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 ABSTRACT: The municipality of La Virginia (Risaralda, Colombia) is constantly affected by 
fl oods that originate from increased water levels in the Cauca River. Disaster relief agencies 
do not currently have adequate monitoring systems to identify potential overfl ow events 
in time-series observations to prevent fl ood damage to homes or injury to the general 
population. In this paper, various simulation models are proposed for the prediction of 
fl ooding that contributes as a technical tool to the development and implementation of early 
warning systems to improve the responsiveness of disaster relief agencies. The models, 
which are based on artifi cial neural networks, take hydroclimatological information from 
different stations along the Cauca River Basin, and the trend indicates the average daily level 
of the river within the next 48 hours. This methodology can be easily applied to other urban 
areas exposed to fl ood risks in developing countries.

RESUMEN: El municipio de La Virginia (Risaralda, Colombia) está constantemente afectado 
por inundaciones que se originan debido al aumento de los niveles de agua en el río Cauca. 
Los organismos de socorro y atención de desastres actualmente no tienen sistemas 
adecuados de vigilancia para identifi car eventos potenciales de desbordamiento en el tiempo, 
y así evitar daños por inundaciones a las viviendas o daños a la población en general. En este 
trabajo, se proponen diversos modelos de simulación para la predicción de inundaciones 
que contribuye como una herramienta técnica para el desarrollo e implementación de 
sistemas de alerta temprana para mejorar la capacidad de respuesta de los organismos de 
socorro. Los modelos, están basados en redes neuronales artifi ciales y toman la información 
hidroclimatológica de diferentes estaciones existentes a lo largo de la cuenca del río Cauca, 
donde la tendencia indica el nivel medio diario del río durante las siguientes 48 horas. Esta 
metodología se puede aplicar fácilmente a otras zonas urbanas expuestas a los riesgos de 
inundación en países en desarrollo.
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1. Introduction 
La Virginia is a municipality of the Risaralda department 
in the Andean Region in Colombia. It is located at latitude 
4°54’50’’ North and longitude 75°54’43’’ West [1], in the 
valley of the Cauca and Risaralda Rivers. This area has 
important economic agricultural activity, characterised by 
an emphasis on coffee [2], as part of the economic dynamics 
of the municipality, which revolves around agriculture 

and livestock, extraction of drag materials, fi shing and 
tourism [3]. According to projections made by the National 
Administrative Department of Statistics [4], the municipality 
has approximately 31,657 inhabitants, located primarily in 
the urban area (98.3%).

While passing through downtown La Virginia, the Cauca 
and Risaralda Rivers often produce fl oods from their 
convergence. A disaster of this magnitude in this urban 
area affects approximately 1190 people and 58 households 
on average per event [This value was calculated based 
on the 24 events that occurred during the period 1980-
2010, according to information compiled by [5]]. In some 
extreme cases, the fl oods have caused approximately 
20,000 casualties [6]. This condition of coexistence with the 
disaster, represented by the frequent fl oods that occur, has 
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been present throughout the history of the town. The first 
reports of flooding date from 1922, just two decades after 
the first urban development [5].

Flood events in the municipality can occur either suddenly 
or slowly, but in both cases, the configuration of the 
phenomena depends on natural and human factors [6]. 
Natural factors are the distribution of rainfall, morphometry 
and watershed physiography as well as the Risaralda River 
impoundment following the increase in the level of the Cauca 
River. However, despite the importance of these elements, 
the main factor in defining the threat is of anthropogenic 
nature and involves the occupation of the flood plains of 
the Cauca and Risaralda Rivers. The occupancy model 
that has led to this situation was set during the history of 
the town and is the result of the weaknesses in the land 
use planning process, as mentioned in the study regarding 
housing protection danger areas in the county of La Virginia; 
“the Municipality of La Virginia is a complex phenomenon, 
where the lack of coherent planning of the past has allowed 
location of housing in areas of threat” (quoted by [7]).

