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ABSTRACT: This paper presents a hybrid algorithm for solving the Capacitated Vehicle
Routing Problem with practical three-dimensional loading constraint. This problem is
known as 3L-CVRP (Three-dimensional Loading Capacitated Vehicle Routing Problem).
The proposed methodology consists of two phases. The first phase uses an optimization
procedure based on cuts to obtain solutions for the well-known Capacitated Vehicle
Routing Problem (CVRP). The second phase validates the results of the first phase of a
GRASP algorithm (Greedy Randomized Adaptive Search Procedure). In particular, the
GRASP approach evaluates the packing constraints for each performed route of the
CVRP. The proposed hybrid algorithm uses a relaxation of the classical model of two
sub-indices for the vehicle routing problem. Specifically different types of cuts are added:
subtour elimination, capacity-cut constraints, and packing-cut constrains. The proposed
algorithm is compared with the most efficient approaches for the 3L-CVRP on the set of
benchmark instances considered in the literature. The computational results indicate that
the proposed approach is able to obtain good solutions, improving some of the best-known
solutions from the literature.

RESUMEN: En este articulo se presenta un algoritmo hibrido para resolver el problema
de ruteo de vehiculos con restricciones de capacidad y restricciones practicas de
empaquetamiento tridimensional, este problema en la literatura es conocido como
3L-CVRP (Capacitated Vehicle Routing Problem and Container Loading Problem). La
metodologia de solucion propuesta en este trabajo consiste de dos fases. La primera
utiliza un procedimiento de optimizacién basado en cortes para el Problema de Rutas
de Vehiculos Capacitados (CVRP). La segunda valida las soluciones de la fase anterior
a través de un algoritmo GRASP (Greedy Randomized Adaptive Search Procedure], el
cual evalla las restricciones de empaquetamiento de cada una de las rutas. Para el
algoritmo hibrido se utiliza la relajacion del modelo clasico de dos subindices para el
problema de ruteo de vehiculos. En particular diferentes tipos de cortes son adicionados:
eliminacion de subtours, cortes debido a las restricciones de capacidad y cortes para
restricciones de empaquetamiento. El algoritmo propuesto ha sido comparado con los
algoritmos mas eficaces para el 3L-CVRP en el conjunto clasico de instancias presentadas
en la literatura. Los resultados computacionales muestran que el método propuesto es
capaz de obtener buenos resultados perfeccionando algunas de las mejores soluciones
conocidas propuestas en la literatura.
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1. Introduction

Many actions in the transit of products involve two
problems, which have been studied deeply in the last
decades. The first problem is referred to the design of the
routes to fulfill the demand of the customers by considering
the minimum travelling cost (Capacitated Vehicle Routing
Problem-CVRP). The second problem considers the
best way to load the products in the used vehicles for the
performed routes (Three-dimensional Container Loading
Problem - 3D-SLOPP). These problems belong to the
well-known NP-hard problems for which the solution is
really challenging.

The Vehicle Routing Problem (VRP] arises in the distribution
of a set of products to a number of customers who are
geographically dispersed, by regarding the minimization of
the distribution costs or the maximization of the net income
associated with the transportation. The Three-Dimensional
ContainerLoadingProblemorThree-Dimensional Knapsack
problem seeks to accommodate a number of elements
within a rectangular box (container) by considering several
objective functions and by satisfying determined packing
constraints. The combination of both problems has several
realistic applications in many industrial contexts such as
the transportation of chipboard for furniture, the delivery
of courier companies, the conveyance of vehicles, and the
transit of products on pallets, among others.

The combined problem of routing and packing considered
is a variant of the well-known routing problem called
Capacitated Vehicle Routing Problem (CVRP) and the
variant of the packing problem called Container Loading
Problem (3D-SLOPP). The CVRP seeks to perform a set of
routes starting and ending at a central depot. The CVRP
could be defined as a set of Khomogeneous vehicles (each
one having a capacity QJ, which must satisfy the demand of
a set of N customers. Each vehicle is assigned to at least
one route. A single vehicle must visit each customer one
time. The sum of the demands of the customer visited on
a single route must not exceed the vehicle capacity Q. The
objective is to minimize the sum of the traveling cost for the
performed routes.

