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1. Infroduction

Models that include scattering algorithms or Geographic
Information Systems (GIS) have been commonly used to
simulate regional air quality, estimating the concentration
of pollutants from fixed and / or mobile sources using data
obtained from sampling networks. As this phenomenon
is continuous in space and time, it must have a minimum
number of sampling points [1-3], and extended periods
of observation [4]. Additionally the geometry and location
of the points in the network should take into account the
effect of variables that can affect the measurement such
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ABSTRACT: This paper presents a procedure to address the lack of spatial air quality
data in urban areas, based on the use of Geographic Information Systems (GIS) and spatial
interpolation techniques as an alternative to conventional methods of statistical imputation.
Two spatial interpolation algorithms are compared: IDW and spline. The procedure considers
the spatial interpolation process, the cross validation with the index of agreement (I0A), and
the analysis of the effect of sampling density and the coefficient of variation (CVO), using
different error statistics. The interpolation maps are complemented with gradient and
directional gradient maps that may serve as complementary aides in the definition of critical
sampling points. The procedure is applied to data imputation of three pollutants NO,, PM10
(particulate matter of diameter 10 microns) and TSP (total suspended solids) from observed
data samples in the city of Medellin (Colombia).

RESUMEN: Este trabajo presenta un procedimiento para abordar la falta de datos espaciales
de calidad del aire en zonas urbanas, con base en el uso de Sistemas de Informacion
Geografica (SIG) y las técnicas de interpolacion espacial como una alternativa a los métodos
convencionales de imputacion estadistica. Se comparan dos algoritmos de interpolacion
espacial: IDW y spline. El procedimiento considera el proceso de interpolacion espacial, la
validacion cruzada con el indice de (I0A), y el analisis de la densidad de muestreo y del
coeficiente devariacion utilizando diferentes estadisticos de error. Los mapas de interpolacion
se complementan con los mapas de gradiente y de gradiente direccional que pueden servir
como complementos en la definicion de puntos de muestreo criticos. El procedimiento se
aplica a la imputacion de datos de tres contaminantes: NO,, PM10 (particulas de 10 micras
de didmetro) y SST (sélidos suspendidos totales) a partir de muestras de datos observados
en la ciudad de Medellin (Colombia).

as: proximity to the emission source and location of the
sampling point in the studied area [5].

The uncertainty in the modeling of this phenomenon
increases when data are missing or are not representative
[6, 7]. The problem of lacking data has been approached
by statistical data imputation techniques, numerical
simulation,  spatial  interpolation, lineal spatial
regression, multivariate linear regressions, locally linear
reconstruction, spartan random processes, spatial and
temporally weighted regression, time series analysis,
spatial statistics, econometrics and neural networks [8-
15]. One alternative to address this issue is using GIS to
implement spatial interpolation algorithms.

Spatial interpolation algorithms are mathematical tools
for estimating the unknown values of a variable at different
points Z(x,, y,), based on known values measured at
specific locations Z[x, y), within a spatial domain S(x, y]
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that is defined by a geographic projection system. According
to the spatial autocorrelation principle [16], Z values will
share similar properties in virtue of their proximity. A way
to estimate Z (x, y,) is from a linear combination of Z(x, y)
(Eqg. 1), where A are weighted factors [17]:

Zy(x0,¥0) = X1 LiZi(x1, y1) (1)

Spatial interpolation algorithms are classified according to
three criteria: the way the weighting factors are calculated;
the amount of data used for the estimation (global if using
all the data and local if using part of the data in a particular
neighborhood); and the error of the method (accurate or
inaccurate depending on the nature of the phenomenon
under study, the quality and quantity of the observed data,
the existence of spatial autocorrelation, the sampling
method and the spatial distribution of the data observed)
[16, 18]. Another way to estimate Z|x, y,) is from the
implementation of methods such as trend surface analysis,
regression models, triangulation, and splines.

This paper analyzes the implementation of two algorithms,
IDW and spline, for data imputation of three air quality
variables (NO,, PM10 and TSP] to generate interpolation
maps based ona sparse sampling network for the colombian
city of Medellin. The algorithms are evaluated with cross
validation tests using the index of agreement (I0A], as well
as several error statistics as a function of the sampling
density (sampling area divided by number of stations) and
the coefficient of variation of the observed data (CVO)). The
interpolation maps include directional gradients as a way to
represent the spatial patterns of the pollutants.

