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Abstract

In operational modal analysis, the accuracy obtained in the identification of 
modal parameters, on the one hand, and the expertise in the modification 
of mass used to alter the dynamic behavior of the structure, on the other, 
decisively affect the accuracy achieved in the estimation of the scaling 
factors. Through experimental tests and numerical calculations, both the 
experimental validation of the estimate of the error in the scaling factor due to 
errors in the mode of vibration and the analysis of the influence of the modal 
mass in the variation of the scale factor, have been carried out. From all the 
above, it is concluded that it is necessary to pay special attention to how to 
make and modify inertial increments, i.e. changes in mass.

----------Keywords: operational modal analysis, scaling factors, 
sensitivity, mass-change method

Resumen

En el análisis modal operacional, por una parte, la exactitud obtenida 
en la identificación de los parámetros modales y, por otra, la pericia en la 
modificación de masa utilizada para alterar el comportamiento dinámico de la 
estructura, afectan de forma decisiva la exactitud alcanzada en la estimación de 
los factores de escala. Mediante ensayos experimentales y cálculo numérico, 
se ha realizado la validación experimental de la estimación del error en el 
factor de escala debido a errores en el modo de vibración, así como el análisis 
de la influencia de la masa modal en la variación del factor de escala. De 
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todo ello se concluye que es necesario prestar especial atención a la forma de 
realizar y modificar los incrementos inerciales, es decir, la modificación de 
masa.

----------Palabras clave: análisis modal operacional, factores de escala, 
sensibilidad, método del cambio de masa

Introduction
The accuracy achieved in the estimation of the 
scaling factors is dependent on the identification 
of modal parameters [1-3] and the mass 
modification strategy used to alter the dynamic 
behavior of the structure [4-6]. The methodology 
for mass modification is based on the size, location 
and number of masses added to the structure.

It can be shown that to reduce the uncertainty 
in the estimation of the scaling factors, errors in 
the estimation of modal parameters [7, 8] must 
be minimized for the pilot phase of the modal 
analysis, as well as the difference between the 
modified and unmodified modes of vibration [9-
11].

The difference between the original and the 
modified modes of vibration is minimized when:

• A large number of masses is added to the 
structure. 

• The masses are adequately distributed. 

• The masses are located at optimum positions 
(peaks and valleys of the modes of vibration). 

• The magnitude of the change in mass is small.

Nevertheless, a minimal change is required in 
the magnitude of the mass [10, 11] in order to 
ensure minimum frequency deviation and avoid 
uncertainties in the identification of modal 
analysis [12, 13]. Moreover, the change of mass 
should not be too high in order to minimize the 
difference between the modified and unmodified 
modes of vibration.

In [9] showed that the presence of a relative 
error ε in the measured frequency deviation, 
induces a relative error of magnitude ε/2 in the 
normalization results obtained.

In [14], there is a first expression for the sensitivity 
of the scaling factors for errors produced during 
the evaluation of the magnitude of the frequency 
deviation in experimental tests. This is obtained 
(1) by differentiating the equation

  (1)

with respect to the frequency ratio , (2) 
resulting in

  (2)

Also, in [14] demonstrated that a relative error 
εηω

 in the frequency ratio of a given mode of 
vibration, induces a relative error given by the 
expression (2) in the scale factor εα. However, 
it should be noted that this relationship between 
relative errors is applicable to the variation of 

frequency ratio with respect to itself , and 
not to the difference between the relative errors (3) 
that correspond to the frequency before (ω0) and 
after (ω1) the change in mass (which is as shown 
in [14]), i.e.

  (3)

On the other hand, it can be easily seen that 
for low frequencies, the effect produced by the 
same absolute error becomes greater. A plot of 
equation (2) is represented [14] in Figure 1, where 
the significance, already known, of using an 
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additional mass sufficient to achieve a reasonable 
frequency deviation [15], can be seen.
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Figure 1 Influence of frequency ratio (and its 
associated error) on the uncertainty

The sensitivity of the results of normalization (α 
scaling factors) produced by the error (4) on the 
operational mode of vibration {Ψ0} in the degree 
of freedom k (location of the mass Δmk), is given 
by [9].

  (4)

The recognition of the above equation indicates 
that if several degrees of freedom belonging to an 
estimated mode of vibration, scaling considered, 
exhibit a similar relative error ε, the resulting 
error in the normalization will be approximately 
equal to ε.

In this paper, the theoretically deduced term 
above has been validated through experimental 
tests and numerical calculation in order to check 
whether the estimate of the error in the scaling 
factor due to errors in the vibration mode is 
acceptable. Moreover, the influence of the 
modal mass in the variation of the scale factor 
is studied.