The 3D-SLOPP must be solved for each performed route.
The 3D-SLOPP consists in loading a set of small boxes
B inside a container. The set B has different sizes and
limited amounts. The objective is the maximization of the
available occupied space. This problem is also well known
as the three-dimensional knapsack problem (3D-SKP) or
Three-Dimensional Single Large Object Packing Problem
(3D-SLOPP). For the 3D-SLOPP, the orientation and the
fragility of the boxes, the load stability, and the sequence
of the load must be considered. Several variants of the
3D-SLOPP are obtained by considering different type of
packing constraints. In this work, we also study the variant
of the 3D-SLOPP problems by taking into account that the
vehicle capacity Q is equal to its volume, which is attractive
for many real applications of the industry. The integration of
both problems arises to the well-known problem 3L-CVRP,
i.e. Three-dimensional Loading Capacitated Vehicle
Routing Problem.

In this work, we have proposed a matheuristic algorithm,
which is computationally compared with the most
effective heuristics for the 3L-CVRP. The new proposed
approach obtains competitive results on the classical set
of benchmarking instances for the 3L-CVRP. The main
contribution of this paper is to propose a new successful
matheuristic approach for the 3L-CVRP by considering a
combination of exact techniques with a GRASP approach
which guarantees the loading constraints. The proposed
algorithm is a novel matheuristic approach which combines
a GRASP approach with exact algorithm for getting good
results. While a combination between exact techniques
and Tabu Search (TS) has been proposed in the literature
for the CVRP (see e.g. [1]) no attempt has been proposed
for combining exact techniques with a GRASP scheme for
the 3L-CVRP. The former algorithm is able to improve the
best-known solutions found by the most effective published
algorithms on a set of instances taken from the literature.

The paper is organized as follows. The literature associated
to the Capacitated Vehicle Routing Problem and the
Packing Problem is described in Section Il. Section Ill gives
a formal definition of both problems into the 3L-CVRP and
the literature proposed to solve it. Section IV presents a
detailed description of the framework used by the proposed
algorithm. A computational comparative study on the
classical set of benchmark instances from the literature is
provided in Section V. Finally, Section VI contains concluding
remarks and future research.

2. Literature review

The vehicle routing problem considering load constraints
is a relative new interesting research subject. The interest
of researchers and practitioners is motivated by the
intrinsic difficulty in this area, which combines two NP-hard
problems: the Capacitated Vehicle Routing Problem and the
Container Loading Problem.

2.1. Capacitated Vehicle Routing
Problem (CVRP)

The Capacitated Vehicle Routing Problem (CVRP) seeks
to find a specified number of cycles [routes] to fulfill the
demand of a set of vertex (customers) by starting and
finishing at a central depot located in the vertex 0. A
complete formulation of the CVRP proposed in [2], which
is well known as formulation of two indices is shown as
follows:

The CVRP could be described as graph theory problem. Let
G=(,4) be a complete graph, where V =1{0,12,..,n} is
the vertex set and A is the arc set. Vertices V ={0,1,2, ...,n}
correspond to the customers, whereas vertex 0 corresponds
to the depot. A non-negative traveling cost ¢;;,is associated
with each arc (i,j) € A. The traveling cost between (i, i) is
not allowed. Therefore, the cost ¢; =+ foralli € V. |n
particular, this paper considers the symmetric version of
the CVRP (SCVRP). Therefore, ¢;j = Cj;for all (L)) €4, and
the arc set could be replaced by a complete set of undirected
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edges, E. Each vertex i €V is associated with a known
nonnegative demand, d;, to be delivered. Note that the
depot has a fictitious demand dy, = 0. Given an edge
e €E, let a(e) and B(e) denote its endpoint vertices. Given
a vertex set SSV, let §(S) and E(S) denote the set of edges
e € E that have only one or both endpoints in S, respectively.

In addition, let d(S) = Xiesd; be the total demand of the
set S.

Asetof K identical vehicles, each with capacity Q, is available
at the depot. To ensure feasibility we assume that d; < Q for
each i=1,..,n. Each vehicle performs only one route. For
a set SV \{0}, we denote by r(S) the minimum number
of vehicles needed to serve all customers in S. Often, r(s)
is replaced by the trivial Bin Packing Problem lower bound
a®)

[T]' The BPP allows determining the minimum number

bins (vehicles), each one with capacity Q, required to load
all the n items, each with nonnegative weight d;,i =1, ..., n,
being NP-hard in the strong sense.

The CVRP consists of finding a set of K performed routes
(each one corresponding to one vehicle) with minimum cost,
defined as the sum of the costs of the arcs belonging to
the performed routes. The CVRP is subject to the following
constraints

i. Each route ends and begins in the depot
vertex

ii. Each customer vertex is visited by exactly
once; and

iii. The sum of the demands of the vertices
visited by a route must not exceed the vehicle
capacity, Q.

