
75

V. Y. Rosales-Morales et al.; Revista Facultad de Ingeniería, No. 77, pp. 75-87, 2015

An analysis of tools for automatic software
development and automatic code generation

* Corresponding author: Giner Alor Hernández
E-mail: galor@itorizaba.edu.mx
ISSN 0120-6230
e-ISSN 2422-2844

ARTICLE INFO

KEYWORDS
Software development, code
generation, automatic code
generation, CASE, IDE

Desarrollo de software,
generación de código,
generación automática de
código, CASE, IDE

Received February 27, 2015
Accepted June 24, 2015

Revista Facultad de Ingeniería, Universidad de Antioquia, No. 77, pp. 75-87, 2015

DOI: 10.17533/udea.redin.n77a10

Un análisis de herramientas para el desarrollo y generación automática de software y de código
Viviana Yarel Rosales-Morales1, Giner Alor-Hernández1*, Jorge Luis García-Alcaráz2, Ramón Zatarain-Cabada3,
María Lucía Barrón-Estrada3

1División de Estudios de Posgrado e Investigación, Instituto Tecnológico de Orizaba. Av. Oriente 9 # 852, Col. Emiliano Zapata. C. P. 94320.
Orizaba, México.
2Departamento de Ingeniería Industrial y Manufactura, Universidad Autónoma de Ciudad Juárez. Av. del Charro # 450 Norte, Col. Partido
Romero. C. P. 32310. Ciudad Juárez, México.
3División de Estudios de Posgrado e Investigación, Instituto Tecnológico de Culiacán. Av. Juan de Dios Bátiz 310 Pte. Col. Guadalupe. C. P.
80220. Culiacán, México.

ABSTRACT: Software development is an important area in software engineering, which is
why a wide range of techniques, methods, and approaches has emerged to facilitate software
development automation. This paper presents an analysis and evaluation of tools for automated
software development and automatic code generation in order to determine whether they
meet a set of quality metrics. Diverse quality metrics were considered such as effectiveness,
productivity, safety, and satisfaction in order to carry out a qualitative and quantitative
evaluation. The tools evaluated are CASE tools, frameworks, and Integrated Development
Environments (IDEs). The evaluation was conducted to measure not only the tools’ ability to be
employed, but also their support for automated software development and automatic source
code generation. The aim of this work is to provide a methodology and a brief review of the
most important works to identify the main features of these works and present a comparative
evaluation in qualitative and quantitative terms of quality metrics. This would provide software
developers with the information they need to decide the tools that can be useful for them.

RESUMEN: El desarrollo de software es una importante área en la ingeniería de
software, por tal motivo han surgido técnicas, enfoques y métodos que permiten la
automatización de desarrollo del mismo. En este trabajo se presenta un análisis de las
herramientas para el desarrollo automático de software y la generación automática de
código fuente, con el fi n de evaluarlas y determinar si cumplen o no con un conjunto de
características y funcionalidades en términos de calidad. Dichas características incluyen
efi cacia, productividad, seguridad y satisfacción, todo a través de una evaluación cualitativa
y cuantitativa. Estas herramientas son 1) herramientas CASE, 2) marcos de trabajo
(frameworks) y 3) ambientes de desarrollo integrado (IDEs). La evaluación se llevó a
cabo con el fi n de medir no sólo la capacidad de uso, sino también el apoyo que brindan
para el desarrollo de software automático y la generación automática de código fuente.
El objetivo de este trabajo es proporcionar una metodología y una breve revisión de los
trabajos más importantes para, de esta forma, identifi car las principales características
de éstos y presentar una evaluación comparativa en términos cualitativos y cuantitativos,
con la fi nalidad de proporcionar la información necesaria para el desarrollador de software
que facilite la toma de decisiones al considerar herramientas que le pueden ser útiles.

various techniques, approaches, programming paradigms,
and tools for software development and automatic source
code generation. Some of the most relevant approaches
are FDD (Feature Driven Development), MDA (Model
Driven Architecture), UML-based development (Unifi ed
Modeling Language-based), and RAD (Rapid Application
Development). On the other hand, among the most known
programming paradigms for software development are
AOP (Aspect-Oriented Programming), OOP (Object-
Oriented Programming), Structured Programming, and
Components-based Programming. In the same way, the
tools for software development involve IDEs (Integrated

1. Introduction
Software engineering is an engineering discipline whose
goal is the cost-effective development of software systems
[1, 2]. In addition to source code generation, there are

76

V. Y. Rosales-Morales et al.; Revista Facultad de Ingeniería, No. 77, pp. 75-87, 2015

brief review on existing automatic code generation tools,
(CASE tools, IDEs, frameworks, and academic tools) in
order to propose a hybrid evaluation in quantitative and
qualitative terms of quality metrics for each tool analyzed.

For this reason, this paper carried out a literature review
of works that currently have an impact on the different
techniques and methods for software development
and automatic code generation. Thus, one hundred
research works were analyzed and ten of them were
selected for evaluation. These ten works were considered
the most relevant according to the selection criteria;
they address its use in software development and
automatic code generation area from 1989 to 2014.

The paper is structured as follows: First Section contains
the Introduction, Second Section Research Methodology
of this review, Third Section presents the review of tools
and frameworks for automatic code generation. Section
four concerns the Software quality characteristics for
software development tools and Section five presents
a review of evaluation models and the results obtained
for qualitative and quantitative evaluation for Software
Development and Automatic Code Generation tools. Finally,
in section six conclusions and future work are discussed.

2. Research Methodology
The methodology is composed of three stages. The first
stage presents a research of related works to Automatic
Code Generation in several academic electronic databases.
The second stage presents the classification of these works
in the different kinds of tools. Finally, the third stage of
the methodology involves the report of a comprehensive
literature review that identifies technologies, tools, and
frameworks in some of the papers reviewed. As it was
previously mentioned, we have performed a detailed
search of the major databases of electronic journals for a
comprehensive bibliography on Automatic Code Generation.
The digital libraries considered were: 1) ACM Digital Library,
2) IEEE Xplore Digital Library, 3) Science Direct (Elsevier)
and 4) SpringerLink. Only the papers published by academic
journals, workshops, and international conference
proceedings were considered reliable and worthy.