Because of the frequency and severity of flooding in the city, 
strategies for risk management must be incorporated into 
city planning. This requires the development of technical 
tools at an early stage, allowing the implementation of 
early-warning systems (EWS) for flood threats. There 
are currently tools for prediction and monitoring, as 
well as different types of mathematical models, such as 
those based on the Navier-Stokes equations for laminar 
flows, the Kalman filter, genetic algorithms, and ARIMAs 
(autoregressive integrated moving average time-series 
analysis) [8] which usually require great volumes of 
information of the studied context (hydrological, hydraulic 
and geomorphological variables). 

However, as opposed to the weaknesses of these 
mathematical models in flood forecasting, such as those 
discussed by [9], thanks to the massive parallelism of 
its structure, the Artificial Neural Networks  models 
[onwards ANN] have many advantages including adaptive 
learning, self-organization, fault tolerance, easy insertion 
into existing technology, and the possibility of operation in 
real-time in problems related with filtering applications, 
control and identification of patterns, among others. This 
is largely due to their capacity of process information in 
parallel, allowing the development of calculations at very 
high speeds and exceeding the real-time constraints of 
most applications that try to serve to these purposes [10].

 In Latin America, a flood  warning  system has been developed 
for the Biobío River in Chile, which was constructed from 
historical data collected from 29 floods [11]. A study 
conducted by the University of Asunción in Paraguay 
developed six deterministic and stochastic mathematical 
models using different methodologies, including ANN, to 
study the flood phenomenon in the Paraguay River, and they 
found that the most accurate methodology for describing 
the river dynamics was ANN [12].

Current studies aim to similar conclusions: in Sudan, an 
ANN model was developed to predict flooding levels in the 

River Nile. In this study, ANN methodology demonstrated 
various advantages in relation to other models (especially 
in the number of variables required to give accurate 
predictions) [13]. Also, in Taiwan, five models were 
constructed to forecast the water level of the Tanshui River; 
according to the results, among all the learning models 
considered, the artificial neural networks (ANN) yielded 
more favourable results than other forecast models of 
water level [14]. There are also many studies of this type 
in which ANN models demonstrate that they are superior 
to physical-based hydrodynamic models because they 
can preserve nonlinear characteristics between input and 
output variables [15-17].

Other investigations, such as “Impact of multi-resolution 
analysis of artificial intelligence models inputs on multi-step 
ahead river flow forecasting” in Harvey River, Western Australia 
and “Real-time multi-step-ahead water level forecasting by 
recurrent neural networks for urban flood control” demonstrate 
the benefits that learning models based in artificial neural 
networks have in predicting the dynamics of rivers [18, 19]. The 
same studies proved also that performance can be improved by 
creating hybrid models based on ANN models.

These experiences show that ANN models are reliable for 
predicting floods and identifying threats of this type [12]. This 
feature is often attributed to the model’s ability to combine 
historical information with algorithms that describe the 
behaviour of the aspects that determine such phenomena. 
However, ANN models have also been used in different 
applications to predict the weather, the temperature, the 
price of electricity, and landslides, among others [20], thus 
demonstrating their ability to describe complex problems.

The scope of this research is to do a comparison between 
different flood forecasting models based on different ANN 
structures and hydrometeorological information, with 
the objective of estimating the model performance under 
different configurations related to limited resources of 
small municipalities.

2. Methodology
2.1. The Cauca River Basin
The Cauca River Basin is one of the most important basins 
in Colombia because it contains the sugar industry, part of 
the coffee industry, the Antioquia mining and agricultural 
development, and a significant portion of the manufacturing 
industry in western Colombia.

The primary stream bed of the basin, the Cauca River, 
originates in the Colombian Massif near Páramo Sotará 
and crosses the country from south to north, crossing 
the departments of Cauca, Valle del Cauca and Risaralda, 
where it meets the urban area of La Virginia [1]. The Cauca 
River Basin has a total area of   63,300 km2, equivalent to 
approximately five per cent of the territory of the country 
[21] (see Figure 1).