The model employed in this paper, is a two-index vehicle
flow formulation that uses binary variables x to indicate
if a vehicle travels an arc (i.) in the optimal solution (7).
In other words, variable Xij takes value 1 if arc (i,j)) €E
belongs to the optimal solution and takes value 0 otherwise.
The objective function is to minimize the cost of the traveled
arcs (1). The Egs. (2-6) control the visits to the clients and
the subtour elimination.

minimize E E CijXij;

ieV jev (1
subject to
inj:l VJEV\{O]
ieV [2]
injzl VIEV\{O}
jev (3)

Zxﬁj:K

e (4)

inu=K

ieV (5)

DN xy 2r(s) vSEV\(Ohs £ 0

i€S jes (6)

xij [S {0,1} Vi,j eV [7]

Constraints (2) and (3] correspond to the flow constraints of
the set V(customers] i.e., these constraints guarantee that
each customer must be visited by one single vehicle only
once. Constraints (4] and (5) ensure that the same number
of routes arrive and leave the depot 0. Eq. (é) consider the
subtour elimination constraints. According to [2], this set
of constraints could be interpreted as follows in the Eq. (8):

ZZxU < ISl —=7r(S)

ieS jeS [8]

However, the set of subtour elimination constraints require
special considerations due to its combinatorial complexity
when the number of customers is increased. Therefore, we
have considered the set of constraints (8] for the proposed
algorithm. In particular, we added the required cuts to
eliminate subtour until a feasible solution is found during
the branch and bound procedure.

Note that the considered model is able to represent only
the CVRP problem. For getting a global representation
of the 3L-CVRP problem, we have considered the set of
constraints (9], which are added iteratively together with
the subtour elimination constrains. This set of constraints
guarantee the feasibility of the packing requirements (such
as multi-drop constraints, among others). Let U € V' \ {0}
be a subset of customers with a cumulative demand,
which cannot be packed in the vehicles by considering
the sequential packing or multi-drop constraints. All the
possible subsets of customers who can not be packed, are
controlled by constraints (9):

ieU jeU [9]

By adding this set of constraints, the mathematical
model could represent properly the 3L-CVRP problem.
The level of difficulty of the solution of the model (1) - (9)
increases when the number of nodes increases, due to the
combinatorial explosion of possible subsets of customers
controlled by Eq. (8). The high complexity of the CVRP has
led the development of the various algorithms on exact and
approximate methods. The CVRP has been investigated
since the decade of the 50’s. Reviews of the CVRP are
presented in [2-4]. In [5], a vehicle routing problem arising
in supply chain management is proposed (including the
3L-CVRP).
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2.2. Loading and Backing Problem

In realistic loading and packing problems, the demand of
the customers is not simply characterized by a quantity (as
in the case of CVRPJ, but it also is determined by its shape
and location in the space. In this case, it is necessary to
ensure that an item to be carried on must be placed into the
space used by a vehicle. These constraints are concerned
with the multidimensional rectangular packing problems,
which originate as an extension of the one-dimensional
Bin Packing Problem (BPP). The BPP can be described
as the problem of placement of a set of segments without
overlapping. A general introduction to the rectangular
packing research area is given by [6-9].

3. Problem definition

The 3L-CVRP considers that three-dimensional items
generate the full weight of demand of customer
i(i=12,..,n). Each itemI; (I =1,2,..,m), has a width
wy, a high h;; and a length [;;.The loading surface
of each vehicle has a width W, a high H and a length
L. Let S(k) <€{1,2,..,n}, be the set of customers visited by
the vehicle K. The 3L-CVRP imposes a packing constraint
without any variety of three-dimensional overlap of all
items ordered by each customer S(K) within the cargo
space of dimensions WxHxL The packing constraints for the
3L-CVRP are characterized by the following aspects:

e QOrientation: Items have a fixed orientation or can
be rotated 90 © in the horizontal plane by keeping
off the rotation of the vertical orientation.

e Fragility: An item(I;) could have a fragility (f). If
fa is equal to 1, I;; is fragile, and O otherwise. In
this case, non-fragile items cannot be placed over
fragile items.

e Areasupport: Each item li is packaged over other
items. Let A be the area of the bottom of product
Iu. The packaging is feasible only if 4 > aw;l;,
where a is a given threshold (0 <a<1)and
represents the minimum portion of the area of the
box, which is contacted with box of item fii (item
for which the current box is supported).

e Sequential load: When an item is unloaded, there
must be a chronological succession of straight
movements in the direction of the rear of the
vehicle, allowing the process of unloading without
moving any other item. In other words, any item
requested after customer i may be placed on I;; or
between I; and the backside of the vehicle.

