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Abstract

This paper describes a Genetic Algorithm (GA) implementation devoted to 
the calculation of reconfiguration patterns for Photovoltaic Arrays (PVs). The 
proposed solution is compared with the classical Brute Force (BF) approach, 
which use is very restrictive due to its long processing times. The GA 
tuning up process is described, and several cases of study, including partial 
shading profiles for the PV array, are presented. Results show a very superior 
performance of the GA, when compared to the BF approach. Improvements 
in output power, as a result of the calculated reconfiguration, are also shown.

----------Keywords: reconfiguration of PV systems, genetic algorithm, 
online optimization

Resumen

Este artículo describe una implementación de un algoritmo genético 
orientada al cálculo de patrones de reconfiguración de arreglos fotovoltaicos. 
La solución propuesta se compara con el enfoque clásico de fuerza bruta, el 
cual es muy restrictivo debido a sus tiempos de procesamiento excesivamente 
largos. Se describe el proceso de puesta punto del algoritmo y se presentan 
varios casos de estudio, incluyendo perfiles de sombreado parcial para el 
arreglo fotovoltaico. Los resultados muestran un desempeño muy superior 
del algoritmo genético en contraste con el enfoque de fuerza bruta. También 
se presentan las mejoras obtenidas en la potencia de salida como resultado del 
patrón de reconfiguración calculado. 

----------Palabras clave: reconfiguración de sistemas PV, algoritmo 
genético, optimización en línea
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Introduction
Photovoltaic (PV) systems are an alternative 
to produce energy without the need of external 
fuel storage. Such a characteristic makes the 
PV systems a suitable alternative for mobile 
applications but also for stand-alone electricity 
generation in isolated locations [1, 2]. Moreover, 
PV systems have become an interesting alternative 
for co-generation in urban environments to 
supply non-critical loads such as office lighting 
(light-to-light) [3] and residential comfort 
devices such as air-conditioned plants [3]. On 
the other hand, attractive feed-in fees provided 
by some governments, e.g. Argentina, Ecuador, 
Nicaragua, Spain, Germany [4], have increased 
the interest in small PV installations selling 
power to the grid [1, 3]. Such grid-connected 
PV systems take advantage of unused rooftop 
and parking lot spaces in urban environments, 
but they are also subjected to periodic and 
unavoidable shades over part of the array caused 
by adjacent buildings, poles, trees and even other 
PV panels, it producing non-uniform operation 
conditions [1]. 

The mismatched phenomenon, caused by non-
uniform conditions, strongly reduces the power 
generated by the PV system [1]; hence different 
solutions have been proposed in literature: 
adopt different static electrical configurations 
such as Series-Parallel (SP), Total-Cross Tied 
(TCT) or Bridge-Linked (BL) [5]; isolate every 
panel using a dedicated dc/dc converter [2, 5]; 
reconfigure the electrical connections between 
the PV panels [1]. The first of the above solutions 
is not reliable since there is not a single static 
configuration providing the best performance for 
any shading pattern [1, 2]. The second solution 
effectively reduces the mismatching effect, 
but at the expense of additional power stages, 
which increase significantly the solution cost 
and complexity due to the requirement of several 
power stages and controllers. Moreover, those 
additional dc/dc converters introduce power 
losses that reduce the energy delivered to the grid 
in uniform conditions, where the classical single-
inverter approach provides higher performance 

[5]. Finally, the reconfiguration approach 
provides a low-cost solution to mitigate the 
mismatching effect without degrading the power 
production in uniform conditions [2]. Despite the 
power production in mismatched conditions is 
lower, when compared to the solution based on 
dedicated dc/dc converters, the reconfiguration 
solution requires a single cheap and an almost 
lossless switching matrix and a single controller.

The main challenge in reconfiguration of PV arrays 
concerns the large amount of possibilities that 
must be evaluated to find the best solution. Such 
a problem has been addressed in literature using 
multiple approaches: programed configurations 
(PC) [6], which select a given configuration 
depending on pre-defined rules; sorting algorithms 
(SA) [7], which search an acceptable solution that 
meets a given criterion, e.g. the highest PV current; 
brute force (BF) algorithm [1], which tests every 
possible configuration at the cost of very long 
computation times; and optimization algorithms 
(OA) [8], which maximize (or minimize) a given 
cost function to find an acceptable solution. Among 
those approaches, only the BF solution ensures to 
find the configuration providing the highest power, 
but its excessive long processing times make this 
solution impractical for real-time applications. 

