

On the other hand, one of the advantages of the 
HHT is that it can break down a complicated EEG 
signal without a predefined basis function, such as 
sine or wavelet function, into several oscillatory 
functions that are embedded in the EEG signal, so 
it could provide a more precise time-frequency-
scale representation. Combination of HHT and 
entropy analysis was done by [17]. They applied 
the Shannon entropy concept to the Hilbert-
Huang spectrum, so a new entropy index could 
be obtained and was denoted as Hilbert-Huang 
Spectral entropy (HHSE). Consistent with the SE 
and RE in the M-Entropy Module (ME-SE/RE), 
authors proposed HHSE state entropy (HHSE-
SE) computed over the frequency range {0.8-
32Hz}, and HHSE response entropy (HHSE-RE) 
computed over {0.8-47Hz}. Results show that 
HHSE-SE/RE and ME-SE/RE track the gross 
changes in EEG with increasing anesthetic drug 
effect. Authors find that HHSE-RE/SE values 
decrease monotonically and their variability is 
approximately equal; nevertheless, ME-SE/RE 
values, particularly ME-SE value, do not decrease 
monotonically. Authors suggest from the small 
data set (14 patients) in the study that the Hilbert-
Huang spectral entropy has a slightly stronger 
ability to track changes in sevoflurane effect-site 
concentration than M-Entropy (Datex Ohmeda) 
with a stronger noise-resistance, thus it could be 
incorporated in the design of a new method to 
estimate the effect of anesthetic drugs on the EEG.

Conclusions
Nonlinear techniques such as entropy analysis in 
the time and frequency domains provide a high 
performance in EEG features extraction. ApEn 
and PE provide monotonically linearly separable 
features, so that the development of an index to 

classify between ‘awake’ and ‘anesthetized’ could 
use simple classifiers such as artificial neural 
networks, linear support vector machines, logistic 
regression or decision trees. The combination 
of entropy analysis, particularly the Shannon 
entropy concept with wavelet transform and 
Hilbert-Huang transform has shown promising 
results in the development of a new device for 
classifying depth of anesthesia states.

Because of the lack of a gold standard, it is still 
unclear the number of depth of anesthesia states 
that should be classified. Most groups develop 
a self clinical scale: [10] developed a scale of 
ten depth of anesthesia states; [14] divided the 
depth of anesthesia planes in five, from awake 
to unconsciousness; [8] only considered two 
different states ‘awake’ and ‘anesthetized’. There 
are also some standard clinical scales, such as 
the Observer Alertness Sedation Scale; it could 
be a reference for the classification of depth of 
anesthesia [25].
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