This work considers all the packing constraints by
characterizing them as previously expressed. It is worth to
note that this characterization considers many assumptions
limiting the functionality and applicability on a real context.
For example, the constraint of fragility could be formulated
as a binary expression depending of the load-bearing
strength and the orientation of the boxes [10].

The previous published works for the 3L-CVRP have
tried to eliminate some of the packing constraints in
order to distinguish the most critical. In [11], the authors
indicate that the loading sequence is usually the dominant
constraint. In this work, other features of the problem are
studied; particularly, the fact of the vehicle capacity Q is
usually specified as a parameter without any relation to the
type of load. Therefore, this aspect implies that the value
of d(i) [demand for each customer) assumes that all the
boxes for the set of customers have the same density of
material with different demand; i.e. each customer has
different types of boxes with different density but all the
boxes must have the same density.

There are two type of assumptions respect to the vehicle
capacity constraints:

e Transportation of all the type of material density of
boxes for each customer

e Transportation of one type of material density of
the boxes (which is assumed as 1, being the weight
of each box equal to its volume).

The previous published works only consider the first
assumption. We have considered both assumptions (see
results of Matheuristic column and Matheuristic (3L-VRP)
column in Table 1). Indeed, one contribution of the proposed
work is to examine the effect of the density equal to 1.
Consequently, for the second assumption, the new value of
d(s) will be d(s) will be d(s) = Ei 5 Wiliuh”and the new
vehicle capacity @ = W XL xH.

All the set of packing constraints are modeled and linked
with the transportation model in [12], but due to the high
complexity of the model, the proposed methodology is
inadequate for solving medium and large size problems.
In this work, a GRASP algorithm within the mathematical
model guarantees these constraints, allowing the solution
of real problems of the companies. Several approximate
algorithms have been proposed to solve the 3L-CVRP.

The problem of 3L-CVRP by considering time window
constraints is proposed in [13]. In this work, several
constructive heuristics are addressed. In [14], an extension
of the previous described work [13] is presented. In
particular, a multi objective scheme is proposed by
considering the following objective functions: minimizing
the number of vehicles, minimizing the total travel distance,
and maximizing the used volume.

In [15], a Tabu Search algorithm is proposed for solving the
3L-CVRP. In this work, for each neighborhood solution of
the vehicle routing problem, the payload is determined by
another Tabu Search scheme for the Three-dimensional
Strip Packing Problem (3SPP). If the resulting load exceeds
the capacity of the vehicle, the solution is accepted by
considering a penalization scheme. Other Tabu Search
algorithm has been proposed by [16]. The loading problem
is solved by a heuristic for the minimal waste of space.
Finally, a tabu search algorithm solves the corresponding
routing problem. [17] propose a generalization of the three-
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dimensional for the bi-dimensional case. In [18], an Ant
Colony Optimization (ACO) is presented for the 3L-CVRP.
Heuristic approaches for which the vehicle routing problem
is solved by metaheuristic algorithms based on population
are given in [19, 20]. In [19], a bee metaheuristic algorithm
with a Tabu Search is proposed for the 3L-CVRP. A heuristic
algorithm for the loading problem with a genetic algorithm
for the 3L-CVRP has been proposed in [20]. In [21], two
heuristics for the packing problem are improved and
introduced within a Tabu search scheme for solving the
considered problem. Experiments computational show the
efficiency of the proposed approach.

An uncapacitated 3L-CVRP is introduced in [22]. Two
heuristic approaches to solve this variant of the original
problem are proposed and compared. A two-stage heuristic
for solving the problem considered in [13] is presented in
[23]. The first stage optimizes the packing problem, while
the second deals with the aspect of the corresponding
routing problem. Computational experiments show the
high efficiency of the method.

In [24], the author introduces an efficient hybrid approach
based on a Tabu search algorithm for the vehicle routing
subproblem. In the proposed approach, the generated
routes are ordered in a list, which is sorted increasingly
according to the travelling cost. For each solution in the
resulting list, a tree search algorithm for solving the loading
subproblem is performed. Computational experiments
show the effectiveness of the proposed methodology.

Note that all the proposed approaches proposed for the
3L-CVRP are based on heuristic schemes except for [24].
In this paper, we propose a matheuristic algorithm, which
differs from [24] because the routing problem is solved by an
exact method and the packing problem by an approximate
algorithm. The proposed algorithm is explained in the
following sections.