This paper proposes the design of a reconfiguration 
system based on a Genetic Algorithm (GA) 
aimed to provide the best configuration, or a 
close one, with a much shorter processing time 
in comparison with the BF solution. Such a 
characteristic makes the proposed GA solution 
suitable for real-time applications. In such a way, 
the proposed solution is validated using detailed 
models, parameterized with experimental data 
taken from commercial PV panels, and under 
environmental conditions measured in central-
west Colombia.

In the following sections, the mismatching 
phenomenon is explained in detail. Subsequently, 
the proposed structure for reconfiguring PV 
systems is introduced. Then, the proposed GA 
solution is described and its performance is 
evaluated. Finally, conclusions close the paper.



97 

Reconfiguration of photovoltaic arrays based on genetic algorithm

The mismatching phenomenon
PV generators are, in general, an array of PV 
modules connected in multiple strings. The size 
of such strings (number of modules in series) is 
determined by the voltage requirements of the 
grid-connected inverter. The number of strings in 

parallel is determined by the power to be injected 
into the grid. Figure 1 presents, at the left, the 
structure of a typical PV array formed by strings, 
where the strings voltage is the same and equal 
to the array voltage va, while the strings current 
is different and the array current ia is equal to the 
sum of all the strings currents.

Figure 1 PV array formed by multiple strings

Figure 1 also depicts the internal structure of a 
PV module, which is formed by several cells 
in series protected by a bypass diode connected 
in anti-parallel to avoid negative PV voltages 
that forces the module to consume power. In 
addition, the figure also presents the electrical 
behavior of a commercial JS65 PV module from 
Yingli Solar, where the non-linear behavior of 
the module is observed: the produced PV power 
ppv changes depending on the irradiance S and 
voltage vpv imposed to the module. Moreover, 
for each irradiance condition there exists an 
operation point in which the module produces 
the maximum power, named MPP [5]. Since 
the irradiance is unpredictable, commercial 

PV inverters are usually equipped with on-line 
searching algorithms devoted to track the MPP 
continuously (named Maximum Power Point 
Trackers or MPPT).

The electrical behavior of a PV module is 
modeled using (Eq. 1), where Rs and Rp represent 
the ohmic losses, iSC represent the photo-
induced current depending on the irradiance, i0 
represents the saturation current of the junction 
and vtd represents the thermal voltage depending 
the module temperature. Those parameters 
can be calculated from datasheet values and/
or experimental measurements by solving the 
expressions given in [9].

	
	 (1)
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Such an expression and Figure 1 show that 
a maximum PV current is obtained at short-
circuit condition, i.e. vpv = 0 V. Moreover, from 
(1) it is noted that the photo-induced current 
is the one powering the PV module; hence PV 
current is always smaller than iSC. But, since the 
photo-induced current depends on the effective 
irradiance reaching the PV module, partial 
shading across PV strings generate that modules 
with different irradiation exhibit different iSC 
values. In a PV string the modules have the same 
current since they are in series-connection, but 
if there exists a difference in the values of iSC, a 
bypass diode will become active to provide a path 
for the current in excess. Figure 2 illustrates such 
a case: in a PV string formed by two modules, the 
upper one is fully irradiated while the module at 
the bottom is partially shaded, hence it exhibits a 

lower iSC value. Then, such a string current must 
to be lower than the photo-induced current of 
the module at the top (ist < iSC1), but two possible 
operation conditions appear: if the string current 
is higher than the iSC value of the module at the 
bottom (ist > iSC2) the associated bypass diode db2 
becomes active to provide a path for the current 
excess idb2 = ist - iSC2. Such a condition imposes 
to the module at the bottom almost zero voltage, 
hence it does not produce power. Instead, if the 
string current is lower than the iSC value of the 
module at the bottom (ist < iSC2) the associated 
bypass diode db2 becomes inactive and the 
module produces power. Such a bi-state behavior 
is known as the mismatched phenomenon, and 
the operation condition in which a bypass diode 
becomes active is known as inflection point. 

Figure 2 PV string under mismatched conditions

Figure 2 presents the main characteristic of 
a shaded (mismatched) PV string: the power 
vs. voltage (P-V) curve exhibits multiple local 
maximum power points (LMPP) due to the 
activation of bypass diodes. Such a simulation 
considers the upper module at S1 = 1000 W/
m2 and the shaded one at S2 = 700 W/m2, but 
stronger effects are experimented for larger 
differences in the irradiances. Moreover, in larger 

PV arrays, such as the multi-string array depicted 
in Figure 1, the P-V curve could exhibit a much 
larger number of LMPP equal to n⋅m, where n 
represents the number of modules per string 
while m represents the number of strings [1].