Moreover, we also employed a keyword-based search
in order to select the most relevant papers. The main
keywords employed were: 1) Software Engineering, 2) Code
Generation, 3) Software Development Tool, 4) Automatic
Code Generation, 5) Source Code Generator Tool, and
6) CASE Tools. Papers that were not directly related to
Automatic Code Generation or not suitable for the study
were discarded. The research papers selected were
manually classified by considering the following criteria: (1)
CASE tools, (2) IDEs, and (3) frameworks for Automatic Code
Generation. This selection Criteria is depicted in Figure 1.

The section below presents the selected and most
relevant papers regarding Automatic Code Generation.

Development Environment), CASE tools (Computer-Aided
Software Engineering) and IREs (Integrated Reverse-
Engineering Environments). All these approaches,
programming paradigms, tools, and techniques facilitate
software development, and thereby, they improve the
profitability of software systems [3]. Two important parts that
have been recently implemented are the tools for software
development and the tools for automatic code generation.
A software development tool is a computer program that
software developers use to create, debug, maintain, or
otherwise support other programs and applications [4].
The term usually refers to relatively simple programs,
which can be combined together to accomplish a task. For
instance, one might use multiple hand tools to fix a physical
object. The ability to use a variety of tools productively
is one hallmark of a skilled software engineer [4].

There are various types of software development tools,
such as design software tools, modeling software, encoding
software, management software, and reverse engineering
tools, among many others. On the one hand, some of the
most important and used tools are CASE tools; CASE stands
for Computer-Aided Software Engineering. It covers a wide
range of different components used to support software
process activities, such as requirements analysis, system
modeling, debugging, and testing. CASE tools may also
include a code generator which automatically generates
source code from the system model and some process
guidance, which gives advice to the software engineer
on what to do next [1, 2]. In general terms, CASE is the
application of a set of tools and methods to a software
system with the desired end result of high-quality, defect-
free, and maintainable software products [5]. On the other
hand, in addition to CASE tools, there are other kinds of
tools, such as IDE’s (Integrated Development Environments)
that combine the features of many tools in one package. For
instance, these other tools facilitate some tasks, such as
searching for content only in files in a particular project.
IDEs may, for example, be used for the development of
enterprise-level applications [4]. It is important to review
these tools to identify their characteristics and evaluate
them according to established criteria and desirable
characteristics based on quality metrics. This evaluation
is highly significant since it will allow software developers
to broad their perspective regarding which characteristics
and quality metrics are covered by a given tool.

In the field of software development and automatic code
generation, several overviews and comparative analysis
have been proposed in [3, 6-10]. In addition, some
researches and systematic reviews have been conducted
regarding these topics [11-19]. Moreover, previous works
have addressed software systems development and, in some
cases, software automatic generation. On the one hand, both
quantitative and qualitative evaluations are highly needed
for quality metrics of automatic code generation tools.
These quality metrics include Functionality, Reliability, and
Usability, among others. On the other hand, although some
evaluations have been reported, there is no record of any
research or initiative covering the aforementioned quality
metrics. Therefore, the aim of this paper is to present a

77

V. Y. Rosales-Morales et al.; Revista Facultad de Ingeniería, No. 77, pp. 75-87, 2015

Figure 1 Selection Criteria Flow Diagram

In [20] the determinants for a CASE tool implementation
were presented. The findings indicated that an
environment including the enforcement of a development
methodology and the use of metrics contribute to perceived
improvements in quality when using CASE. Furthermore,
the use of metrics and consultants along with formal
training contribute to perceived improvements in developer
productivity. In [21], a survey on software evolution and
computer-aided prototyping was provided. According to
[21], Computer-Aided Prototyping will become a practical
technique in the evolution process. CAPS (Computer-Aided
Prototyping System) consists of an integrated set of tools
that help design, translate, and execute prototypes. It
includes a graph data model for evolution, evolution control
system, change merging facility, and automated retrievals
for reusable components and it supports the prototyping
modeling process. In [18] a tool that generates a code with
compatibility for design patterns to maximize reusability of
design components was proposed. This tool constructs a
library that stores explanation information of pattern and
structure information of abstract type. Pattern structure
information goes through the process of instantiation, which
makes the patterns fit for specific applications. Instantiated
structure information is generated as an XMI-based
source code through a code generation template. XMI is

It is worth mentioning that the tools to assess were
selected from a large set of candidate tools based on the
following criteria: 1) availability of documentation, 2) tools
for a specific purpose and a general purpose, and 3) the
code generated and programming languages supported.

3. Tools and frameworks
for automatic code
generation
Recently, several projects on tools for Automatic Code
Generation have been developed, some examples of these
initiatives are usually 1) CASE tools for Automatic Code
Generation, 2) IDEs for Automatic Code Generation, and 3)
frameworks for Automatic Code Generation. These initiatives
have the purpose to facilitate working software developers.
Some of the most important initiatives are presented below.

3.1. CASE tools for Automatic
Code Generation

78

V. Y. Rosales-Morales et al.; Revista Facultad de Ingeniería, No. 77, pp. 75-87, 2015

semantics for these types, assembling systems from CCM
components, visualizing various dependence relationships
between components, specifying and verifying correctness
properties of models of CCM systems derived from CCM
IDL, component assembly information, and Cadena
specifications, and producing CORBA stubs and skeletons
implemented in Java. In [29], the authors stated that software
development could be eased with an IDE, which allows for
using different individual tools from one single development
platform. Unfortunately, when developing software for a
particular embedded system, the development of an IDE for
a certain device can be expensive, since the development
of an IDE requires a lot of resources. Therefore, authors
proposed the development of an integrated development
for a mobile device, Nokia 770 Internet Tablet. The goal
was to aim at a fully-fledged IDE with the lowest possible
costs. In order to accomplish this, they turned to open
source development communities, and targeted the effort
to the integration of already existing components into a
simple yet practical IDE. In [30], authors proposed an MB-
UID (Model-Based User Interface Development) approach
for semi-automatic generation of adaptive applications
for mobile devices. An environment, called XMobile, offers
a device-independent user interface framework and a
code generation tool to provide fast development of multi-
platform and adaptive applications according to device and
platform features. In [31], a new modeling environment
called MOSAIC was presented. It combines concepts such
as equation-based modeling, use of symbolic mathematic
language, and code generation. Moreover, the proposed tool
followed a new modeling approach for the re-use of single
equations and the support of different naming conventions.
The modeling is done strictly in the documentation level. The
model information is stored in XML and MathML, and code
generation for different programming languages is used
to transform the generally defined models into executable
programs or suitable code fragments for the solution or use
in various numerical environments. Furthermore, MOSAIC
is provided as a Software as a Service. The result is a
software tool that allows for modeling in the documentation
level, promotes the reuse of model elements, and supports
centralized cooperation on the Internet. IntelliJ IDEA [32] is
a Java-based IDE for developing software. It was developed
by JetBrains, and is available as an Apache 2 Licensed
community edition, and in a proprietary commercial edition.