Testing and operational modal 
analysis

The experiments were performed on a cantilevered 
bar, consisting of a 4 mm thick steel tube of 100 
by 40 mm constant rectangular section, vertically 
arranged (Figure 2), with a height of 1875 mm, 
fixed in its base to a test frame using a four screw 
rectangular support plate.
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Figure 2 Structure used in the experimental 
validation

To define the dynamic behavior of the structure, 8 
degrees of freedom were established by obtaining 
measures through other many accelerometers, 
located and oriented as shown in Figure 2. The 
distance between degrees of freedom is 250 mm, 
except between points 7 and 8, where it is reduced 
to 125 mm. The point masses needed to modify 
the dynamic behavior of the structure were linked 
to the degrees of freedom 1 to 7.

Initially, some preliminary tests were performed 
in order to deduce the modal parameters of the 
structure, and later, in a second step, the mass-
change method was applied, placing point masses 
at different degrees of freedom.

As a naturally random excitation source, contact 
with a file was used by applying light pressure, 



205 

Error analysis in obtaining scale factors with operational modal analysis and mass change

together with a longitudinal displacement on the 
outer surface of the tube so that the excitation 
was stationary in bandwidth. Responses 
were measured with 8 4508B Brüel & Kjær 
accelerometers, positioned as shown in Figure 
2, and recorded with a data acquisition board 
(National Instruments PCI4472) controlled by 
Labview.

Throughout the investigation, only the first 
seven modes were recorded. The analysis of 
data extracted from the experimental tests 
was performed with the Artemis Extractor 
software, using the methods: Enhanced 
FREQUENCY DOMAIN DESCOMPOSITION 
Peak Picking and STOCHASTIC SUBSPACE 
IDENTIFICATION CVA Estimation.

Experimental validation of the estimate of 
the error in the scaling factor due to 

errors in the mode of vibration

Assuming that the main error in the modes of 
vibration occurs with the change of its components 
following the linking of masses to the degrees 
of freedom selected, then the actual error in the 
scale factors depending on whether the modes 
of vibration used are modified or unmodified, is 
calculated first, and then, the estimated error as a 
result of the use of the expression (4) given by [9].

From the multitude of tests conducted, the two 
shown below were selected (Figures 3 and 4, Tables 
1 and 2), corresponding to those which, from this 
point on, will be referred to as tests a and b.

Figure 3 Test a: percentage of estimated and actual error (real and imaginary part)
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Table 1 Test a

Number of modes considered in MPF:  7 Natural excitation:  lime

d.o.f. with mass

nº d.o.f. 1 2 3 4 5 6 7 ∆mTOTAL % ∆m

∆m [gr] 157 146 157 157 158 146 155 1076 6,75

nº mode f original [Hz] f∆m [Hz] % ∆f MAC α

1 11.74 11.65 0.77 0.9997 + 0.0000i 0.2066 – 0.0006i

2 72.45 69.99 3.40 0.9999 + 0.0000i 0.3484 + 0.0016i

3 201.5 194.4 3.52 1.0000 + 0.0000i 0.3831 + 0.0007i

4 388 373.4 3.76 0.9997 – 0.0000i 0.3727 – 0.0035i

5 612.6 588.2 3.98 0.9992 – 0.0000i 0.4007 – 0.0014i

6 847.4 810.1 4.40 0.9937 + 0.0000i 0.4414 – 0.0025i

7 1227 1117 8.96 0.7213 – 0.0000i 0.6644 – 0.0637i

Figure 4 Test b: percentage of estimated and actual error (real and imaginary part)
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Then, the mass-change method was applied in 
order to calculate the scaling factors and modified 
modal parameters of the structure. The results 
obtained are shown in the tables cited above, 
where, for the first seven modes, the original 
frequencies and those obtained after the change 
in mass, as well as the percentage variance of the 
frequency, the MAC between the modified and 
unmodified modes, and the resulting scale factor 
(5) calculated using the following expression [11, 
16], in which modified and unmodified modes of 
vibration are used, are all indicated.

  (5)

In the first of these (test a), the weighted mass 
of the structure is around 7% of its value, and 
masses are added at all the degrees of freedom 
considered in the analysis. In the second one 
(test b), meanwhile, the linked mass is limited to 
approximately 4% and only two-point masses are 
added. In both tests, it is a question of optimizing 
the position of the linked masses for as many 
modes as degrees of freedom to which additional 
masses (7 d.o.f.) are fixed.

In the first case, with a uniform mass distribution 
along the structure, the errors are very small 
(always less than 1%), as shown in the graph, 
and there is a complete agreement between the 
actual and estimated errors, both for the real and 
imaginary parts, while in the second, because the 
results used in the expression (4) given by Parloo 
are not the most favorable, the magnitude of the 
errors is higher because an insufficient number 
of masses (only 2) is used simultaneously to 
optimize their position for a high number of 
modes.