The main problems introduced by the mismatching 
phenomenon concern the difficulty to track the 
best operation condition using traditional MPPT 
solutions based on following a positive derivative 
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in the power, such as the isolated Perturb and 
Observe (P&O) technique [5], which keeps 
trapped on any LMPP. In addition, the position 
of the shaded modules into the array significantly 
affects the power, hence it is not possible to 
predict the best configuration [2, 6]. 

Reconfigurativon of PV arrays
In multi-string PV arrays under partial shading, 
the power provided by the LMPPs depends 
on the position of the shaded modules into the 
array. The position concept does not stand 
for the physical location of the module but for 
the electrical connections of the module; for 
instance, two modules could be physically side-
by-side but they could belong to the same string 

or to different strings depending on the electrical 
connections among those modules. Figure 3 
illustrates such a concept using 6 PV modules: 
three non-shaded modules (M1, M3 and M4), 
one module shaded in 25 % (M2), one module 
shaded in 50 % (M5) and one module shaded 
in 75 % (M6). Those modules can be connected 
in different possible connection configurations, 
where Figure 3 shows 2 of those possibilities, 
each one of them providing a different P-V curve. 
The array configuration is described in terms of 
the strings to which the modules are connected as 
[M1 M2 M3 M4 M5 M6]; for instance [1 2 3 1 
2 3] stands for M1 and M4 connected to the first 
string, M2 and M5 connected to the second string 
and M3 and M6 connected to the third string.

Figure 3 PV string under mismatched conditions

In such an example, configuration [1 2 3 1 2 3] 
provides a maximum power of 117 W at 18 V, while 
configuration [1 1 2 3 3 2] provides a maximum 
power of 159 W at 35 V. Hence, for that particular 
shading profile, it is desirable to configure those 
modules in [1 1 2 3 3 2]. However, for a different 
shading profile, another configuration could 
be the optimal one. Therefore, it is required to 
reconfigure the PV array continuously to ensure 
the maximum power production.

Figure 4 shows both static and reconfigurable PV 
arrays illustrating the scheme of a reconfigurable 
PV module. Static arrays, i.e. traditional arrays, 
have fixed connections between the modules, 
while reconfigurable PV modules have switches 
that enable to connect the physical module to any 
of the strings forming the array.
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Therefore, any static PV array can be transformed 
into a reconfigurable array by introducing 
dynamics connections using switches. In 
literature [1], the switches of all the modules are 
concentrated in a single device named switching 
matrix, which receives a digital signal from a 
microprocessor-based controller to reconfigure 
the array. Then, all the PV modules are connected 
to the inputs of the switching matrix, while the 
load (i.e. grid connected-inverted) is connected to 
the output terminal as depicted in Figure 4.

The control of the switching matrix is simple, 
because it is only necessary providing the 
state (ON or OFF) for each switch. The main 
problem of the reconfiguration system is to find 
the configuration for such switches, i.e. the best 
configuration for the PV array, due to the large 
number of possibilities. Defining n as the number 
of modules per string and m as the number 
of strings of the array, each module has (m+1) 
possible conditions including the disconnection 
option. Then the number of possible configurations 
is (m+1)(n⋅m), where (n⋅m) corresponds to the 
number of modules in the array. For instance, the 
case depicted in Figure 4, with (m+1) = 7 and 
(n⋅m) = 6, gives 117649 possible configurations. 
As described in the introduction, the Brute 

Force (BF) approach is the only one ensuring 
to find the best configuration, but it requires to 
tests all the possibilities. In literature three main 
solutions have been proposed to evaluate those 
configurations: estimate the best configuration 
by equalizing the photo-induced currents [10], 
measuring the P-V characteristics of each module 
to interpolate the array P-V curve [11], and use 
models to predict the P-V curve [2]. The first 
approach introduces large errors in multi-strings 
arrays, e.g. SP commercial systems, since it is 
aimed for single-strings systems such as TCT 
arrays. The second approach requires acquiring 
a large amount of data since each module must 
be experimentally tested for each reconfiguration 
process, which produces power losses due to the 
long experimental process. Finally, the model-
based approach only requires parameterizing 
the models regularly to account for the aging, 
but it requires to compute non-linear models for 
each possibility, which requires long processing 
times. Hence, to overcome this final problem, an 
optimization algorithm must be adopted to avoid 
testing all the possible configurations. 