3.3. Frameworks for Automatic
Code Generation
In [33], a framework for automatic graphical user interface
code generation was developed. The authors also developed
tools to support this framework: 1) a parser, 2) generation
rules, and 3) target code production. The parser read
specifications resulted from a reverse engineering process
of a character-oriented user interface. These specifications
were written in a language called AUIDL (Abstract User
Interface Description Language). This language is based
on the object-oriented paradigm, which means the use
of class, object, attributes, and methods. The methods
are used to describe the behavior of the user interface. In
[34] the authors presented Tom and ApiGen that are two

supported as a transformed format from most CASE tools,
so it is sure for compatibility a code generation tool that
is applicable to procedural language-based applications
for distributed processing was described in [22]. The
application programs along with the partition primitives
were converted into independently executable concrete
implementations. The process consisted of two steps,
first translating the primitives of the application program
into equivalent code clusters, and then, scheduling the
implementations of these code clusters according to the
inherent data dependencies. Furthermore, the original
source code needed to be reverse engineered in order to
create a meta-data table describing the program elements
and dependency trees. The proposed code generation
model was implemented using C and tested for various
application programs for functional verification. In [23],
a tool for programming using schemas was described.
In order to solve a given programming problem, the user
defined a recurrence relation system, selected the proper
schema and the tool automatically generated the code that
solved the problem in the target language. In this way, the
tool allowed the integration of methodologies based on
schemas into the subject of the course. Also, authors of [24]
described EDEN as a CASE environment, whose objective
is to integrate structure design methodologies, software
module libraries, and rigorous testing through the entire
software’s life cycle. In addition to supporting each phase of
the life cycle, EDEN will provide project management tools,
such as metrics analysis, configuration management, and
quality assurance compliance. Visual Paradigm [25] for
UML (VP-UML) is a UML CASE Tool supporting UML 2,
SysML and Business Process Modeling Notation (BPMN)
from the Object Management Group (OMG). In addition to
modeling support, it provides report generation and code
engineering capabilities including code generation. It can
reverse engineer diagrams from source code, and provide
round-trip engineering for various programming languages.
PowerDesigner [26] is a collaborative enterprise modelling
tool produced by Sybase. PowerDesigner runs under
Microsoft Windows as a native application, and runs under
Eclipse through a plugin. PowerDesigner supports Model-
Driven Architecture software design.

3.2. IDEs for Automatic Code
Generation
In [27], authors described the research performed to
analyze the requirements for the development of an IDE
for embedded system design. The research considered
the format and frequency of the data to be transferred
within the system and finally the available communication
mechanisms. The work concluded with a recommended
approach to the development of an IDE for embedded
system design. In [28], an overview of Cadena (Cadena
stands for Component Architecture Development
ENvironment for Avionics systems) - which is an integrated
environment for building and modeling systems built using
the CORBA (Common Object Request Broker Architecture)
Component Model (CCM) was presented. Cadena provided
facilities for defining component types using CCM IDL,
specifying dependency information and transition system

79

V. Y. Rosales-Morales et al.; Revista Facultad de Ingeniería, No. 77, pp. 75-87, 2015

4. Software quality
characteristics for
software development
tools
This section defines all the quality metrics considered in
the evaluation process of software development tools.
To carry out the evaluation process, we identified and
reviewed the different Software Quality Models [39-41]
and Philosophies [42-44]. However, contrary to this paper,
these models do not consider the quality metrics of the
ISO/IEC 9126 model, which are effectiveness, productivity,
safety, and satisfaction. The ISO/IEC 9126 model was
employed since it is a widely recognized international
standard for quality software evaluation. ISO/IEC 9126
defines a quality model in terms of internal quality, external
quality, and quality in use. Internal quality is evaluated by
using internal attributes of software, such as modularity.
External quality is evaluated when the software is executed,
usually during formal testing activities. Quality in use refers
to the users’ view of the software’s quality when they use
it in a particular environmental context. ISO/IEC 9126 is
composed of four sections. The ISO/IEC 9126-1 section
classifies the external and internal quality of the software
in a structured set of characteristics. These characteristics
are further decomposed into sub-characteristics, which
derive into specific attributes. ISO/IEC 9126-2 and ISO/
IEC 9126-3 describe the software metrics for external and
internal attributes, respectively. ISO/IEC 9126-4 defines
the quality in use determined by four characteristics:
effectiveness, productivity, safety, and satisfaction. The
assessment method presented here is intended to measure
the quality of each tool. Quality in use is defined as the
capability of the software product for enabling users to
achieve specific goals with effectiveness, productivity,
safety, and satisfaction in specific contexts of use.
The quality model presented in the first part of the
standard, ISO/IEC 9126-1 [45] classifies software
quality in a structured set of characteristics and
sub-characteristics. The characteristics are:

Functionality: A set of attributes that bear on the existence
of a set of functions and their specified properties. The
functions are those that satisfy explicit or implied needs [45].
Reliability: A set of attributes that bear on the capability
of software for maintaining its level of performance
under stated conditions for a stated period of time [45].
Usability: A set of attributes that bear on the effort
needed for use and the individual assessment of
such use by a stated or implied set of users [45].
Efficiency: A set of attributes that bear on the relationship
between the level of performance of the software and the
amount of resources used under stated conditions [45].
Maintainability: A set of attributes that bear on the
effort needed to make specified modifications [45].
Portability: A set of attributes that bear on the ability of software
to be transferred from one environment to another [45].

