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Estimation of the neuromodulation parameters 
from the planned volume of tissue activated 
in deep brain stimulation

ABSTRACT: Deep brain stimulation (DBS) is a therapy with promissory results for the 
treatment of movement disorders. It delivers electric stimulation via an electrode to a 
specific target brain region. The spatial extent of neural response to this stimulation is 
known as volume of tissue activated (VTA). Changes in stimulation parameters that control 
VTA, such as amplitude, pulse width and electrode configuration can affect the effectiveness 
of the DBS therapy. In this study, we develop a novel methodology for estimating suitable DBS 
neuromodulation parameters, from planned VTA, that attempts to maximize the therapeutic 
effects, and to minimize the adverse effects of DBS. For estimating the continuous outputs 
(amplitude and pulse width), we use multi-output support vector regression, taking the 
geometry of the VTA as input space. For estimating the electrode polarity configuration, we 
perform several classification problems, also using support vector machines from the same 
input space. Our methodology attains promising results for both the regression setting, 
and for predicting electrode active contacts and their polarity. Combining biological neural 
modeling techniques together with machine learning, we introduce a novel area of research 
where parameters of neuromodulation in DBS can be tuned by manually specifying a desired 
geometric volume.

RESUMEN: La estimulación cerebral profunda (ECP) es una terapia con resultados promisorios 
para el tratamiento de desórdenes del movimiento. Esta envía estimulación eléctrica por 
medio de un electrodo a una región específica del cerebro. La propagación espacial de la 
respuesta neuronal a esta estimulación se conoce como volumen de tejido activado (VTA). 
Cambios en los parámetros de estimulación que controlan el VTA, como la amplitud, el 
ancho de pulso y la configuración de polaridad del electrodo pueden afectar la efectividad 
de la terapia ECP. En este estudio, desarrollamos una metodología novedosa para estimar 
los parámetros de neuromodulación de ECP adecuados, a partir del VTA planeado, que trata 
de maximizar los efectos terapéuticos y minimizar los efectos adversos de la ECP. Para la 
estimación de las salidas continuas (amplitud y ancho de pulso), usamos regresión de soporte 
vectorial de múltiples salidas, tomando la geometría del VTA como espacio de entrada. 
Para la estimación de la configuración del electrodo desarrollamos varios problemas de 
clasificación, también utilizando máquinas de soporte vectorial para el mismo espacio de 
entrada. Nuestra metodología logra resultados prometedores tanto en el caso de regresión 
como para predecir los contactos activos del electrodo y su polaridad. Combinando técnicas 
de modelamiento de neuronas biológicas junto con aprendizaje de máquina, se introduce 
una novedosa área de investigación donde los parámetros de neuromodulación en ECP 
pueden sintonizarse manualmente especificando un volumen geométrico.
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1. Introduction
Deep brain stimulation (DBS) is a therapy used for the 
treatment of neurological conditions, such as Parkinson’s 
Disease, essential tremor, and dystonia, among others. It is 
considered when drug therapy cannot suitably control the 
movement disorder symptoms. DBS involves the placing of 
an electrode within a target brain region (the basal ganglia, 
the thalamus, or other subcortical structures). Although 
DBS is an effective therapy, understanding the effects of 
neuronal response to electrical stimulation (its action 
mechanisms) remains unclear [1-3]. The fundamental 
purpose of DBS is to modulate neural activity with applied 
electric fields [4]. In this regard, a measure of the effects of 
deep brain stimulation is to estimate the volume of tissue 
activated (VTA), namely, the spatial spread of direct neural 
response to external electrical stimulation via a deep brain 
stimulation (DBS) electrode [5, 6].

Once the DBS electrode is implanted, one essential step is 
the configuration of the neurostimulation parameters. The 
neurostimulation is carried out by different active contacts in 
the electrode. Each active contact generates a rectangular 
pulse function, that shares the same amplitude, pulse width, 
and frequency. Furthermore, a contact could be active or 
inactive. If a contact is active, it can behave as a cathode or 
anode. Therefore, the neurostimulation parameters are the 
amplitude, pulse width, and frequency of the rectangular 
pulse function, and each lead contact configuration 
(cathode, anode or no stimulation). Although the frequency 
is an important parameter in DBS, it is considered that it 
does not have an influence in VTA estimation [7]. Accordingly, 
in this paper, we consider as neurostimulation parameters 
the amplitude, and pulse width of the rectangular pulse 
function, and the configuration of each lead contact.