48

T. Morales-Pinzón et. al; Revista Facultad de Ingeniería, No. 76, pp. 46-57, 2015

From its origin until La Virginia town, the Cauca river crosses 
Colombia collecting water from other rivers in more than 
32 departments. Risaralda and La Vieja rivers are some of 
the most important tributary sources, with an average flow 
of 27.2 m3/s and 95.0 m3/s, respectively [22]. La Vieja, the 
largest tributary river in the middle of the basin, crosses 
the departments of Valle, Quindío and Risaralda [22].

2.2. Artificial Neural Networks 
for prediction of average daily 
levels in the Cauca River
In this study, the typology of ANN chosen to be constructed 
was the multi-layer perceptron (MLP). This type of ANN is 
the most widely used in nonlinear problems of time series 
prediction, for which it has demonstrated high reliability 
(see Figure 2). As suggested by [10, 15, 16], the MLP is 
composed of at least three layers, or levels, of neurons. The 
first level is the input layer; it is responsible for capturing 
external stimuli or information that feeds the model. The 
second level, the hidden layer, receives information from 
the input layer to process. The third layer, the output layer, 
receives the processed information and delivers the output 
variables to the network.

Figure 2  Scheme of an Artificial Neuron. Adapted 
from [23]

In this model, the input variables are the daily average level 
and total daily precipitation for the Cauca and Risaralda 
Rivers, which pass through La Virginia municipality. These 
variables were defined based on the availability and quality 
of hydrometeorological information in the section studied 
of the Cauca river basin, and it was assumed that their 
behaviour represents fundamental aspects related with the 
floods in La Virginia.

However, in order to establish some indication about the 
future variables performance, the selected points to collect 
information were defined in upstream sections of the Cauca 
and Risaralda basins before the meeting point of the two 
rivers in La Virginia. This was done under the assumption 
that precipitation upstream of the basin (at time t-1) defines 
the behaviour and the level of the river in the future (time 
t). To select the optimal points to collect data, a hydrology 
concept was used, i.e., the concentration time, which is the 
time it takes the water from a basin to make the journey 
upstream to its mouth [24]. At this point, it is necessary to 
explain that the information of La Vieja basin was not used 
within the defined variables. The assumptions were that 
given the proximity of its river mouth to the municipality 
of La Virginia (about 15 km along the drainage) and the 
hydraulic concentration time of the Cauca river basin, 
the contribution of La Vieja river in terms of flow would 
be contained (for the analyzed unit time -one day-) in the 
measurement of the average level of the Cauca River.

The concentration time was calculated with the equation 
defined by [25], which also includes variables such as the 
channel length and the mean slope. The area of the basin 
is included in the calculation, replacing variables such as 
runoff and the volume of catchment rainwater.

Next, the hydroclimatological stations were defined 
due their proximity to the points associated with the 
concentration times along the watercourse. The average 
daily water level and total daily precipitation variables were 
used as the starting point to define the input variables in 
the model.

Figure 1  Location of the urban area of La Virginia
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The output variables were defined based on their capacity 
to contribute to the municipal contingency plans with 
respect to disasters prevention caused by flooding. Thereby, 
the average daily river level for the Cauca River station at  

La Virginia point, using time periods of t, t+1, and t+2 (the 
current day, a day later and two days later, respectively) was 
considered the best option for the model’s output variable 
(see Table 1).

The selected variables were compared using the Pearson 
correlation coefficient.  This criteria was used for deciding 
the variables that were included in the networks modelled.
When implementing an Artificial Neural Network Model, 
the optimum number of neurons and hidden layers in the 
network architecture cannot be determined analytically; 
they are generally found experimentally by trial and 
error [26]. Thus, various networks were constructed with 
different configurations and then the number of neurons 
was gradually increased and decreased to obtain a model 
with the proper adjustment. The predictive capacity in the 
different networks was compared by calculating the mean 
square error. 