complementary tools, which simplify the definition and the
manipulation of abstract datatypes. Tom is an extension of
Java that adds pattern-matching facilities independently
of the used data-structure. ApiGen is a generator of
abstract syntax tree implementations that interacts with
Tom tool. The authors of Tom and ApiGen demonstrated
the integration of an algebraic programming environment
in Eclipse, by integrating a Tom editor, an automatic build
process, and an error management mechanism. And they
explain how Eclipse could be extended to support the
development of Tom programs. In [35], the authors stated
that Model-Driven Engineering (MDE) was considered
one of the most promising approaches for software
development. They presented an example based on state-
machines that was used to demonstrate the benefits of
this approach. After defining a modeling language (meta-
model) for state machines, a graphical tool was presented,
which was aimed at easing the description and validation
of state-machine models. The generated models were
used as inputs for the automatic Ada code generation
tool, and testing including a simulation program to test
the correctness and performance of the implemented
application. In [36], a prototype tool called VULCAN that
aimed to assist with the creation of high quality code
through the use of design patterns was presented. This
tool came in the form of a plug-in for Eclipse software
development environment. VULCAN facilitates high quality
code creation through the automatic generation of design
pattern code templates, customized with user input, and
integrated into pre-existing projects. By automating the
design pattern generation process through the application
of a practical and easily usable tool, the adoption of a
model-driven engineering approach using design patterns
can be substantially mitigated, resulting in improved
system quality. In [37] an Automatic Coder using Artificial
Intelligence (ACAI) was described. ACAI used an approach
to solve automated code generation in routine programming
domains. The main components of ACAI are considered
the user goals and preferences, a library of abstract
programs, and a library of generic code components. ACAI
uses a combination of Case-Based Reasoning, Routine
Design, and Template-Based Programming approaches
to generate complete Java programs that satisfy users’
requirements. Adobe Dreamweaver© [38] is a commercial
Web development tool developed by Adobe Systems. Adobe
Dreamweaver is available for OS©. X and for Windows©.

It is noteworthy that the aforementioned works are the most
relevant from a wide range of papers reviewed. These works
are of great importance for software development and the area
of automatic code generation. However, these works have
not been evaluated to quantify their quality and the benefits
that provided to developers. In this regard, it is important to
perform a quantitative and qualitative evaluation to identify
the characteristics of each of the tested tools and present
the results in a clear and orderly manner. The following
section describes the features that were considered to
measure the quality metrics of software development tools.

80

V. Y. Rosales-Morales et al.; Revista Facultad de Ingeniería, No. 77, pp. 75-87, 2015

Each quality metric is divided in sub-characteristics. This
division is presented below in Table 1 [45]:

Table 1 Quality Metrics and sub-characteristics
of software quality by standard ISO/IEC 9126-1

Each quality sub-characteristic (e.g. adaptability) is further
divided into attributes. An attribute is an entity that can be
verifi ed or measured in the software product. Attributes
are not defi ned in the standard because, they vary between
different software products [45]. The next section presents
the evaluation model used in this study as well as the
results obtained.

5. Evaluation and results
Software Engineering literature has proposed several
works related to software development evaluation. In [13],
a survey of existing research on aspect-oriented modeling
and code generation was reported. An orchestrated survey
of the most prominent techniques for automatic generation
of software test cases was presented in [8]. In [19], a
comparison between UML and SystemC was proposed,

focusing on communication modeling. Although the absence
of a standardized way to evaluate software development
tools is still an issue, there are two main approaches:
quantitative (objective) evaluations and qualitative
(subjective) evaluations. On the one hand, according to [46],
quantitative evaluations are based on identifying the effects
of using a tool in measurable terms. On the other hand,
qualitative evaluations — also known as feature analyses
— are based on identifying the requirements that the user
possesses to perform a particular task/activity and on
linking these requirements to the tool’s features that can
support the task or tasks.

Moreover, there are other techniques, such as AHP (Analytic
Hierarchy Process), which have great advantages when
important elements in the decision are diffi cult to quantify
or compare, or when communication among team members
is impeded by their different specializations, terminologies,
or perspectives. Some decision situations where the AHP
can be applied include [47]: Choice, Ranking, Prioritization,
Resource allocation, Benchmarking, Quality management,
and Confl ict resolution [48].

However, none of these situations meets the objective of this
work. Therefore, it was decided to use a two-part evaluation
of the tools and frameworks for automatic code generation:
Tom and ApiGen, Laika, VULCAN, MB-UID, MOSAIC, ACAI,
Visual Paradigm©, PowerDesigner©, IntelliJ IDEA©, and
Adobe Dreamweaver©. The fi rst part concerns a qualitative
method to measure diverse aspects of these tools, by
focusing on their usability as well as on the support for the
standard features and the compliance with the principles
of the use of best practices. The second part refers to a
quantitative method to measure the quality in use of each
tool. On the one hand, for the qualitative evaluation method,
a set of 13 desired features for code generation tools were
identifi ed. These features were assessed in all the selected
tools in order to determine their legitimacy and, at the
same time, identify which of the tools would be best in
specifi c circumstances. Because this qualitative analysis
requires subjective measures, a discussion is presented
in the following paragraphs with the aim of supporting the
results. On the other hand, for the quantitative evaluation
method, four software metrics were proposed based on the
internal metrics defi ned by the ISO/IEC 9126 standard.

5.1. Evaluation design
This assessment method describes each of the three
aspects that constitute the needs of a software developer;
it also describes the features that a tool for software
development, especially for source code generation, must
possess in order to satisfy each of the identifi ed needs.

The scale used for the measurement of the identifi ed
aspects is a 3-point Likert scale [49] in which “3” represents
the best score and “1” represents the worst score as it is
represented below:

• 3 points: strongly addressed (S.A.)
• 2 points: partially addressed (P.A.)
• 1 point: not addressed (N.A.)

81

V. Y. Rosales-Morales et al.; Revista Facultad de Ingeniería, No. 77, pp. 75-87, 2015

This aspect first refers to the presence of features that
promote the use of the application, such as modularity.
Nevertheless, it also refers to whether the application
was developed with a well-defined purpose. The factor of
modularity reflects whether the software contains modules,
each one representing a concrete set of concepts able to be
reused in other environments. Modularity highly increases
the number of possible combinations in a system, which
makes it much more flexible [55]. Well-defined purposes
guarantee the quality of the activities carried out through
a software tool. This provides users the tools needed for
a specific activity and avoids unnecessary functions that
would not be used or missing features that hinder the
use of the tool or reduce the acceptance and use of the
application.

Aspect 4: Support for heterogeneous
data sources integration
Factor 1. Interoperability with external software tools
Factor 2. Data security

ISO 9241-11 [54] defines interoperability as the ability of
the software product to interact with one or more specified
systems. The interoperability factor defines whether the
software can be easily combined to enhance its capabilities.
As far as data security is concerned, interoperability refers
to the ability of a software tool to protect data in order to
avoid unauthorized persons or systems to read or modify
this data. Data security covers both data stored by the
systems and data transmitted by the systems. Security is a
critical factor to consider in software development because
these applications can contain confidential information for
both individuals and enterprises.