Variations in the electric stimulation parameters affect 
the spread of the activation, which can have serious 
consequences on therapeutic effects, or induce side effects 
when such parameters are not carefully adjusted [8]. The 
process for manually getting the right parameters can 
be quite time-consuming since it usually relies on the 
experience of the medical specialist, commonly demanding 
several clinical sessions for a successful result. Therefore, 
in order to achieve the desired therapeutic benefits, 
and to reduce the amount of time spent by the patient 
and the specialist in clinical sessions, it is important to 
find a procedure for optimally adjusting the DBS device 
parameters.

Although there is a huge amount of literature on the subject 
of computing the VTA given a specific set of neuromodulation 
parameters [5-7, 9], the inverse problem, this is, the problem 
of computing a set of specific neuromodulation parameters 
given a desired VTA, has received less attention. A previous 
study about the estimation of VTA uses an approach based 
on artificial neural networks to characterize the stimulation 
parameters adjustment effects over DBS [10, 11]. A system 
is provided in [11], which seeks the correlation between 
the calculated, and the desired VTA, that allows them to 
determine the appropriate stimulation parameters for the 
desired volume. The drawbacks of this approach are that it 
can not appropriately represent high stimulation parameter 
values and/or complex electrode configurations (more than 

two active contacts), and the assumption of an isotropic 
tissue medium.

In this work, we propose a novel methodology which allows 
us to find a suitable configuration of the neurostimulation 
parameters that attempts to maximize the therapeutic 
benefits, and to minimize the side effects of the VTA for DBS 
treatment. We first employ a computer simulator of the 
VTA generation process, where the input data corresponds 
to different configurations of the neuromodulation 
parameters, and the output data corresponds to the 
graphical representation of the VTA. The simulator uses a 
model to compute the extracellular potential generated by 
the DBS, plus a model for estimating the neural activation 
that takes place due to the electrical stimulation. We refer 
to this step as the direct problem (it is also known as the 
forward problem). We then solve an inverse problem that 
takes as input space the graphical representation of the 
VTA, and the output space corresponds to the values of the 
parameters that we want to adjust. To solve the inverse 
problem, we employ a framework based on support vector 
machines using them either for multi-output regression 
(for simultaneously tuning the amplitude and the pulse 
width), or for classification (for tuning the configuration 
of each contact). The relevance of the SVM underlies in 
its robustness for generalization, and its ability for easily 
dealing with high-dimensional input spaces.

To the best of our knowledge, this is the first attempt 
to compute the neurostimulation parameters for DBS 
starting from the desired VTA by the specialist. Results 
are promising and show that the combination of carefully 
specified physiological models together with machine 
learning techniques can be used to tackle a novel problem 
in DBS.

2. Materials and methods

2.1. Direct problem
  
The key neurostimulation parameters in VTA estimation 
are amplitude, pulse width and electrode contacts 
configuration. In this work, we use a clinical DBS electrode 
(Medtronic DBS 3389 electrode, ACTIVA-RC stimulator [12]) 
which offers wide neurostimulation parameter ranges. In 
clinical studies, the DBS amplitude should not exceed a 
certain value that depends on the neurostimulator, e.g 3.6 V  
for the Soletra, and 5.5 V for the Kinetra neurostimulator. 
To observe changes in patient response, 0.5 V steps in 
amplitude levels are also needed [13].

The solution of the direct problem in VTA uses two models, 
the first one to compute the extracellular potential 
generated by the DBS electrode, and the second one 
to estimate the neural activation in response to the 
electrical stimulation [14]. The model that computes the 
extracellular potential was implemented in COMSOL 
Multiphysics 4.2. (Comsol Inc., Stockholm Sweden) [15], 
and it is used to solve Poisson’s equation by means of the 
finite element method (FEM). The model that estimates the 
amount of neural activation was computed using Neuron 
7.3, configured as a Python module [16, 17]. Figure 1 is 
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a schematic representation of the methodology used to 
obtain the solution of the direct problem.