To evaluate the P-V characteristic of a PV 
array different PV models have been proposed 
in literature: simplified fast models exhibiting 

Figure 4 PV string under mismatched conditions
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approximation errors (named Fast) [12], accurate 
models with long processing times (named 
Complex) [13], and balanced models with high 
accuracy but medium processing times (named 
Tradeoff) [1]. The performances of such models 
were tested in [1], where the Tradeoff model 
provides the best balance between accuracy and 
processing speed: Fast model introduces errors 
up to 5 %, which could lead to a wrong selection 
of the optimal configuration; while Tradeoff and 
Complex models introduce errors smaller than 
0.1 %, which is acceptable. Moreover, Tradeoff 
model requires only 19.65 % of the processing 
time used by Complex model to achieve an 
almost identical solution.

Therefore, this paper uses the Tradeoff model 
described in [1] to calculate the P-V characteristic: 
for a PV array with m strings of n modules 
(n⋅m modules), m equations are formulated by 
considering that the sum of the modules voltage 
in each string is equal to the array voltage; 
moreover (n-1) equations are formulated for 
each string by considering that all the modules 
currents are equal. In such a way, a non-linear 
(n⋅m) equation system is formed, which is solved 
using the Newton-Raphson method to find the 
array current and voltage.

However, testing all the possible configurations 
will make the reconfiguration impractical for 
commercial applications. For example, taking 
into account that the average speed of earth’s 
rotation is 0.25 degrees per minute [14], the 
shades affecting a PV array also move with the 
same speed. Then, to account for a change of 1% 
in the shades, the reconfiguration process must be 
performed each 7.2 minutes. However, to process 
a single configuration of a 2×3 PV array, as the 
one in Figure 4, A PC equipped with an Intel(R) 
Xeon(R) CPU E5-2620 of 4.0 GHz and 32 GB 
of RAM requires 20 ms; hence to evaluate the 
117649 possibilities it requires 39.22 minutes, 
which makes impossible to reconfigure the system 
every 7.2 minutes. Therefore, the following 
section proposes a genetic algorithm to speed-up 
the searching of the optimal configuration.

Searching the optimal 
configuration by using a 

genetic algorithm
Population–based heuristic algorithms have 
been used in a plethora of optimization problems 
with promising results. The population approach 
has two main advantages over other reported 
solutions. In the first place, a parallel search is 
performed through the whole solutions space, 
where each individual represents a potential 
optimal, which enable to speed up the performance 
of the optimization process. Secondly, the search 
process depends simultaneously on several 
potential solutions, which allows dealing with 
local optima issues. Among the many population-
based approaches, Genetic Algorithms (GAs) are 
the most conspicuous option for optimization 
purposes [15]. A GA deals directly with solutions 
in a given population, and performs genetic 
operators over such individuals, such as mutation 
or crossover. As a result of such operators, the 
population converges gradually toward an 
optimal solution, guided by a fitness function.

In this paper, the design of the GA was based 
on the following parameters for the commercial 
PV module Yingli Solar JS65 calculated using 
the procedure described in [9]: i0 = 9.6126e-10 
A, vtd = 0.9797 V, Rs = 0.3681 Ω, Rp = 276.4026 
Ω, and open circuit voltage Voc = 21.7 V. It must 
be pointed out that iSC values depend of the 
irradiance reaching the PV modules. Then, using 
the Tradeoff model, the GA explores the solutions 
space by generating potential interconnections 
among the panels. The fitness values guide the 
exploration, leading toward individuals that 
provide higher PV powers. The tuning choices of 
the GA are described below.

Population size

The population size is defined to be dynamic 
and it depends on two parameters: Nipop that 
represents the initial population size, and Npop 
that represents the population size after the first 
generation. Managing a larger initial population 
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size increases the probabilities of finding the 
absolute optimum for the optimization problem 
[15]. Although each optimization problem is 
unique by nature, after several tests it was found 
that a population size above 1000 individuals 
may improve the performance of the GA, for the 
sake of locating the global optimum [15].