Aspect 5: Support and documentation
Factor 1. Documentation
Factor 2. Active roles of users
Factor 3. Inline help
Factor 4. On line developer documentation

This aspect refers to the presence of information, such as
technical manual, user manuals, and other instructions that
facilitate the use and operation of a tool. Documentation
can be aimed at developers, and in this case, it contains
information on the operations of the software system.
However, it can also be aimed at end users with the
purpose of facilitating the interaction between the end
users and the tool (e.g., a training manual). Furthermore,
Web applications emphasize on the active involvement
of users in order to improve the tool. This involvement
includes activities such as bug reporting, suggestion of new
functions, and the implementation of new features through
software development kits.

5.3. Quantitative Evaluation
As it was previously mentioned, quality in use is defined as
the ability of the software product to enable users to achieve
specific goals with effectiveness, productivity, safety, and

For each of the three aspects, the final score will be the
highest score assigned by a member of the evaluation
team composed of two software engineers, two graphic
designers, and two software developers. Finally, the overall
evaluation for each software tool will be the sum of the final
scores in the three aspects.

5.2. Qualitative evaluation
A usability evaluation approach is presented inspired
by diverse proposals analyzed and based on a weighted
matrix. This assessment method has a long tradition within
software engineering and information systems literature
[50]; moreover, it has been used for other quality evaluations
[51, 52]. For this weighted matrix, we have proposed the
evaluation of five aspects in order to assess the legitimacy of
the proposed software tools. These aspects were selected
from the field of software quality by the evaluation team.
Each qualitative aspect had a score based on a 3-point
Likert scale [49]. The aspects are presented in the following
text.

Aspect 1: GUI design
Factor 1. GUIs with simplicity and predictability principles
Factor 2. User interaction based on the best practices

An appropriate GUI design encourages an easy, natural,
and engaging interaction between a user and a system,
and it allows users to carry out their tasks. Considering the
type of software tool that this application is, we selected
the ‘simplicity’ and ‘predictability’ GUI design principles
proposed in [53] to evaluate the ease and naturalness of
the GUI design of the code generation tools. The principle
of simplicity allows users to understand and use a system
easily, regardless of his or her computational experience
and level of concentration when using the application.
Predictability allows users to anticipate the natural
progression of software development.

Aspect 2: Tools usability
Factor 1. Ease of use
Factor 2. Ease of learning
Factor 3. Technical knowledge and skills

ISO 9241-11 [54] defines usability as the extent to which a
product can be used by specific users in order to achieve
specific goals with effectiveness, efficiency, and satisfaction
in a specific context. However, because of the quantitative
nature of the ‘effectiveness’ and ‘efficiency’ factors, we
have only considered the ‘satisfaction’ factor mentioned in
the former definition in order to evaluate the usability of
the application. ISO 9241-11 also defines satisfaction as the
absence of discomfort, as well as the positive attitudes of
users toward the use of a product.

Aspect 3: Features promoting use
Factor 1. Use of modularity principles
Factor 2. Functions with well-defined purposes

82

V. Y. Rosales-Morales et al.; Revista Facultad de Ingeniería, No. 77, pp. 75-87, 2015

Aspect 1: GUI design
Most of the software development tools evaluated provide
GUIs of different degrees of simplicity and predictability. On
the one hand, tools such as Tom and ApiGen, Laika, XMobile
and VULCAN provide interfaces that permit the design and
modeling of system software, which are configured with
the parameters required. Although these interfaces are too
simple and do not provide anything beyond this, they allow
users to perform easily and naturally the tasks that they
need to accomplish. On the other hand, tools such as Visual
Paradigm©, PowerDesigner© and Adobe Dreamweaver©
provide a set of GUI components aesthetically pleasing
that encapsulate business logic and implement interaction
design patterns, such as wizards and input feedback, to
mention a few. All these components allow users to easily
understand and use the tool regardless of their experience
and level of concentration when using it. As far as IntelliJ
IDEA© is concerned, although it does provide a graphic
user interface, this interface is neither intuitive nor easy
to use. In fact, users require certain level of expertise in
the use of IDEs and development tools. On the other hand,
MOSAIC is a special-purpose tool; therefore, it is limited to
users’ experience.

Aspect 2: Tools usability
In general terms, the automatic code generation tools
presented earlier have intuitive designs and demand
little learning time for beginners. For instance, Adobe
Dreamweaver© provides a wizard that permits dragging and
dropping elements into the main panel. This characteristic
is very easy to use since the developer does not need to know
the programming language. Visual Paradigm©, however,
can generate code in languages such as Java or C++ from
a UML class diagram, and the user merely needs to know
how to make UML diagrams. Also, on the one hand, Laika
tool provides a graphical interface to generate the source
code of whatever the user wishes to design; however, the
code is generated for a particular device.

On the other hand, IntelliJ IDEA© and PowerDesigner©
employ codification standards from the design
environments, while MOSAIC is a more intuitive tool both in
use and functioning, because it is a special-purpose system
and has more limited options to generate source code.
XMobile is focused on mobile applications development, and
users must possess some knowledge of the applications
they develop in order to use it. VULCAN is a plug-in for
Eclipse, which makes it stick to the standards of the own
IDE.

Aspect 3: Features promoting use
The use of modularity principles and functions with well-
defined purposes is covered completely in the commercial
tools; however, it is not addressed comprehensively
in academic tools, since most of these remained in
development or as prototypes; therefore, their use is not
massively exploited. Software development tools such as
Visual Paradigm© represent a clear example of modularity,

satisfaction in specific contexts of use. In order to measure
the quality in use of each code source generation tool, the
productivity characteristic was selected. Productivity refers
to the ability of the software product to enable users to
expend appropriate amount of resources in relation to the
effectiveness achieved in a specific context of use. Some
of the metrics covered by this characteristic are task time,
waiting time, task efficiency, and help frequency, among
others.

The metrics that we have proposed for this quantitative
evaluation focus on the measurement of the quality of an
automatic code generation tool to generate source code.
Therefore, they are based on internal metrics defined in the
ISO/IEC 9126 standard. They are described below:

Quality in use
Productivity
Task time: The estimated time of work spent to develop a
basic application.
Help frequency: The frequency of use of the help and/or
documentation tools.