As recommended by [27], the initial number of neurons 
in the hidden layer was estimated using the Kolmogorov 
theorem (For any continuous function, it is possible to 
create an artificial neural network of forward propagation 
of three layers that appropriately reproduces the behaviour 
of the function. This network must have n processing 
elements in the input layer, m in the output layer and 2n +1 
in the hidden layer).

Additionally, in accordance with [10], a sigmoidal function 
was applied to the neurons of the hidden layer and a linear 
function to the neurons of the output layer. To avoid noise 
and to shield the input signal from the model, the original 
data were normalised.

The available information consisted of 1132 to 1455 
patterns, depending on the processes used for training, 
validation, testing and verification. 23 different networks 
were tested. Following suggestions from [28], each network 
was trained using Microsoft Excel spreadsheets and the 
Premium Solver macro version 12.5, which was designed 
for Excel 2007 by Frontline Systems. The generalised 
reduced gradient algorithm was used to train the networks. 

Table 1  Selected variables for construction of the ANN

Once completed for all test networks, this process helped 
to estimate the mean square error for the network outputs 
(Y1, Y2 and Y3) as a performance measure. To check the 
performance of the selected network, scatter plots and a 
correlation analysis (r) were used between the predicted 
and actual values.

2.3. Neural network training 
times
The training was conducted in two stages, each of which 
consisted of 500 iterations. This method was employed to 
continuously confront training error and validation for each 
model and to avoid over-training the networks.
Office 2007 Excel was used for the training process, with the 
addition of the Premium Solver software V 12.5, developed by 
Frontline Systems Company, Inc. This complement allowed 
the use of a larger number of variables than the standard 
solver of Excel (this was a fundamental requirement 
because it was required for training the complex networks). 

The training times may vary according to the computing 
ability (defined by the characteristics of the computer 
used to perform the calculations). For the training of the 
networks herein, a Dell Inspiron 580S computer with 
an Intel ® Core™ i3 processor and six gigabytes of RAM 
was used. The operating system was the 64-bit version of 
Windows 7 Home Premium 

3. Results and discussion
From the statistical analysis of data, there are significant 
correlations of input variables related to La Virginia station 
with the output variables of the network. Significant positive 
correlations were found for the annual precipitation and the 
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Table 2  Pearson correlation coefficient for the variables defined

water level gauge of different meteorological stations (see 
Table 2).

Twenty three ANNs were constructed and classified in five 
groups. These groups were defined based on the input 
variables used for each one of them. Also, they were 
classified according to two criteria: the complexity of the 
networks (implying higher computational requirements) 
and information constraints.

Then, there are different groups according to criteria of 
construction and operation. Thus, Group I represents a 
low complexity of the structure and required information, 
Group II is medium in both criteria, Group III is medium 
in complexity of the structure and high in required 
information, and Group IV and V are high in both criteria. 
For Group I is much easier to train a simple network 
because it only requires information of daily average level 
of Cauca River in La Virginia station (this is located in the 
same urban area of   the municipality).

Similarly, Group II represents models that can be 
implemented with an average investment of information 
and computational capability. These models have a simple 
architecture and they also work with variables related 
to the total daily precipitation (a much easier variable to 
measure than variables like the average daily level or flow).

The results showed that the ANN that with the lowest 
mean square error for the training stage was the NET-
IV:05 network corresponding with one of the networks in 
the group of ANN of major resources required. However, 
the NET-IV:01 network (one of the simplest networks) 
showed more skill than NET-IV:05 when processing new 
information. Thus, we present the NET-IV:01 network 
as the most accurate because it has better performance 
than the other networks in the validation and verification 
process.

Using the mean square error as criteria, models do not 
behave as expected, because a significant investment in 
complexity and the high requirement of information does not 
necessarily generate a proportional effect on the accuracy 
of predictions. For example, networks belonging to Group V 
have a higher mean square error when they are compared 
with simpler networks. This would indicate that small 
municipalities do not require high investments to develop 
models with an adequate level of reliability.