Regarding the initial population size, several 
tests were performed in order to set such a 
parameter. Figure 5 shows representative results 
of such tests, where the GA reaches the BF 
performance if the initial population size (Nipop) 
is large enough. Since a population size above 
1000 individuals seems to be the best choice, the 
values of Npop and Nipop were set to the same 
value, so the population size does not change as 
the algorithm converges.

Figure 5 Performance of the GA for different initial 
population size

Genetic operators

Regarding the genetic operators, a subset of 
the population, composed by the best Ngood 
individuals, is chosen to survive for the next 
generation, and also it is used to produce 
offspring through crossover. Such offspring 
competes (in terms of fitness) for complete 
the remaining individuals of the population. 
The more suitable a new solution is, the more 
probable is that such solution survives to the next 
generation. This feature resembles to the process 

known as natural selection [15]. Apart from the 
above, the best Nelite individuals are conserved 
and precluded from mutation processes, for the 
sake of not losing good solutions as a result of 
such an operator.

Constraints

In the GA it is possible to restrict the maximum 
number of generations, as well as the minimum 
number of panels connected in series and parallel. 
Such constraints are represented directly by the 
bountIte, boundSer, and boundParl parameters, 
respectively. Similarly, the boundVoltage and 
boundPower parameters are used to constrain the 
system voltage and power, respectively. There 
exists another parameter, named Ndiff, which 
ensures minimum population diversity. Ndiff 
represents the number of individuals on a given 
population which are different from the best 
solution found so far. Such a parameter is used as 
stopping criterion.

Fitness and Mating

To ensure a consistent performance of the GA 
algorithm for any number of modules; the fitness 
function was designed as a normalized quantity. 
Eq. (2) describes the proposed fitness function 
Fcost, where Pcal represents the power delivered 
by the PV array, Voc represents the open-circuit 
voltage, ISC (i) represents the short-circuit current 
of the ith module and NPV

  represents the number of 
modules in the system. Then, Fcost provides values 
in the range [0, 1] to represent the amount of 
power provided by a configuration as a fraction of 
the ideal maximum power (without mismatching 
conditions and without losses) independent of the 
array size. Therefore, the objective of the GA is 
to maximize the value of Fcost.

	 	 (2)

The parents selection process is implemented 
by a combination of random and tournament 
strategies. Best results were obtained when half 
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of the parents are chosen randomly, and the 
remaining individuals are chosen by a tournament 
process. A two–point crossover was implemented 
for the problem at hand, and mutations were 
implemented by changing a single value of the 
chromosomic representation of a given solution. 
The number of mutations is controlled by the NMut 
parameter, where the best results were obtained 
by setting NMut to 0.2 (20 % of the population 
size). The selection of individuals subject to the 
mutation operator was performed in a random 
fashion, excluding the best Nelite solutions as 
previously described.

Further settings

Regarding the rest of the tuning of the algorithm, 
the population's diversity (Ndiff) was set to  
20 % of the population size. Constraint parameters 
boundParl and BoundSer were set to 1 and 2, 
respectively. The remaining constraints were set to 
be inactive.

Figure 6 summarizes the GA execution flow. The 
first section of the algorithm is devoted to the 
initial settings of the parameters, including those 
related to the PV system, the GA itself, and the 
constraints of the optimization problem.

The creation of a new population may occur 
as a consequence of an initial setting, or as a 
result of the genetic operators. Since the created 
solutions are the result of some randomness, it 
is mandatory to correct their representation, this 
to avoid redundancy or unreal situations. Once 
the representation of the solutions is correct, the 
algorithm evaluates their fitness values. A sorting 
process is conducted in order to manage elitism 
and mating issues. If the set of solutions is not yet 
suitable to the problem at hand, genetic operators 
create a new population and the iterative process 
continues. Alternatively, when the population’s 
diversity is low enough, the algorithm stops and 
delivers the optimized solution.

Figure 6 Flow chart of the proposed genetic 
algorithm

Performance evaluation

The evaluation of the proposed solution considers 
the irradiance profile presented in Figure 7, 
which corresponds to a summer day in Medellin, 
Colombia. The profile starts at 7:00 and finishes 
at 18:00, where the maximum irradiance value of 
828 W/m2 is achieved at 12:00.
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Figure 7 Irradiance in a summer day in Medellín, 
Colombia

For the parameterized PV modules, the photo-
induced current is calculated from the irradiance 

value S as iSC = S⋅(iSC,MAX)/SMAX, where iSC,MAX = 4 
A and SMAX = 1000 W/m2. Hence, the maximum 
value of iSC in the given irradiance profile is 3.312 
A.