Maintainability

Changeability
Modification complexity: The estimated work time spent
on changing data sources of the applications already
generated.
Analyzability
Inline documentation completeness: Ratio of the number of
scripts, functions, or variables having documentation to the
number of implemented scripts, functions, or variables.

In order to measure the quality metrics by each of the
evaluated tools under the same circumstances, we have
outlined a source code generation scenario as the ‘hello
world’. It is also a means to support the results obtained
from the qualitative analysis, or at least to support the
results corresponding to the aspects covered in this
source code generation scenario. It is worth mentioning
that this scenario does not involve the measurement
of neither the software environmental adaptability nor
the hardware environmental adaptability, since these
metrics focus on evaluating standalone applications.

6. Results
Table 2 and Figure 2 depict the score obtained from
the evaluation process of each aspect analyzed for the
qualitative evaluation. Table 3 shows the results of the
quantitative evaluation.

6.1. Discussion
The results obtained for the qualitative evaluation are
presented below.

83

V. Y. Rosales-Morales et al.; Revista Facultad de Ingeniería, No. 77, pp. 75-87, 2015

Mathematics, VULCAN on design patterns, and XMobile and
Laika are targeted to applications for mobile devices.

Aspect 4: Support for heterogeneous
data sources integration
The tools analyzed provide support for several data sources,
such as XML, XMI and Java. Tools like Visual Paradigm©
can generate source code in different programming
languages and this allows them to integrate with other
tools such as IDEs like NetBeans© or Eclipse©. Laika,

since different modules are in charge of different tasks and
all together form a complete tool. For instance, whilst one
module may be responsible for modeling in UML, another
one can generate the source code and a third one may be
responsible for reverse engineering. On the other hand,
some tools such as VULCAN were developed as plug-ins
for other tools such as Eclipse. However, this does not
mean they are independent since they completely rely on
those tools for which they were designed, and this breaks
the principle of modularity, to some extent. In the cases
of MOSAIC, VULCAN, XMobile, and Laika, they represent
tools for a well-defi ned purpose. MOSAIC focuses on

Table 2 Qualitative Evaluation Results

Figure 2 Qualitative Evaluation Results

84

V. Y. Rosales-Morales et al.; Revista Facultad de Ingeniería, No. 77, pp. 75-87, 2015

emphasizes on the active involvement of its users, and this
enables tools designers to know the customers’ problems
and needs in order to develop components that can help
them solve their problems.

The results obtained for the quantitative evaluation are
presented below.

Table 3 shows the results obtained for each quality metric
from the quantitative evaluation. The tools presented
earlier contain different components for the generation
of source code. In order to generate the source code for a
set of Java-based classes by using Visual Paradigm©, it is
only required to design a UML class diagram representing
the desirable software. As far as Adobe Dreamweaver©
is concerned, fewer steps are required in the software
development, since at the same time that the components
are dragged to the main panel, the corresponding code is
displayed. Adobe Dreamweaver© is able to generate codes
in various programming languages, such as HTML or PHP.
Nowadays, automatic code generation plays an important
role in software development, since it helps save time and
facilitates the use of tools and programming languages.
However, it is also important that the tools meet a set of
quality characteristics so the developer can feel confi dent
when using them. In many cases, tools for automatic code
generation have been proposed and developed in the form
of prototypes, but these prototypes have failed to develop
commercially, making them obsolete if they are compared
to other tools that are being constantly developed and
updated. Therefore, the analysis presented in this paper
can demonstrate with the results obtained that Visual
Paradigm© is the tool that meets more features than any
other tool analyzed. Visual Paradigm© is a commercial
tool.

Authors wish to express we do not intent to state which
development tool is better or to tell software developers
which tool they must employ. The merely purpose of this
research paper is to emphasize the main features of each
development tool.

however, is not supported since it is a special-purpose tool;
it was developed for a particular device and programming
language. Also, VULCAN cannot integrate itself with other
systems, because it was developed as a plug-in for Eclipse.
Interoperability is a diffi cult aspect to cover in these tools,
especially if they are special-purpose tools such as Laika,
MOSAIC, and XMobile.

Aspect 5: Support and
documentation
For most of the automatic generation tools analyzed, a great
deal for information could be gathered, such as their user
manuals, introductory videos, tutorials, technical manuals,
and published research papers. This facilitates both software
learning and development. Moreover, the tools emphasize
on the active involvement of their users in activities such
as bug reporting, suggestion of new functions and the
implementation of new features through the software
development kits provided. In order to carry out these
tasks, tools such as Visual Paradigm©, PowerDesigner©,
IntelliJ IDEA©, and Adobe Dreamweaver© provide help
and support to community through blogs, forums, and
wikis. It is noteworthy that it is easier to fi nd information
about commercial tools. For the other tools that are Tom
and ApiGen, Laika, VULCAN, XMobile, MOSAIC, and ACAI,
it is more diffi cult to fi nd information and help, especially
because they are special-purpose tools. MOSAIC, for
instance, has less impact because of this.

According to these results and as can be seen in Table 2,
Visual Paradigm© is the tool with the best features for
automatic software development, since it was rated 38 of
39 in the qualitative evaluation. As it can be inferred, Visual
Paradigm© completely meets most of the features that an
automatic software development tool must possess in order
to integrate data from heterogeneous data sources and have
attractive visual interfaces. Also, Visual Paradigm© can be
used by both non-experienced and experienced users, as
well as by enterprises demanding a high level of security
for network and data. In addition, Visual Paradigm©

Table 3 Assessment Results of Quality Metric

85

V. Y. Rosales-Morales et al.; Revista Facultad de Ingeniería, No. 77, pp. 75-87, 2015

aided software engineering tool,” in Annual
Westinghouse computer symposium, Pittsburgh, USA,
1989.

6. L. Agner, I. Soares, P. Stadzisz and J. Simão, “A
Brazilian survey on UML and model-driven practices
for embedded software development”, Journal of
Systems and Software, vol. 86, no. 4, pp. 997-1005, 2013.

7. S. Pierucci and E. Ranzi, “A review of features in current
automatic generation software for hydrocarbon
oxidation mechanisms”, Comput. Chem. Eng., vol. 32,
no. 4-5, pp. 805-826, 2008.

8. S. Anand et al., “An Orchestrated Survey of
Methodologies for Automated Software Test Case
Generation”, J. Syst. Softw., vol. 86, no. 8, pp. 1978-
2001, 2013.