4. Matheuristic approach

The general solution strategy proposed addresses both
problems separately: the Capacitated Vehicle Routing
Problem (CVRP) and the Three Dimensional Container
Loading Problem (3D-SLOPP). In particular, for each
solution of a CVRP, a validation of the packing constraints
of the cargo of the containers for each route is performed.
The main strength of the proposed approach is that
the computational effort is mainly focused on the exact
solution for the CVRP, while the loading problem is solved
by a GRASP approach of high performance. The GRASP
approach is calibrated according to the characteristics of
the items to be delivered, i.e., the cumulative demand of the
customers covered by each route.

The mathematical model of two-index (1-9] is relaxed by
eliminating the capability and the subtour elimination
constraints. The proposed approach gradually inserts
these constraints during the branch and cut scheme in
order to obtain feasible solutions. Indeed, the proposed

algorithm begins with an initial solution generated by the
well-known Clark & Wright algorithm and validated by the
GRASP algorithm. The objective function value of the initial
solution is used as upper bound of the proposed approach.

The algorithm allows infeasible solutions for the 3L-CVRP
due to that the first feasible solution found during the
search corresponds to the optimum of the problem.
In particular, when a feasible solution for the routing
problem is found, it provides a lower bound for the original
problem. Therefore, it can be used as initialization for the
3L-CVRP during the search. The upper bound is given by
the corresponding load demand for the K performed routes
(the problem is studied as a bin-packing). However, the
effort of the proposed algorithm is totally oriented to find
feasible solutions for the vehicle routing problem guided by
the minimization of total travelling cost. Although the two-
index model (1-9) requires a notable computational effort, it
allows articulating properly the constraints related with the
management of the loading of the boxes in the container.

The 3L-CVRP has been addressed by applying an exact
method (branch-and-cut) for the vehicle routing problem
solved by ILOG Concert Technology and CPLEX. The packing
problem is solved by a GRASP approach. Initially, the relaxed
version of the model (1-9] is solved without the capacity and
elimination of subtour constraints. Then, these constraints
are added iteratively to the branch and cut process together
with the packing constraints during the search procedure.
The algorithm finishes when a solution is found for the
model involving all the constraints. The matheuristic
algorithm is described as follows:

4.1. Exact method for the Vehicle
Routing Problem

In the proposed algorithm, we have considered the two-
index model (1-9) to solve the subproblem of CVRP. This
formulation is based on subsets of S customers to control
the appearance of subtours and the capacity constraints of
the vehicles. Constraints (6] or (8) are eliminated obtaining
a relaxed model (M.

In particular, the proposed approach starts by solving the
M.z @nd by keeping its optimal solution in S. Then, the
current optimal solution for the M, . is checked to find
violations of capacity constraints (L,]Jor the presence
of subtours [Lg). If this solution is infeasible, the
corresponding cuts are added to avoid infeasibilities by
the function AddCutsToTheModel (Mcygp, Ls, Lo, R;). |f the
solution is feasible, the procedure must check the packing
of demand for each route by a GRASP approach, which
determines whether it is possible to pack the boxes into the
vehicles with a pattern of loading without rearrangement.
In addition, if the inverse route (inverse position of the
customers) is impossible to pack, the considered routes
must be prohibited (L) . The pseudocode of the proposed

algorithm is detailed in Figure 1.
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Data: CVRP Mathematical Model My gp, Initial
solution with a modified Clarke&Wright Savings
(packing feasible) Ry, 3L-CVRP Solution R,
Subtours List L, List of routes with unfeasible
packing L., Time of execution for the incremental
model in seconds T,

Result: Optimal and feasible solution R, for the

3L-CVRP

Ry + ModifiedSavings;

Initialize mathematical model My zp without the

constraints with combinatorial explosion;

Start timer T.;

while (L, # 0 or L, # () and T. < 3600 do

Lg+0,Ly, +0;

R, + Solve(Mcvrp, Starting point Rp);

L, <+ GetSubtours(R,);

if L, = () then

for Fach Route r of R, do
| L, + GRASP(r);
end
end
AddCutsToTheModel{ Mcv pp,Ls,Ly);

end
return RR;;

Figure 1 Matheuristic Branch & Cut - GRASP
Algorithm

In order to avoid the appearance of routes violating the
packing constraints, the cuts Xy Xjepxy < (U] -2
(9) are added to the model M,,,. The edges of the routes
with customers belonging to U (subset of customers of the
infeasible routes by packing constraint] on a determined
sequence will be restricted. However, several sequences of
the customers are evaluated for a given route seeking to
find feasible solutions by considering packing constraints.
Figure 2 shows an example of the performed packing cuts:

Unfeasible route for packing constraints

Route a

\ Route b /,/
\. / /
o O
\ Route ¢

Figure 2 Solution obtained with the relaxed
model

A solution for the relaxed M, ., could consider subtours
and also routes that are unfeasible respect to the packing
constraints (see Route a in Figure 2]. The customers

belonging to Route a cannot be packed by the violation
the sequential loading constraints, i.e., the route 0 - 1
-5-8-11-7-0 must be eliminated. However, several
permutations of Route a (example 0 -7 - 11 -8 -5 -1
- 0) are examined in order to check feasible solutions for
the packing constraints. If any permutation of the route
is possible to pack, its edges are considered for the next
iterations of the Matheuristic. Therefore, the customers
belonging to the unfeasible Route a make up the set
U=1{158117}, U<V \{0}and |[U| = 5. Then, according
to the Eq. (9], the following cut (10) is applied:

x15—l—x58—l—x311+x117 <5-2

X15 + X538 +Xg11 + X197 <3 (10)

Consequently, any subsets of those edges are allowed,
but the complete route sequence in the initial order is
restricted on the following iterations once the model
M, ., applies the cut (10). This process iterates on feasible
solutions for the vehicle routing problem, but infeasible
for the three-dimensional container loading problem. The
optimal solution is found when the entire load of the routes
of the optimal solution for the CVRP is also feasible for the
3D-SLOPP.

4.2. GRASP approach

In this work, we have considered an adapted version of the
GRASP (Greedy Randomized Adaptive Search Procedure)
algorithm presented in [11]. The proposed approach is
based on the representation of maximum spaces, which
allows obtaining feasible solutions by the control of
the generation and the upgrade of these spaces in the
constructive phase. The GRASP satisfies the constraints
of the orientation of the boxes, load-bearing strength, the
limit of the weight, the stability of the load, and the multi-
drop patterns (loading with multiple destinations).

The GRASP algorithm was developed by [25] to solve difficult
combinatorial optimization problems. Different researches
show its quality and its robustness [26]. GRASP is an iterative
procedure that combines a constructive phase and an
improvement phase. In the constructive phase, a solution is
built step by step, by adding items. The improvement phase
is iterative, greedy, random and adaptive. In the following
subsections the constructive phase, the random strategy,
the moves developed for the improvement phase, and the
diversification process, are described. The proposed search
strategy allows randomizing the choice of the type and
number of boxes to be located at each maximal space. The
improvement phase applies several moves (compression of
loading boxes and the refilling process).

4.3. Constructive algorithm

The constructive algorithm is based on the idea proposed
by [27] for the classic container-loading problem. The main
difference respect to this algorithm is the consideration
of vertical stability, which must be guaranteed by packing
patterns with full support. In addition, a special treatment
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to upgrade structures of the remaining available spaces is
considered. Thisaspectisimportantdue tothe management
of the empty spaces is not longer trivial by trying to remove
some items.

The constructive algorithm is based on the utilization of the
maximal spaces. In this case, each selected box is packed
in a new space, creating three new maximal spaces (see
Figure 3). The constructive algorithm uses an updated list
(FS) of the maximal spaces and a list B that contains the
boxes of the current customers, which are not ready to be
packed. The steps of the constructive algorithm are defined
below.

|
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Figure 3 Box location into an empty space
generating three maximal sub-spaces

Step 0: Initialization of FS. A list FS of empty spaces has
been created for locating the selected boxes. Let B=B,, ...,
B,, B be the list of the set of remaining boxes to be packed
for a given customer.

Step 1: Choose a maximal space of FS. Since FS represents
the maximum empty spaces with the largest available
parallelepipeds to locate the boxes, it is necessary to
determine a mechanism of selection of spaces based on
some criteria of quality or packing strategies. In this paper,
two criteria are proposed: choose the maximum space with
the minimum distance to the backside of the container and
choose the maximum space with the minimum distance to
the roof of the container. In addition, the lower rear corner
of the container is selected for the selected space as a
reference to locate the boxes in the empty space.

Step 2: Select the boxes to be packed. Once the maximal
space FS"has been selected, it is necessary to consider the
sorted list B of the first box i that fits inside FS”. If there are
multiple boxes type i, it is mandatory to generate each of
the possible layers. Therefore, the boxes must be packed in
arrays of columns or rows by combining the different axes.
As in [27], two criteria are considered to select one of the
configurations of boxes:

e Select the layer of boxes that produces the largest
increase in the objective function (maximum
volume). This is a greedy approach filling the space
with the layer of a greater volume of the boxes.

e Select the layer of boxes that best fit in the
maximum space. This is a criterion for which
the distances between each side of the layer of
boxes and each face of the maximum space are
computed. The distances of each configuration
are ordered in non-decreasing way for selecting
the configuration with the lowest distance (which
best fits to the space).