In what follows, we briefly explain the extracellular 
potential model, and the computation of the volume of 
tissue activated.

Extracellular potential model 

A simplified 3D model of a clinical DBS electrode 
positioned in the middle of a conductive extracellular 
medium with an isotropic conductivity [18] was built in 
COMSOL Multiphysics 4.2., and save as model M-file. The 
electrode model consisted of four conductive contacts

mm in 
diameter and 1.5 mm in height separated by insulating 
bands  mm in height, and of an 
insulating semicircular tip with radius 0.635 mm (Figure 2). 
The conductor extracellular medium consisted of a sphere 
of diameter 10 cm. It was assumed to be homogeneous 
and isotropic with conductivity  relative 
permittivity  and an encapsulation tissue 
layer of 0.5 mm around the electrode with conductivity 
of [7, 19]. The DBS pulse was modeled as a 
rectangular pulse by imposing time dependent Dirichlet 
boundary conditions on the contacts of the DBS electrode 
considered as actives. The remaining contacts were left 
inactive. Dirichlet boundary conditions  were 
also imposed on the boundaries of the extracellular 
medium. Finally, zero current flow conditions were imposed 

on the surfaces of the non active contacts, and insulating 
components of the electrode [7]. The Poisson’s equation 
was used to compute the spatial and temporal distribution 
of the extracellular potential.
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Figure 2 A simplified 3D model of the DBS 3389 
electrode. Four conductive contacts (numbered 
from 0 to 3 and separated by insulating bands), 
and an insulating semicircular tip comprise the 

simplified model
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Figure 1  Graphical representation of the methodology used for solving the direct problem. First, 
the neurostimulation parameters (amplitude, pulse width, and conductive contacts configuration) 

are selected. Then, an extracellular potential model is executed, in the finite element method 
(FEM) software COMSOL Multiphysics 4.2., to compute the spatial and temporal distribution of 

the extracellular potential generated by the neurostimulation parameters. After that, a model of 
multicompartment myelinated axons is implemented, in NEURON 7.3 configured as a Python module, 

to determine axonal response to the electric stimulation. Finally, the volume of tissue activated is 
computed as the volume generated by the active axons
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segments (STIN) between each node. For more detailed 
information, see [22]. The axonal field was modeled as 
fibers of  diameter. The straight axons were oriented 
in four different directions, perpendicular to the axis of the 
electrode, and positioned at a distance between axons of 0.5 
mm in both the vertical and horizontal directions [21]. The 
electrical potential was interpolated from the elements of 
the FEM mesh onto each of the sections that integrated the 
axonal model. 

Computer emulator of the simulation 
model

Solving exactly the model for the multicompartment 
myelinated axons described above is computationally 
expensive. For each neurostimulation parameter 
configuration, running the full simulation model takes 
around one hour. In order to reduce the computational 
complexity of computing 500 times the direct problem, 
we used a computer emulator for the simulation model. 
The computer emulator was based on a Gaussian process 
(GP) classifier. The GP classifier was trained to emulate 
the action of the gold standard for VTA estimation, that is, 
it was trained to determine the spatial extent of neuronal 
activation, predicting which axons were activated by the 
applied extracellular stimulus [23]. The GP emulator 
reduces the computation time to about four mins [23], 
allowing the complete computation of 500 samples in a 
reasonable time. The methodology used for emulating 
the multicompartment myelinated axonal model is 
summarized in Figure 3. Our final dataset is made of 500 
values for the neurostimulation parameters together with 
the 500 geometrical VTAs generated by each configuration.

It is important to clarify that each VTA was estimated for 
the same elements of the FEM mesh with labels {0; 1} 
that determine which of these elements were not activated 
(label 0) or were activated (label 1) (see Figure 4). The 
applied stimulus was different for each sample.

Once the extracellular potential model was built, it 
was run into Matlab 2012a using COMSOL with Matlab 
(COMSOL-Matlab LiveLink) [20]. We automated the 
solution of the Poisson’s equation for several possible 
neurostimulation parameter combinations (Table 1) 
by using an M-file in Matlab. A random sample of 500 
neurostimulation configurations was taken for the available 
parameter values under study (Table 1), where each 
configuration described amplitude, pulse width, and the 
active contacts during the electrode stimulation.