The GA-based solution was tested in two different 
types of shading profile: a diagonal shade that 
covers the modules completely after a period 
of time, and an horizontal shade moving along 
the array without covering all the modules at the 
same time. The first shading profile is presented in 
Figure 8, where the module M4 is the first one in 
experimenting a shade. The shade moves through 
the day affecting all the modules by 18:00. The 
percentage of shading of each module along the 
day is presented at the right side of Figure 8, 
which reduces the effective irradiance reaching 
the corresponding PV module.

Figure 8 Shading profile moving diagonally along the array

Figure 9 presents the performance of the GA-
based solution in detecting the best configuration 
previously obtained with the classical brute force 
approach. Figure 9(a) shows that GA solution 
finds the best configuration in only 4 generations. 
Such a performance was consistent for multiple 
trials, where Figure 9(a) presents the evolution of 
the GA-based reconfiguration in three examples: 
irradiances at 11:00, 12:00 and 13:00. To provide 
a scale of the time saving provided by the GA 
solution, Figure 9(b) compares the processing time 
required by both brute force and GA approaches 

to reach the optimal solution for different number 
of modules between 3 and 12. The results show 
that for 3 and 4 modules the processing times are 
comparable, but for 5 modules the brute force 
requires 2080 % more time that the GA option 
(109.5 s vs 5.1 s), while for 6 modules the brute 
force requires 26912 % more time that the GA 
approach (2134 s vs 7.9 s). In fact, for 6 modules 
the brute force is not practical to reconfigure each 
7.2 minutes to compensate for the rotation of 0.25 
degrees per minute of earth, while using the GA-
based reconfiguration it is possible. Moreover, 
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Figure 9(b) shows that for 12 modules the GA 
solution requires 36.5 s to reach the optimal 
solution, which is within the 7.2 minutes limit. 
In fact, the GA-based reconfiguration could find 
the best configuration for PV arrays with up to 36 

modules within the 7.2 minutes limit using the 
processing system adopted in this work. Instead, 
the brute force approach will require 116 days to 
achieve the same result.

(a) Number of generations (b) Processing time

Figure 9 Convergence speed of the GA solution

Figure 10 depicts the power production of the 
GA-based reconfiguration system in contrasts 
with a classical (static) PV array. It shows that 
from 10:00 the reconfiguration solution provides 
higher power, which is due to the stronger shading 
area covering the modules, as observed in Figure 
8. The highest difference between the static and 
reconfigurable systems occurs at 13:00, where 
the latter produces 31 % more power (38 W). In 
the overall profile, the reconfiguration solution 
provides 17 % more energy than the classical 
solution, which significantly reduces the time 
required to recover the investment and improves 
the economic viability of the PV installation.

Figure 10 Power production comparison for the first 
test



106

Rev. Fac. Ing. Univ. Antioquia N.° 75. June, 2015

The second test is based on the horizontal shade 
presented in Figure 11: the shade affects first the 
modules M1 and M4 at morning, affecting the 
second and third strings afterwards. At the end of 

the day the first string is unaffected while second 
and third strings are partially shaded. The right 
side of the figure shows the shading profile for 
each module.

Figure 11 Shading profile moving horizontally along the array

Figure 12 presents the comparison of the power 
production of both the GA-based and classical 
(static) solutions. This time the reconfiguration 
approach produces higher power starting from 12:00 
due to the shading profile, and at 13:00 the GA-
based reconfiguration produces a peak increment 
in power of 41 % (46 W). For this shading profile, 
the GA solution produces 22 % more energy in 
comparison with the static counterpart.

Figure 12 Power production comparison for the 
second test

Those results show the strong improvement 
provided by the GA-based reconfiguration system, 
in terms of power production, to any PV system 
affected by shades. In addition, those results also 
put in evidence that brute force approaches are 
not suitable for real-time reconfiguration due to 
its long processing times, while the GA solution 
overcomes this limitation. 

Conclusions
The design of a GA solution was proposed for 
the computation of reconfiguration patterns in 
PV arrays. In terms of performance, the obtained 
results are very promising, since GA calculations 
are quite faster than those obtained with the BF 
approach. The latter is especially true for big-
size reconfiguration problems. The proposed GA 
solution improves the power generated by the PV 
array, which is the result of the reconfiguration 
process. However, such improvements require a 
real-time optimization engine powerful enough 
to perform practical implementations.
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