2. Area of study

The city of Medellin is located in a small valley in the Andean
cordillera, between 6.0° - 6.5° N and 75.5° - 75.7° W. The
city is 60 km long, with a width that varies between 10 and
20 km with an area of 1157 km?. Its average altitude is
1500 m, with hill slopes between 0 and 50% with two inner
hills in the center, the result of sedimentation processes
which involves a complex topography. Data of the monthly
average concentration (in ugm/m?® were gathered for the
pollutants NO,, PM10 (particulate matter of diameter 10
microns) and TSP (total suspended solids) in 6, 10 and 15
stations respectively (see Figure 1). Table 1 summarizes
the coordinates and the names of the stations (Geographic
Coordinate System: GCS MAGNA. Projected Coordinate
System: MAGNA Colombia Bogotd, Projection Transverse
Mercator). The stations are part of the city of Medellin's air
quality network called RedAire.

Figure 1 Location of sampling stations for Uz.
PM10 and TSP variables

3. Methodology:
imputation of missing
spatial data with spatial
inferpolation algorithms

A spatial data Zilxi, yi) is defined in a spatial domain S(x
,y) with x and y in a geographic projection system. It also
contains information about the variable under study (value],
an associated geometry (i.e., point, line or polygon), a
geographical coordinate system, a structure of data storage
(raster or vector) and a color code (RGB] to represent the
variation in space. An important property of spatial data is
the spatial autocorrelation. Spatial autocorrelation allows
disclosing a data value at a site, being able to estimate
its value at neighboring positions, which leads to spatial
interpolation algorithms.

The algorithms were implemented in ArcMap®, using
observed data from the sampling stations to obtain maps
of interpolated values for each variable. The maps are
validated with cross-validation tests [9] and the IOA. The
aim of a cross-validation test is to determine the goodness
of fit between observed data and interpolated values in a
particular place or control point for spatially distributed
data [19-27]. The difference between the observed and the
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Table 1 Sampling stations description

ID X Y Station Code Station Name NO: PM10 TSP
1 -75.335767  6.439300 BARBOSA Municipio de Barbosa X
2 -75.555467  6.332483 BELLO Municipio de Bello X X X
3 -75.637967  6.089600 CALD Municipio de Caldas X X
4 -75.571750  6.256017 AGUI Edificio Miguel de Aguinaga X X X
5 75584033 6.250447 CORA Corporacién Auténon.'la Regional de X
Antioguia
b -75.508217  6.352750 COPA Municipio de Copacabana X
7 -75.644990  6.160860 ESTRELLA Municipio de la Estrella X
8 -75.447300  6.381310 GIRARDOTA Municipio de Girardota X X
9 75591250 6.193747 ITSEDO Planta de Tratamiento de Agua San X X
Fernando

10 -75.560317 6174467 ITAGUI Municipio de Itagii Colegio el Rosario X X X
11 -75.581133  6.211833 POLITECN Politécnico Colombiano Jaime Isaza Cadavid X X X
12 -75.619550  6.153500 SABANETA Municipio de Sabaneta X
13 -75571500 6.271250 UDEA Universidad de Antioguia X
14 -75.615000 6.233183 UDEM Universidad de Medellin X
15 -75.596067  6.276400 UNAL Universidad Nacional de Colombia X X X
16  -75591300 6.245317 UPB Universidad Pontifica Bolivariana X X
17 -75.581530  6.224950 SANANT Parque de San Antonio X

interpolated value in the control point is called estimation ~ where n is the amount of control points, E, is the value

error or residual at this point. The goodness of fit between interpolated at the control pointi, O, is the observed value at

the observed data and interpolated values is calculated  the controlpointi,andy isthe average of the observed data.

with 10A using Eq. (2] [10, 11]. An 10A close to one indicates a good fit of the interpolated
values to the observed ones [10, 11].