In the second one (test b), as can be seen in the 
graph, it is not possible to give a reasonable 
estimate of the error for mode 2. For the remaining 
modes, the predicted error is satisfactory, which 
was intented to be verified to be verified. 
However, only acceptable errors for modes 1 and 
4 are obtained, while errors for mode 3 oscillate 
in the range between 11 and 13%.

Influence of the modal mass in the 
variation of the scaling factor

The expression for determining the scale factor 
(6) can be written as

Table 2 Test b

Number of modes considered in MPF: 7 Natural excitation:  lime
d.o.f. with mass

nº d.o.f. 1 2 3 4 5 6 7 ∆mTOTAL % ∆m
∆m [gr] 312 314 626 3,93
nº mode f original [Hz] f∆m [Hz] % ∆f MAC α

1 11.74 11.54 1.73 0.9999 + 0.0000i 0.4336 – 0.0028i
2 72.45 70.64 2.56 0.9977 + 0.0000i 0.3837 + 0.0028i
3 201.5 196.9 2.34 0.9956 – 0.0000i 0.4037 + 0.0025i
4 388 379 2.37 0.9987 + 0.0000i 0.4197 – 0.0034i
5 612.6 601.4 1.86 0.9927 – 0.0000i 0.3881 + 0.0013i
6 847.4 808.3 4.84 0.9685 + 0.0000i 0.5117 – 0.0024i
7 1227 1201 2.16 0.9503 – 0.0000i 1.8926 + 0.3671i
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  (6)

being  the ratio of frequencies, and 
ΔM={Ψ0}

T[Δm]{Ψ0} the modal mass of the mass 
modification matrix [Δm]. In this case (7), the 
partial derivative of the scale factor α indicated 
in Eq. (6) with respect to ∆M is

  (7)

A graphical representation of the above expression 
is shown in Figure 5, where it can be seen that, 
as the modal mass and the frequency deviation 
increase, their influence on the scaling factor 
decreases, until the moment where it is no longer 
effective to add more mass to the structure, since 
the increase does not affect the scaling factor.

∆M [kg] 

 [kg-3/2] 
∆f = 2.5 % 

5 % 

10 % 

7.5 % 

Figure 5 Variation of the scale factor with respect to 
the modal mass of the modified mass

A change in mass of around 5% of the total mass 
(see [9, 11]) is generally a reasonable change in 
its magnitude.

Furthermore, in [17] suggest, based on their own 
experimental results, particularly as applied to 
bridges, that by just selecting changes in mass 
that reach frequency deviations of around 1% or 
2%, good results are obtained.

Nevertheless   when interpreting the chart above, 
the additional disadvantage is that the magnitudes 
involved are not dimensionless arises. Thus, in 
the case of the modal mass ΔM={Ψ0}

T[Δm]{Ψ0} 
corresponding to the mass modification matrix 
[Δm]), the range of values which contain the real 
cases must be known in order to limit our search 
area in the graph.

For example, for the structure tested in the laboratory 
(Figure 2), the values of ΔM={Ψ0}

T [Δm] {Ψ0}
obtained for the first five modes are shown in Table 
3, while in the case of a real structure, consisting of 
a section of a pre-stressed concrete bridge with a 
span of 25.5 m, the values obtained for the first two 
modes are reflected in Table 4.

Table 3 Values of the modal mass ∆M (laboratory 
model)

Values of ΔM={Ψ0}T[Δm]{Ψ0}
Mode ∆M

1 0.3634 + 0.0023i
2 0.5891 – 0.0054i
3 0.5067 – 0.0020i
4 0.5738 + 0.0107i
5 0.5273 + 0.0038i

Table 4 Values of the modal mass ∆M (prestressed 
concrete bridge)

Values of ΔM={Ψ0}T[Δm]{Ψ0}
Mode ∆M

1 0.0498
2 0.0969

In addition, again using expressions (6) and (7), 
the following (8) and (9), is easily reached:

  (8)

i.e.

 -2εα = εΔM (9)
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From this, it follows that a relative error in the 
modal mass induces in the scaling factor a relative 
error of double magnitude and opposite direction.

Conclusions
With respect to the experimental validation of the 
error estimation in the scaling factor due to errors 
in the mode of vibration, it is concluded that it is 
only possible to carry out error estimates valid in 
determining the scale factor if special attention 
is given to how to make and modify the inertial 
increments, specifically as regards:

- The proportion of the total mass and its 
distribution upon the structure.

- The use of a number of masses (at their 
corresponding degrees of freedom) sufficient 
to fit the number of modes of interest.