Based on the estimates, we verified that the model network 
NET-IV:01 appropriately fits the behaviour of the output 
variable Y1 (the level of the Cauca River at time t on the 
current day). The scatter plot in Figure 3 shows a high level 
of adjustment and a determination coefficient (r2) of 0.981. 
This means that the model has an acceptable error rate when 
predicting the average daily level of the river using data from 
previous days.

The constructed network can be used to predict values of the 
variables Y2 and Y3 (Cauca River level at times t+1 and t+2). 
The determination coefficients were 0.958 and 0.924 for Y2 
and Y3, respectively. The dispersion between the predicted 
and real data   is greater as the forecast horizon increases.

The error analysis shows that the forecast values for Y1, Y2 
and Y3 are statistically independent and that they have a 
constant variance (see Figure 4).

Based on the scatter plot of the error, the model is correctly 
adjusted to forecast for one day (time t), with an error in many 
cases of less than 3% (normalised-value, for 75% of the 
cases), and most are not greater than 5% (90% of the cases). 
The variable Y2 has a similar adjustment level, i.e., a strong 
trend toward the line that indicates the error is zero (0), and 
reason to suggest that for 75% of the cases, the error will be 
less than 4 % and generally (90% of the data), the error less 
than 6%.
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Figure 3  Observed data vs. Estimated data for each ANN output

Figure 4 Error dispersal for output variables
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A similar behaviour is observed for the variable Y3; the 
error dispersion plot shows a behaviour where, although 
the values   are grouped around the straight line, there is a 
greater range of errors than for the first two variables, Y1 
and Y2 (see Figure 4).

The validation and verification simulation sets had 
a standard deviation of 18.04 cm error in the model 
estimates (Error = Real Data - Estimate) for variable Y1. A 
statistical analysis based on the calculation of quartiles and 
percentiles suggests that, based on the error distribution 
obtained, for 50% of the estimates made with the ANN, 
the error will be less than 9.47 cm, seventy-five per cent of 
the estimates will have an error of less than 17.33 cm, and 
ninety per cent of the estimates will have an error of less 
than 31.19 cm.

Comparing the output variable Y1 (Cauca River level at 
time t) with the output variable Y2 (Cauca River level in 
period t +1), the change in the degree of fit of the model is 
low, presenting a variation in the mean error of 6.63 cm. 
However, the variation in the error distribution for variable 
Y2 is larger than that of Y1, presenting a difference of 12.40 
cm at the 90th percentile with respect to the output variable 
Y1. According to the error distribution of the simulations of 
the output variable Y2, 50% of the estimates made within 
two days are accurate within 14.53 cm (the median value 
represents the distribution divided in half according to 
the frequency of the observed data), seventy-five per cent 
within 27.23 cm, and in ninety per cent of the estimates, the 
error will be less than 43.59 cm.

In contrast, the behaviour of the variable Y3 behaves 
differently than output variables Y1 and Y2 in regard to the 
distribution of the data. For Y3, the average error is 13.17 cm 
greater than that found for Y1. According to the distribution 
of the simulated data, fifty per cent of the estimates of Y3 
will have errors less than 19.70 cm, seventy-five per cent 
will have errors less than 36.05 cm, and ninety per cent will 
have error values of less than 57.86 cm.

In addition to resulting in a higher error than the other 
output variables, the Y3 variable has a behaviour that 
matches the behaviour of the problem addressed. Thus, Y3 
can be used to track the general trend of the Cauca River 
level in specific conditions. 

3.1. Neural network training time

ANN models with a less training time and a simpler 
structure represent a lower investment of development 
and operation, this is a useful characteristic for small 
municipalities. The increase of neurons in the hidden layer 
of the model increases the complexity, which is reflected 
in the need to invest more time in the training process of 
the network. Thus, the net that required less training time 
was network NET I:04, having only 5 neurons in its hidden 
layer, as opposed to network NET V:02, with 25 neurons 
in its hidden layer and whose total training time is nearly 
three hours.