Y, (Ei-00)? (2)  Except forthe stations located in the extreme north (1, 2 and

I0A=1-— YN (i~ | +10i—po))? 8) and south (3, 7 and 10) of the study area, which cannot

Table 2 Calculation of the I10A for spline and IDW interpolation

NO: PM10 TSP
Station Code

(0] Eisptine Eiow 0] Eisptine Eiow 0i Eisptine Eiow
BELLO X X X 70.0 71.6 80.2 86.1 107.6 129.2
AGUI 49.0 46.9 43.0 76.9 74.9 82.6 162.3 123.2 122.4

CORA X X X 70.1 82.1 84.4 X X X
COPA X X X X X X 83.4 92.4 95.4
GIRARDOTA X X X X X X 74.0 93.3 96.3
ITSFDO X X X 69.5 69.0 75.0 113.2 108.8 1M1.7
ITAGUI X X X 72.6 69.3 68.3 112.2 101.4 144
POLITECN. 56.0 45.3 42.0 63.3 82.7 78.2 112.5 1M11.4 1128
SABANETA X X X X X X 95.3 99.7 90.2
UDEA X X X X X X 141.9 141.3 139.8
UDEM X X X X X X 88.7 101.9 113.2
UNAL 58.0 43.4 38.9 88.2 711 73.5 138.2 109.9 124.0
UPB 40.0 52.2 54.9 X X X 86.7 126.7 1295

SANANT X X X 91.7 67.3 69.3 X X X

10A 0.05 0.06 0.22 0.10 0.7 0.66
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be removed in order to generate a interpolation map, all
the other stations were removed one by one to calculate a
interpolation map and to determine the interpolated value
of the variable in the site of the removed station (“leave one
out” technique [9]). For NO,, n-2 control points were taken
(except stations 2 and 10). For PM10, n-2 control points
(except stations 3 and 8). For TSP, n-3 control points (except
stations 1, 3 and 7). Results of I0A calculations are shown in
Table 2 and Figure 2.
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Figure 2 10A for Spline and IDW interpolation for
each variable

The Absolute Relative Error (ARE) and the Mean Absolute
Relative Error (MARE) were calculated using Eq. (3) and Eq.
(4) respectly, to analyze the performance of the algorithms

in interpolating the values for each variable at each station
[28, 291:

ARE = 10; — Eil
0; (3)
o 1|0i5 Eil
= .
MARE = ——1— (4)

where n is the amount of control points, £;and O, are the

interpolated and observed values respectively at control
point i. The results are shown in Table 3 and Figures 3 to 5.
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Figure 3 Calculation of ARE for NO, at each station
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Figure 4 Calculation of ARE for PM10 at each station

Table 3 Calculation of the ARE and MARE

Station Code NO: PMI0 TP
AREsptine AREinw AREsptine AREipw AREsptine AREinw

BELLO X X 0.02 0.15 0.25 0.50
AGUI 0.04 0.12 0.03 0.07 0.24 0.25

CORA X X 0.17 0.20 X X
COPA X X X X 0.1 0.14

GIRARDOTA X X X X X X
ITSFDO X X 0.01 0.08 0.04 0.01
ITAGUI X X 0.05 0.06 0.10 0.02
POLITECN. 0.19 0.25 0.31 0.24 0.01 0.00
SABANETA X X X X 0.05 0.05
UDEA X X X X 0.00 0.01
UDEM X X X X 0.15 0.28
UNAL 0.25 0.33 0.19 0.17 0.20 0.10
UPB 0.30 0.37 X X 0.46 0.49

SANANT X X 0,27 0,24 X X
MARE 0.20 0.27 0.13 0.15 0.16 0.18
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The sampling density and the coefficient of variation of the
observed data (CV0) are calculated for each variable and
analyzed in terms of the I0A values calculated with IDW and
spline [28, 29]. Results are shown in Figures 6 and 7.
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Figure 6 Effect of sampling density on the
algorithms
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Figure 7 Effect of CVO, on the algorithms

The relationship between sampling density and [OA is
analyzed for TSP at 5 (TSP5), 10 (TSP10) and 15 stations
(TSP15), since it is the only variable that is measured in all
the 15 stations. Results are shown in Figure 8.
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Figure 8 Effect of sampling density on the TSP’s 10A

4. Discussion of results

The use of statistical measurements of error to compare
between interpolated and observed data allows determining
the reliability of the data interpolated with a particular
algorithm and therefore the algorithm’s performance in
the imputation of data from environmental variables. In this
case, the following error statistics were calculated (Table
4): the 10A, the Absolute Relative Error (ARE), the average
standard error (ASE), the Root Mean Square Error (RMS)
and the Root Mean Square Error Standardized (RMSS)
[28]. In the table, IOA and RMSS values close to one and
small values of MARE, ASE and RMS represent a good
fit. This suggests that the spline algorithm was the most
appropriate for data imputation for the variables analyzed.