With respect to the variation of the scaling factor 
with regard to the modal mass of the mass change, 
it follows:

- From the graphical representation of the 
expression (7), shown in Figure 5, that as 
the modal mass and frequency deviation 
increase, their influence in the scaling factor 
is reduced, until a time comes when it is no 
longer effective to add more mass to the 
structure, since the increase does not affect 
the scaling factor.

- From expression (9), that a relative error in 
the modal mass induces in the scaling factor 
a relative error of double magnitude and 
opposite direction.

References
1. G. Coppotelli. “On the estimate of the FRFs from 

operational data”. Mechanical Systems and Signal 
Processing. Vol. 23. 2009. pp. 288-299.

2. O. Cakar, K. Sanliturk. “Elimination of transducer mass 
loading effects from frequency response functions”. 
Mechanical Systems and Signal Processing. Vol. 19. 
2005. pp. 87-104.

3. Y. Zhang, Z. Zhang, X. Xu, H. Hua. “Modal parameter 
identification using response data only”. Journal of 
Sound and Vibration. Vol. 282. 2005. pp. 367-380.

4. D. Bernal. “Modal Scaling from Known Mass 
Perturbations”. Journal of Engineering Mechanics. 
Vol. 130. 2004. pp. 1083-1088.

5. W. D’Ambrogio, A. Sestieri, “Coupling theoretical 
data and translational FRFs to perform distributed 
structural modification”. Mechanical Systems and 
Signal Processing. Vol. 15. 2001. pp. 157-172. 

6. H. Hang, K. Shankar, J. Lai. “Effects of distributed 
structural dynamic modification with reduced 
degrees of freedom”. Mechanical Systems and Signal 
Processing. Vol. 23. 2009. pp. 2154-2177.

7. S. Braun, Y. Ram. “Modal modification of vibrating 
systems: some problems and their solutions”. 
Mechanical Systems and Signal Processing. Vol. 15. 
2001. pp. 101-119.

8. J. Mottershead, C. Mares, S. James. “Fictitious 
modifications for the separation of close modes”. 
Mechanical Systems and Signal Processing. Vol. 16. 
2002. pp. 741-755.

9. E. Parloo, P. Verboven, P. Guillaume, M. Overmeire. 
“Sensitivity-based operational mode shape 
normalization”. Mechanical Systems and Signal 
Processing. Vol. 16. 2002. pp. 757-767.

10. R. Brincker, P. Andersen. A Way of Getting Scaled 
Mode Shapes in Output Only Modal Analysis. 
Proceedings of the 21st International Modal Analysis 
Conference (IMAC XXI).  Kissimmee, USA. 2003. pp 
141-145.

11. M. López, R. Brincker, A. Fernández, L. Villa. 
Scaling Factor Estimation by Mass Change Method. 
Proceedings of the 1st International Operational 
Modal Analysis Conference (IOMAC). Copenhagen, 
Denmark. 2005. pp. 53-64.

12. K. Yap, D. Zimmerman. “A comparative study of 
structural dynamic modification and sensitivity 
method approximation”. Mechanical Systems and 
Signal Processing. Vol. 16. 2002. pp. 585-597.

13. M. Khatibi, M. Ashory, A. Malekjafarian, R. Brincker. 
“Mass–stiffness change method for scaling of 
operational mode shapes”. Mechanical Systems and 
Signal Processing. Vol. 26. 2012. pp. 34-59.

14. M. López, P. Fernández, R. Brincker, A. Fernández. 
Scaling Factor Estimation Using An Optimized Mass 
Change Strategy. Part 1: Experimental Results. 
Proceedings of the 2nd International Operational 



210

Rev. Fac. Ing. Univ. Antioquia N.° 75. June, 2015

Modal Analysis Conference (IOMAC). Copenhagen, 
Denmark. 2007. pp. 21-28.

15. H. Hang, K. Shankar, J. Lai. “Prediction of the effects 
on dynamic response due to distributed structural 
modification with additional degrees of freedom”. 
Mechanical Systems and Signal Processing. Vol. 22. 
2008. pp. 1809-1825.

16. L. M. Villa G. “Análisis de sensibilidad aplicado a la 
dinámica de estructuras mediante la modificación de 
las propiedades inerciales”. Rev. Fac. Ing. Univ. de 
Ant. N.º 70. 2014. pp. 66-74.

17. E. Parloo, B. Cauberghe, F. Benedettini, R. Alaggio, 
P. Guillaume. “Sensitivity-based Operational Mode 
Shape Normalisation: Application to a Bridge”. 
Mechanical Systems and Signal Processing. Vol. 19. 
2005. pp. 43-55.