Additionally, there is usually a higher requirement on 
the computation time in those networks that have three 
output variables, as observed in networks NET I:01/NET 
I:05, NET III:01/NET III:04, NET III:02/NET III:05, NET 
III:03/NET III:06, and NET IV:01/NET IV:05, which share 
the same architecture in terms of the number of neurons 
in the input and hidden layers but that differ in the number 
of neurons in the output layer.

With respect to the current problem, an ANN with a large 
number of variables and that requires large training or 
retraining times, such as networks having a number equal 
to or greater than 19 neurons in the hidden layer (see 
Figure 5), are highly inefficient if the level of adjustment 
that they require can be reached or exceeded by less 
complex networks. However, an increase in complexity 
will not occur in all cases from a large number of neurons 
in the hidden layer and in the output; therefore, the long 
computation time for training necessarily implies a low 
level of the ANN’s efficiency. This is evidenced in network 
group NET II, which contains the ANNs with high mean 
square error values and low training times (see Figure 
5). These models have a low demand on computational 
time and a low level adjustment, a situation that makes 
them less suitable in relation to the current problem in 
comparison with the other ANNs evaluated.

Results obtained from the measurement of training times 
vs. the number of neurons in the hidden layer and the level 
of adjustment suggest that, for this problem, the NET IV:01 

Figure 5  Number of neurons in the hidden layer vs. Training time
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and NET IV:05 networks presented high levels of efficiency 
because they showed a good level of adjustment, are less 
vulnerable to failures by partial damage to the network and 
have training times that are close to the mean of the other 
networks (1 h 02 ‘28’’).

4. Conclusions
According to the methods explored in this study, it is possible 
to implement an artificial neural network multilayer 
perceptron model to predict the level in the Cauca River, 
with appropriate model adjustments and thereby estimate 
the flood’s risk in La Virginia. This approach could eventually 
allow the development of early warning systems for disaster 
prevention and response in cities that are located beside 
the river valley in Colombia.

Because models constructed using the ANN methodology 
do not require a priori conceptualisation of the 
interrelationships that develop within the studied system, 
they can be built and deployed quickly, efficiently and 
with very low development and operation costs. In the 
case study described, the proposed Artificial Neural 
Network only requires Microsoft Office Excel as platform 
for development/operation and information of only two 
meteorological stations.

The ability to adapt and learn from ANN models through 
historical data allows the models continuously adjust to 
changes that arise in the immediate context of the studied 
system. This feature allows flooding problems to be 
addressed even in the face of high variability phenomena, 
such as climate change.

For small municipalities having limited resources or 
information, it is possible to build an ANN with an appropriate 
level of adjustment and having a good performance of 
prediction of risk flood (models with low mean square error 
values). These models would help to small municipalities to 
management processes focused on early warnings.

Appendix

Appendix A-1
The concentration time given by Bransby-Williams is [25] 
(Eq. 1): 

                            (1)
where:

Tc is the concentration time for the basin (hours),
L is the length of the longest watercourse (km),
A is the watershed area (km2), and
S is the average slope (m/m).

Using Eq. (1), the length of the longest watercourse for 
24 and 48 hours for each of the streams involved was 
estimated.

Appendix A-2
The predictive capacity is calculated using a modified 
estimator for the mean square error (Eq. 2):

                             (2)

where:

Xpi is the normalised output,
k is the sample size, and
Y is the number of prognostic variables.

Appendix B
In order to correct the different scales used in the ANN, the 
original input data were normalised using next expression 
(3):

       

                                                       (3)

where:

Xpi is the normalised input,
Xi is the independent input data,
Xmin is the minimum input data, and
Xmax is maximum input data.

Appendix C-1

Summary of characteristics represented by the ANN modelled
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For each model of ANN, the Premium Solver was 
configured with the following parameters during the 
training:
Iterations: 500
Accuracy: 1e-005

Convergence: 0.0001
Estimate: Quadratic
Derived: Progressive
Search: Conjugate Gradient
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Appendix C-2
Mean square error for each ANN 
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