Table 4 Measures of error for IDW and spline
applied to air quality variables

IOA RMSS MARE ASE RMS

Spline  0.05 2.04 0.20 3.79 10.98

NO2 IDW 0.06 2.90 0.27 7.02 1429
Spline  0.22 2.05 0.13 595 1291

PM10 DWW 0.10 2.12 0.15 5.95 13.37
Spline  0.71 1.45 0.16 14.37 20.77

TSP IDW 0.66 1.57 0.18  15.17 23.75

The ARE was used to analyze the reliability of the
interpolation for each variable in each station according to
the implemented algorithm, as shown in Figures 3 to 5. The
results not only are different among variables but also for
the same variable in different locations. For example, the
Politecnico station (critical point station located within 10m
of a main road) shows good results in TSP, whereas the UPB
station (background station located more than 10 m apart
from main roads) does not show good results in TSP. These
differences highlight the importance of considering factors
such as the type of emission and the time of exposure to the
source in the location of the station.

Figures 6 to 8 show the effect of sampling density and the
CVO, on the statistic error. The efficiency of the interpolation
depends on factors of sampling density such as the area
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of the region under study and the number of sampling
data points (i.e., when the amount of data increases within
an area, the algorithms tend to be equally efficient) [28,
29]. However, the minimum amount of data required for
the results to be acceptably reliable must be determined
according to the phenomenon under consideration. For
this study, results with 15 data points for TSP significantly
improve the interpolation results, compared to the NO, (six
stations) and the PM10 (10 stations). Figure 7 indicates a
slightly major sensitivity of IDW to outliers in the calculation
of the CVO, [28].

Figure 8 shows the variation of the I0A for TSP in terms of
the sampling density for 5 (TSP5), 10 (TSP10) and 15 (TSP15)
data points respectively. While there is an improvement
of the I0A by increasing sampling points within the same
area, it is also important to determine the coverage,
since a low sampling density can be useful at micro-scale
measurements but not at meso- or macro-scale levels.
Furthermore, the location of the sampling site relative to
the emission source must be taken into account, since it
would be possible to have a good amount of sampling sites
but no significant measurements of the variable. This is
an important aspect to consider in the proper definition of
locations for monitoring purposes.

In general, the spline algorithm performs better in the
interpolation process and therefore in the imputation
of missing data. Contrary to methods such as Kriging,
for instance, spline does not depend on the statistical
distribution of the data and may be used to extrapolate
values due to the continuous nature of the polynomial
order 3 used to interpolate (this could be beneficial for data
imputation on the edges of the study areal.

Figure 9 shows the maps of the interpolated values

obtained with a spline algorithm for the concentration of
NO,, PM10 and TSP pollutants, in this case for the month

N Spline of NO2 in 2007-8 N

Spline NO2
<VALUE>
[ la4-367
[ 8-393
[ 394-22
[ 421-245
I 44.7-47.3
B +7.4-499
I 50525
7553
554570
1

Spline of PM10 in 2007-8 N

of August 2007, which is used as a study case throughout
the paper [maps for other months can be viewed in the URL
tesislibardolondono.aula.com.co, and files may be accessed
upon request to the authors by e-mail). With the maps, it
is possible to analyze the spatial patterns of the data and
therefore the spatial distribution of air pollutants. Maps
allow visualizing areas of greater or lesser concentration
(units are given in pgm/m?).

As expected, the higher concentrations occur around points
that record higher values. In the case of NO, and PM10
there is a tendency towards higher concentrations in the
center of the study area and in the North-South direction,
whereas for TSP the concentration is nearly radial and also
high in the center of the study area, which coincides with
high vehicular traffic.

Using the spatial pattern maps (Figures 9), it is possible to
create a map of spatial gradient that shows areas where the
variables have a greater or lesser potential to change with
distance. In general, the maps indicate preference in the
concentration of pollutants near the city.