Step 3: Update the list FS. The packing process produces
new maximal spaces FS to be replaced in the list FS, except
for the case either the box or the layer fits exactly in the
space FS. Moreover, as the maximal spaces are not disjoint,
the packed box (or the layer) can be intercepted with other
maximal spaces, which could be reduced or eliminated.

The list FS is verified and updated once the new spaces
have been added and some existing spaces have been
modified. The list Bis also updated and the maximal spaces
that cannot locate of any of the boxes that still remain to
pack must be removed from S. If FS = @or B = @, this
phase is finished. Otherwise, if there are still boxes to be
packed of the current customer, the algorithm must return
to step 1.

The list must be verified and the possible options be
removed of the list, once the maximum spaces have been
added and some existing spaces have been modified.

Step 4: Update the list S for a new customer. When the
current customer has been packed, the maximal spaces
must be updated depending of the criterion of multi-drop.

e Visible: The maximal spaces that are completely
invisible from the door of the container must be
removed from the list. In addition, the maximal
spaces having a visible and an invisible part must
be modified.

e Achievable: The unreachable spaces must be
removed or updated.

4.4. Randomization

A layer is built according to the selected criterion
(maximum volume or best fit) for each type of box and
for each allowed orientation. Each layer is called as:
configuration or candidate. When the full range of potential
layers is constructed, a restricted list of candidates is
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considered by selecting one of these layers randomly.
We used a Restricted Candidate List (RCL) according to
a determined value (this means that the candidates are
sorted according to their quality value). If the value of
the objective function of the candidate is greater than a
threshold (8), the candidate is located in the list RCL. In the
process of building layers, we have considered the value
C for each candidate, its lowest (C_ ] value and its highest
value (€, _]. The candidate is accepted into the RCL only if it
satisfies € = Cpyin + 6(Cnax — Cmin)- The parameter
8 € [0,1] controls the size of the list of candidates. If §=0,
allthe configurations are randomly selected and considered
to the list. In contrast, §=1 indicates a completely greedy
selection, because only the best candidate would be the
only element in the list and it always be chosen. For values
of 0 <8 =<1, the number of configurations in the list
is not predefined, depending on the relative values of the
candidates. In this case, § takes randomly one value of
11 possibilities 0, 0.1, ..., 0.9 and 1. This value is selected
depending on its performance in previous iterations.
Indeed, if the value of § has improved the current solution
previously, the probability of its selection is increased and
decreased otherwise.

4.5. Improvement

The improvement movement consists of eliminating the last
k% boxes packed in the complete solution. We choose the
value k at random from the interval (30, 90) as in [11]. The
removed items plus the items that were left unpacked in
the solution are then packed again using the deterministic
constructive procedure guide by the objective function of
Best-Volume. In this call of the deterministic algorithm, we
can use the objective function Best-Volume. We consider
that a solution has improved if the total volume of the
packed boxes has increased.

The improvement phase is only called if the solution of
the constructive phase is considered to be promising, that
is, if it is considered a good starting point for improving
on the best known solution. Therefore, we only consider
those solutions that are above a certain threshold. At the
beginning, the threshold takes the value of the first solution
of the constructive algorithm. Then, if at an iteration the
solution value is greater than the threshold, we update this
threshold to this value and go to the improvement phase. If
the solution value is lower than the threshold, the solution
is not improved and the reject counter [niter) is increased.
When the number of rejected solutions is greater than a
value maxFilter, the threshold is decreased according to the
expression:

threshold = threshold — Al1+threshold) where A is set at 0.2
(as in [28]), and maxFilter = 50% total iterations.

Figure 4 shows the GRASP approach used to solve the
packing subproblem of the proposed algorithm. The GRASP
Algorithm begins by selecting one of the empty spaces (FS),
and then the list of layers of boxes (C] that fit in the space
FS is generated. Then, the list Cis reduced to the Restricted
Candidate List (RCL). One element is randomly selected of
the list C,. The layer C is located generating the pattern P

and forcing to update the lists of maximum spaces and
the lists of the remaining boxes (FS and B, respectively).
When all the boxes demanded by a customer (B = @] are
assigned, the objective function is analyzed determining its
quality. If it has good quality, the best solution found so far
is updated. If there are still empty remaining spaces and
there are customers for packing, then the maximum space
list must be updated by changing customers (it should be
necessary to eliminate the spaces that violate the multi-
drop constraints). Finally, if there are no empty spaces, the
process finishes.