Table 1  Set of possible neurostimulation 
parameters and electrode configuration used in 

this work

Volume of tissue activated

The gold standard for VTA estimation consists in coupling 
the electric potential due to DBS with a model of 
multicompartment myelinated axons distributed around the 
electrode shaft. The volume of tissue activated is computed 
as the volume generated by the active axons. To compute 
the change in the transmembrane potential induced by 
the stimulation, the multicompartment myelinated axonal 
model [14, 21] was implemented in Python 2.7 with Neuron 
7.3 configured as a Python module. Each axon includes 
21 nodes of Ranvier, and 2 myelin attachment segments 
(MYSA), 2 paranode main segments (FLUT), and 3 internode 

Multicompartment
axon model

(random sample)

Electric
propagation

(FEM model)

Gaussian
process

classifier

Gaussian process
emulator for

VTA estimation

Figure 3  Graphical representation of the methodology used to emulate the V TA generated by the 
multicompartment myelinated axonal model. First, the electric potential generated by the DBS 

electrode is computed by means of the finite element method (FEM). Then, the multicompartment 
axon model is executed by a random sample from the total axonal population, in order to simulate of 
the axonal response to the electric stimulation. This information is used to train a Gaussian process 

classifier to emulate the action of the gold standard for V TA estimation
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output support vector regression through the scheme 
proposed in [24, 25]. Although, we could use support vector 
regression for modeling  and  independently, 
we experimentally found that modeling them jointly offered 
better results. This result is expected since in generating 
the VTA, both , and  are correlated. We also 
modeled the contacts  as four different 
classification tasks, using support vector classifiers for 
each of them. The methodology employed for solving the 
inverse problem is depicted in Figure 5.

The subject of multiple-output regression in the context of 
SVMs has been less studied in the literature, and in what 
follows, we briefly summarize the theory behind [24, 25]. 
The theory behind support vector classifiers is well-known, 
and it can be found in different machine learning textbooks 
[26, 27].

For all the SVM configurations (multiple output regression, 
and the independent classification tasks), we use a kernel 
function  based on a Hamming distance 

 between the binary vectors x, and x’, vectors 
obtained from the mesh given by the FEM model. The 
Hamming distance measures the number of positions at 
which the corresponding vectors, x and x’, have different 
symbols. For the SVMs, we also tried the classical radial 
basis function (RBF) kernel, but the results were extremely 
poor. The RBF kernel might be useful when the input space 
is continuous, which is not our case.

Support vector regression for multiple 
outputs

The SVM regression method for multiple outputs that we use 
in this work is an approach, which defines a hyper-sphere 
insensitivity zone, that allows us to penalize only once the 

2.2. Inverse problem

Each geometrical representation of the VTA is described 
using an m-dimensional vector made of zeros, and ones. A 
value of zero in this vector indicates that the mesh element 
of the finite element solution (from the direct problem) 
was inactive due to the particular configuration of the 
neurostimulation parameters. A value of one in this vector 
indicates that the mesh element was active. The value 
of m is determined by the elements of the FEM mesh (in 
our case, m = 177,924), that is, the elements necessary 
to cover a spherical volume of 10 cm centered around the 
subthalamic nucleus, our target brain region for DBS.

As explained in the introduction, we want to map 
the geometrical representation of the VTA to the 
neurostimulation parameters that were used for computing 
that VTA. In short, we want to build a vector-valued 
function f that maps m-dimensional binary vectors x, to 
a six-dimensional vector , where A 
refers to the amplitude of the pulse, W refers to the pulse 
width, and ck refers to the condition of contact k, with k = 0; 
1; 2; 3.

The space of the brain region that we want to cover with the 
VTA leads to vectors x with a dimensionality m greater than 
a thousand, depending of the volume resolution that we aim 
for the VTA. For building functions in such high dimensional 
input spaces, we use a framework based on Support Vector 
Machines, where the computations involved are dependent 
on the number of samples (in our case, less than 500 for the 
training stage), and not on the dimensionality of the input 
space.

For constructing the function   we use two 
types of support vector learners. We jointly model the 
amplitude  and the pulse width  using multiple-

Figure 4 The sphere represents the region of interest (subthalamic nucleus), where the direct problem 
was solved. Elements of the FEM mesh are closer together around the electrode than in other places. 