9. R. Novais, A. Torres, T. Mendes, M. Mendonça, and
N. Zazworka, “Software evolution visualization: A
systematic mapping study”, Inf. Softw. Technol., vol. 55,
no. 11, pp. 1860-1883, 2013.

10. S. Thomas, B. Adams, A. Hassan and D. Blostein,
“Studying software evolution using topic models”, Sci.
Comput. Program., vol. 80, Part B, pp. 457-479, 2014.

11. U. Kanewala and J. Bieman, “Testing Scientific
Software: A Systematic Literature Review”, Inf. Softw.
Technol., vol. 56, no. 10, pp. 1219-1232, 2014.

12. A. Magdaleno, C. Werner and R. Araujo, “Reconciling
software development models: A quasi-systematic
review”, J. Syst. Softw., vol. 85, no. 2, pp. 351-369, 2012.

13. A. Mehmood and D. Jawawi, “Aspect-oriented model-
driven code generation: A systematic mapping study”,
Inf. Softw. Technol., vol. 55, no. 2, pp. 395-411, 2013.

14. D. Alonso, J. Pastor, P. Sánchez, B. Álvarez and C.
Vicente, “Generación Automática de Software para
Sistemas de Tiempo Real: Un Enfoque basado en
Componentes, Modelos y Frameworks”, Rev. Iberoam.
Automática e Informática Ind. RIAI, vol. 9, no. 2, pp. 170-
181, 2012.

15. C. Yang, V. Vyatkin and C. Pang, “Model-Driven
Development of Control Software for Distributed
Automation: A Survey and an Approach”, IEEE
Transactions on Systems, Man, and Cybernetics: Systems,
vol. 44, no. 3. pp. 292-305, 2014.

16. H. Liao, J. Jiang and Y. Zhang, “A Study of Automatic
Code Generation”, in 2010 International Conference
on Computational and Information Sciences (ICCIS),
Chengdu, China, 2010, pp. 689-691.

17. M. Jiménez and M. Piattini, “Problems and Solutions
in Distributed Software Development: A Systematic
Review”, in 2nd International Conference on Software
Engineering Approaches for Offshore and Outsourced
Development (SEAFOOD), Zurich, Switzerland, 2008,
pp. 107-125.

18. Y. Seo and Y. Song, “A Study on Automatic Code
Generation Tool from Design Patterns Based on the
XMI”, in 2006 International Conference on Computational
Science and Its Applications (ICCSA), Glasgow, UK, 2006,
pp. 864-872.

19. P. Andersson and M. Höst, “UML and SystemC - A
Comparison and Mapping Rules for Automatic Code
Generation”, in Embedded Systems Specification
and Design Languages, E. Villar (ed). Amsterdam,
Netherlands: Springer, 2008, pp. 199-209.

7. Conclusions and future
work
This paper has presented an evaluation of tools and
frameworks for automatic software development and
automatic source code generation. These kinds of
reviews and subsequent tools assessments are extremely
important issues for software developers to identify the
characteristics and functionalities that cover the tools
evaluated. During the evaluation and review of the tools, it
was possible to identify their characteristics and determine
their quality according to the quality model of the ISO/IEC
9126 standard. This evaluation is crucial since it involves
different types of tools: CASE tools, IDE’s, frameworks and
academic tools. All of them were evaluated under the same
parameters and compared with one another. The limitations
of this paper could be addressed as future work by including
more databases - such as Scopus (Elsevier), Web of
Science, or CiteSeerX - that would allow for the evaluation
of a larger amount of works. Also, a future study could
expand the evaluation of tools by including other qualitative
and quantitative characteristics in the evaluation process.
Some features that could be considered are: correctness
of the generated code, required computer resources, and
integration with other tools. Another aspect that could
be improved in upcoming research is the evaluation of
the source code generated by the tools evaluated. This
way, researchers can perform a particular assessment
according to the tool type, such as assessments by the
type of application generated, by supported programming
languages, or by input/output parameters. Finally, this study
can be extended by considering other IDEs and tools - such
as Aptana© and Komodo© - as well as other tool features
such as a debugger, a compiler, or a data dictionary, among
others.

8. Acknowledgements
This work is supported by Tecnológico Nacional de Mexico
(TecNM). This paper was also sponsored by the National
Council of Science and Technology (CONACYT) and the
Ministry of Public Education (SEP) through PRODEP.

9. References
1. I. Sommerville and P. Sawyer, Requirements engineering:

a good practice guide, 1st ed. New York, USA: John Wiley
& Sons, Inc., 1997.

2. I. Sommerville, Software Engineering. International
computer science series, 8th ed. Boston, USA: Addison-
Wesley Longman Publishing Co., Inc., 2004.

3. C. Zapata and J. Chaverra, “Una mirada conceptual a
la generación automática de código”, Rev. EIA. Esc. Ing.
Antioq, no. 13, pp. 155-169, 2010.

4. B. Kernighan and P. Plauger, Software tools in Pascal,
1st ed. Boston, USA: Addison-Wesley, 1981.

5. D. Kuhn, “Selecting and effectively using a computer

86

V. Y. Rosales-Morales et al.; Revista Facultad de Ingeniería, No. 77, pp. 75-87, 2015

107, pp. 33-49, 2004.
35. D. Alonso, C. Vicente, P. Sánchez, B. Álvarez and F.

Losilla, “Automatic Ada Code Generation Using a
Model-Driven Engineering Approach”, in 12th Ada-
Europe International Conference on Reliable Software
Technologies, Geneva, Switzerland, 2007, pp. 168-179.

36. G. Frederick, P. Bond and S. Tilley, “VULCAN: A Tool for
Automatically Generating Code from Design Patterns”,
in 2nd Annual IEEE Systems Conference, Montreal,
Canada, 2008, pp. 1-4.

37. Y. Danilchenko, “Automatic Code Generation Using
Artificial Intelligence”, Ph.D. dissertation, Northern
Kentucky University, Kentucky, USA, 2012.

38. Adobe, Adobe Dreamweaver CC, 2015. [Online].
Available: http://www.adobe.com/mx/products/
dreamweaver.html. Accessed on: Jan. 20, 2015.

39. J. Mccall, P. Richards and G. Walters, “Factors in
Software Quality: Concept and Definitions of Software
Quality”, Air Force Systems Command, Rome Air
Development Center, New York, USA, Final Tech. Rep.
RADC-TR-77-369, Nov. 1977.

40. B. Boehm, J. Brown and M. Lipow, “Quantitative
Evaluation of Software Quality”, in 2nd International
Conference on Software Engineering (ICSE), Los
Alamitos, USA, 1976, pp. 592-605.