Data: Lists of Spaces F'S, List of Boxes B, of each
Customer ¢ and List of Packing Patterns P

Result: Feasible or Unfeasible packing.

Initialize FS = OriginalContainerSize, B =

ListO f BoxesO f EachCustomer, P =}

for | + 1..JterationsNumber do

while 5 # () do

while 5. # () do

Space F'S; = SelectSpaceByCriteria(F'S);

List g = GenerateLayersList(F'S;, B);

List RCL = BuildRCL(C's.8);

Layer ' = SelectLayerRandomly( RC'L);

Packing Pattern P =

LocateLayer-Space(C,FS;, P);

List F§ =
UpdateListOfMaximalSpaces(C',F"S);
LI'\i f.{ =
UpdateListOfRemainingBoxes(C', B);
end
List IS =

UpdateListOfSpacesByCostumerChanging(F.S Multi
dropType).

end

if f () > threshold then

| Packing Pattern P = ImproveFinalPattern(P,k);
else

| threshold
end

threshold = X (1 4+ threshold)

end

if 5+ () then

| return Feasible;
end

return Un feasible;

Figure 4 GRASP Algorithm

5. Computational results

We have considered the classical set of benchmark
instances (27 instances) to validate the performance of
the proposed methodology. The proposed matheuristic
has been compared with [15, 17-19, 24, 29]. Several best
known results have been improved. The computing time of
the proposed methodology is quite high compared to the
published approaches. The benchmark set for the 3L-CVRP
has been taken from the library published in http://or.dei.
unibo.it/instances/three-dimensional-capacitated-vehicle-
routing-problem-3l-cvrp.

Table 1 shows the total cost of the performed routes to
deliver all the boxes for the customers (objective function
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of 3L-CVRP). The Figure 5 shows the routes obtained for the
proposed algorithm. Figures 6-9 show the packing patterns
corresponding to the routes of the solution for Instance 1.
As is shown, the packing patterns satisfy the constraints
of static stability, brittleness of the boxes and unloading
without rearrangement (multi-drop or LIFO policy).

13

14

Figure 5 Routing for the first instance with
feasible packing

Figure 6 Route 3-8-7-6

Figure 7 Route 4-13-14

Figure 8 Route 9-10-15-5-12

Figure 9 Route 11-2-1

The proposed methodology outperforms the quality of
the solution found by the previous published algorithms
presented in the literature. The computational times are
high due to the use of exact method for the vehicle routing
problem. The solutions obtained for the integrated 3L-CVRP
problem by including packing constraints, make difficult the
solution of the generation of routes to deliver products to the
customers. The Figure 6 shows the performed routes for
Instance 1. Note that some routes are not convex envelopes
as in the traditional CVRP (see route located to the right in
Figure 4). In addition, the performed routes clearly indicate
a worse objective function for the CVRP. Indeed, the CVRP
could be considered as a lower bound for the vehicle routing
problem of the 3L-CVRP.

For the case of transportation of one type of structure of the
boxes, the obtained results of the proposed approach respect
to the packing constraints (see column Matheuristic (3L-VRP)
in Table 1) are aligned with the conclusions of [10]. Indeed,
the obtained solutions for the benchmarking set are at least
of the same quality than the case where all the type of density
of boxes for each customer [see column Matheuristic of Table
1). In this paper, the proposed algorithm considers infeasible
solutions, iteratively by worsening the transportation costs
until reaching a feasible solution of minimum cost packing
the demand of customers of the vehicles.
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6. Concluding remarks and
future research

In this paper, a successful matheuristic algorithm has been
proposed for solving the 3L-CVRP. The hybrid methodology
decomposes the 3L-CVRP into two subproblems: the
Capacitated Vehicle Routing Problem (CVRP) and the Three-
dimensional Container Loading Problem (3D-SLOPP). The
proposed approach combines a branch-and-cut algorithm
for solving the vehicle routing problem (CVRP) with a
GRASP approach in order to find a feasible solution for the
3D-SLOPP. The proposed algorithm has been compared
with [15, 17-19, 24, 29] on the classical set of benchmark
instances proposed for the 3L-CVRP. The results show the
effectiveness of the proposed approach (some new best
known solutions are found).

For future research, we will consider other mathematical
formulations (i.e. three index mathematical formulation)
that can be decomposed by exploiting the benefits of a
brach-and-cut technique or a generation of columns. This
consideration has advantages for solving the CVRP due to
provides the control of the routes individually. In addition,
it is possible to remove easily the capacity and subtour
elimination constraints. However, it is necessary to make
a careful treatment of this model because it implies an
increase remarkable of the number of variables.
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