Figures 10 represents the potential change of concentration
in the area, and can be thought of as a potential for
dispersion (maps units are given in percentage change of
Hgm/m?® with distance in m). In the case of NO,, the highest
gradient was 15% on the axis formed by the stations 15,
16 and 11 (see Table 1). In the case of PM10, the highest
gradient was 25% on the axis formed by the stations 17 and
11, very close to a main intersection in the study area. In the
case of TSP, the largest gradient was 37% between stations
16 and 14, located at the city center towards the west.

Figure 11 exemplifies the maps of the spatial gradient
direction. These maps do not show any preferential direction
for the change of the concentration gradient, implying that
the gradient of concentration (related with dispersion) has
the potential to change in any direction. Points located in

Spline of TSP in 2007-8
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Figure 9 Spatial interpolation for NO,, PM10 and TSP
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the north show a trend to disperse in the North, Northeast
and East directions, while at the south points tend to go
South and West. The results of directional gradient maps
may serve as a complement to analyze the effect of wind
patterns in the area.
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Figure 10 Spatial gradient for NO,, PM10 and TSP

The combination of spline interpolation, gradient and
directional gradient maps allowed a complementary view
of the spatial pattern of the concentration, dispersion and
direction of dispersion of the variables under study. In
addition, this combination of maps may serve to determine
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These results may contribute to the understanding of
the phenomenon of dispersion of pollutants and are
complementary to the results obtained by numerical
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simulation such as RAMS and WRF models used in other
ongoing research in the region.

A different use of the I0A is proposed here to compare
directly the observations between months and to determine
how similar the pollutant distributions are in time (Table
5). For instance, the comparison of NO,, PM10 and TSP
values between 2006 and 2007, in the months of August
and November, show an IOA greater than or equal to 0.80,

indicating a good resemblance of values for those months
in different years. For NO, no similarities were obtained
between the observed values in different months. In the
case of PM10, a good similarity occurred between the
months of August and October of 2006 and 2007. For TSP
the similarities were high in the month of November. Not all
of the months show the same level of similarities, however,
which indicate that the patterns of observed pollution vary
both during the year and among years.

Table 5 10A for different periods

Variable Ag 06 Vs Ag 07 Sp 06 Vs 5p 07 Oc 06 Vs Oc 07 Nv 06 Vs Nv 07
NO:2 0.36 0.05 0.35 0.10
PM10 0.88 0.64 0.83 0.56
TSP 0.76 0.70 0.44 0.80

5. Conclusive remarks

The IDW and spline algorithms offer an efficient and
approximate procedure to address the problem of
absence of data in continuous phenomena, whose results
can be used as a complement of conventional statistical
techniques of data imputation and in support of physical
models of environmental air pollution, provided that a good
amount of data is available. In our case study, for instance,
a 71% reliability was obtained with data available from 15
stations for TSP, according to the calculation of the 10A
in cross-validation tests. In general, the spline algorithm
showed a better performance than IDW to interpolate
the air quality variables within the domain and with the
limitations of data points in space. It should be noted that
both algorithms are affected by the sampling density. The
spline algorithm performed well in the stations located on
the edge of the area interpolation which is critical for the
imputation of data at the borders of the area considered.

The use of spatial interpolation algorithms for data
imputation provides useful maps to understand how the air
pollutants may be distributed in space. The combination
of maps (showing the spatial patterns of concentration,
gradient/dispersion and directional gradient] of NO,, PM10
and TSP for different months of the year, reveal certain
patterns that are important for the study of the spatial
variation of air pollution. The interpolation map suggests
the spatial variation in the concentration of the pollutant
around stations and relative to the emission sources [i.e.,
roads), and may serve as a basis to determine critical
sampling points through spatial proximity models. The
map of gradients gives an idea of potential zones were
the pollutants would “disperse,” helping in the definition
of sampling points for long term effects of the pollutants
in background stations. Both maps would serve as an aid
in the preliminary definition of critical monitoring sites to
expand the air quality network. These results may be used
in combination with other mapped information relative to
variables affecting the dispersion phenomenon, such as
monthly wind patterns and topography.

The I0A was employed as a simple indicator of similarity
in the observed distribution of the pollutants in time.
By replacing the interpolated values £, in Eq. (2] with the
observed values in other month of the year, it is possible to
determine the degree of similarity of the compared months.
This use of the I0A may be helpful as a complement for the
spatiotemporal analysis of air pollutant distributions.
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