41. R. Dromey, “Cornering the chimera”, IEEE Softw., vol.
13, no. 1, pp. 33-43, 1996.

42. P. Crosby, Quality is Free: The Art of Making Quality
Certain, 1st ed. Michigan, USA: McGraw-Hill, 1979.

43. W. Deming, Out of the Crisis, 1st ed. Massachusetts,
USA: The Mit Press, 2000.

44. A. Feigenbaum, Total quality control: Achieving
productivity, market penetration and advantage in the
global economy, 4th ed. New York, USA: McGraw-Hill
Education, 2005.

45. International Organization for Standardization (ISO),
Software engineering - Product quality - Part 1: Quality
Model, ISO/IEC 9126-1:2001, 2001.

46. B. Kitchenham, S. Linkman and D. Law, “DESMET:
a methodology for evaluating software engineering
methods and tools”, Computing & Control Engineering
Journal, vol. 8, no. 3. pp. 120-126, 1997.

47. E. Forman and S. Gass, “The Analytic Hierarchy
Process - An Exposition”, Oper. Res., vol. 49, no. 4, pp.
469-486, 2001.

48. T. Saaty and K. Peniwati, Group Decision Making: Drawing
Out and Reconciling Differences, 1st ed. Pittsburgh, USA:
RWS Publications, 2008.

49. R. Likert, “A technique for the measurement of
attitudes”, Archives of psychology, vol. 22, no. 140, pp.
5-55, 1932.

50. A. Sutcliffe, N. Maiden, S. Minocha and D. Manuel,
“Supporting scenario-based requirements
engineering”, IEEE Transactions on Software
Engineering, vol. 24, no. 12, pp. 1072-1088, 1998.

51. M. Paredes, G. Alor, A. Rodríguez, R. Valencia and E.
Jiménez, “A systematic review of tools, languages, and
methodologies for mashup development”, Softw. Pract.
Exp., vol. 45, no. 3, pp. 365-397, 2015.

52. L. Colombo, G. Alor, A. Rodríguez and R. Colomo,
“Alexandria: A Visual Tool for Generating Multi-device
Rich Internet Applications”, J. Web Eng., vol. 12, no.
3-4, pp. 317-359, 2013.

20. R. Urwiler, N. Ramarapu, R. Wilkes and M. Frolick,
“Computer-aided software engineering: The
determinants of an effective implementation strategy”,
Inf. Manag., vol. 29, no. 4, pp. 215-225, 1995.

21. Y. Jing, “Research on computer-aided prototyping
system and software evolution”, J. Zhejiang Univ. Sci. A,
vol. 1, no. 4, pp. 384-387, 2000.

22. V. Sairaman, N. Ranganathan and N. Singh, “An
automatic code generation tool for partitioned
software in distributed systems”, in 19th International
Conference on VLSI Design. Held jointly with 5th
International Conference on Embedded Systems and
Design, Hyderabad, India, 2006, pp. 477-480.

23. A. Gavilanes, P. Martín and R. Torres, “A Tool for
Automatic Code Generation from Schemas”, in 9th
International Conference on Computational Science
(ICCS), Baton Rouge, USA, 2009, pp. 63-73.

24. S. Erdogan, S. McFarr and D. Maglidt, “EDEN: an
integrated computer-aided software engineering
environment”, in 8th Annual International Phoenix
Conference on Computers and Communications,
Scottsdale, USA, 1989, pp. 349-353.

25. Visual Paradigm International, Company. [Online].
Available: http://www.visual-paradigm.com/aboutus/.
Accessed on: Jan. 20, 2015.

26. PowerDesigner, SAP Sybase PowerDesigner 16.5, 2013.
[Online]. Available: http://www.powerdesigner.de/en/.
Accessed on: Jan. 20, 2015.

27. L. Maguire, T. McGinnity and L. McDaid, “Issues
in the development of an integrated environment
for embedded system design: Part B: design and
implementation”, Microprocess. Microsyst., vol. 23, no.
4, pp. 199-206, 1999.

28. A. Childs et al., “Cadena: An Integrated Development
Environment for Analysis, Synthesis, and Verification
of Component-Based Systems”, in 7th International
Conference on Fundamental Approaches to Software
Engineering (FASE), Barcelona, Spain, 2004, pp. 160-
164.

29. J. Jarvensivu, M. Kosola, M. Kuusipalo, P. Reijula and
T. Mikkonen, “Developing an Open Source Integrated
Development Environment for a Mobile Device”, in
International Conference on Software Engineering
Advances (ICSEA), Tahiti, France, 2006, p. 55.

30. W. Viana and R. Andrade, “XMobile: A MB-UID
environment for semi-automatic generation of adaptive
applications for mobile devices”, J. Syst. Softw., vol. 81,
no. 3, pp. 382-394, 2008.

31. S. Kuntsche, T. Barz, R. Kraus, H. Arellano and G.
Wozny, “MOSAIC a web-based modeling environment
for code generation”, Comput. Chem. Eng., vol. 35, no.
11, pp. 2257-2273, 2011.

32. JetBrains, IntelliJ IDEA, The Most Intelligent Java IDE,
2015. [Online]. Available: https://www.jetbrains.com/
idea/. Accessed on: Jan. 20, 2015.

33. A. Elwahidi and E. Merlo, “Generating user interfaces
from specifications produced by a reverse engineering
process”, in 2nd Working Conference on Reverse
Engineering, Toronto, Canada, 1995, pp. 292-298.

34. J. Guyon, P. Moreau and A. Reilles, “An Integrated
Development Environment for Pattern Matching
Programming”, Electron. Notes Theor. Comput. Sci., vol.

87

V. Y. Rosales-Morales et al.; Revista Facultad de Ingeniería, No. 77, pp. 75-87, 2015

terminals (VDTs) - Part 11: Guidance on usability, ISO
9241-11:1998, 1998.

55. A. Schilling, “Toward A General Modular Systems
Theory and Its Application to Interfirm Product
Modularity”, Academy of Management Review, vol. 25,
no. 2, pp. 312-334, 2000.

53. W. Galitz, The Essential Guide to User Interface Design:
An Introduction to GUI Design Principles and Techniques,
2nd ed. Ed. New York, USA: John Wiley & Sons, Inc.,
1997.

54. International Organization for Standardization (ISO),
Ergonomic requirements for office work with visual display