This is to improve the precision of the solution around the electrode. Green dots are elements labeled 
active (‘1’), and red dots are elements labeled not active (‘0’). We want to clarify that green and red 

dots are not superposed, it is a 3D image snapshot
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computed as  
is the kernel between  and the training set.

Procedure with SVMs

For all the experiments with SVMs (multi-output 
regression, and classification), we performed training 
with seventy percent observations in the dataset, this is, 
350 sample points; and testing, with thirty percent of the 
data, this is, 150 sample points. In the four classification 
problems  we employed the PRTools Matlab 
toolbox [29], with our own kernel function. For each of 
these classification problems, the classes considered were 
three, namely, active contact behaving as anode (label 1), 
active contact behaving as cathode (label -1), and inactive 
contact (label 0). The performance measure that we report 
for classification is the accuracy. For the multi-output 
regression problem, we use the code provided in [30]. The 
performance measure that we report for regression is the 
relative difference between the test value and the predicted 
value (the relative difference between two values x, and y 
is defined as  where  is the absolute 
value of x, and max (x, y) is the maximum value between 
x, and x). In both cases, the experiments were run 20 
times with different training and testing sets to assess the 
performance.

We also evaluate the performance of the different SVM 
in terms of the dimensionality m of the input vectors x, in 
other words, in terms of the spatial resolution of the VTA. 
We start with a dimensionality of  m = 177,924, and then we 
uniformly subsample each vector by factors of 10; 50, and 
100, obtaining input spaces of dimensionalities m = 17,793,   
m = 3,559 and m = 1,780, respectively. Figure 6 shows an 
example of the geometries of the VTA for the different input 
data resolutions considered.

samples that are not placed inside the insensitivity zone for 
solving multiple outputs regression problems [24, 25, 28]. 
Let   be the input vector, and  the output 
vector. The relationship between  x, and y is assumed to 
follow, Eq. (1)

                             (1)

where  a regressor 
 for every output. The function  refers to a 

non-linear transformation to a higher-dimensional space  
.

Given a dataset  the purpose is to find the set 
of parameters  that minimize the objective function 
(Eq. (2))

                 (2)

where C is a regularization constant,  is a 

loss-function, with  
As a loss function , the authors of [25] use a quadratic 
loss (Eq. (3)) with respect to an user defined constant 

                 (3)

An iteratively reweighted least squares (IRLS) procedure is 
used to estimate the parameters W, and b.

The solution of the problem above can also be 
expressed in terms of the vector of coefficients  
for each output, which relates to the original vectors 

 

The prediction  for a new input vector can be 

Figure 5 Graphical representation of the methodology used to solve the inverse problem. First, the 
direct problem is executed several times for different configuration parameters. Then, a dataset 

is built for the neurostimulation parameters together with the geometrical V TAs. This information 
is used to train a support vector machine to obtain the neurostimulation parameters of a specific 

geometry of the V TA

Input data Output dataMethods

Machine learning tool 

Support vector Machine  (SVM)

Amplitude (V)

Pulse width  ( s)

Contact 0 configuration

Contact 1 configuration

Contact 2 configuration

Contact 3 configuration
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We use different statistical tests to study if there are 
differences that are significant among the performances 
obtained in terms of the dimensionality m, for a particular 
classification task, or for the multiple-output regression 
task. First, we apply a Lilliefors test for normality over the 
20 repetitions of each value of m. If the null hypothesis for 
normality is rejected, we perform a Kruskal-Wallis test to 
compare median performances among the values of m, 
otherwise we use ANOVA. If the null hypothesis for equal 
medians is rejected, we perform a multiple comparison test 
using Tukey-Kramer to study further which performances 
in terms of m are different. All the significance levels are 
measured at 5%. Details for this procedure can be found 
in [31].

3. Results

3.1. Direct problem

The main objective of the direct problem is to model a DBS 
electrode inside the brain tissue, onto a region of interest, 
under ideal assumptions, to modulate the neural activity. 
The idea is to deliver an electrical pulse to the target region, 
and then to study the neural response to this stimulation 
that is well-known as VTA. Figure 7 shows the potential 
distribution for a specific neurostimulation parameter 
setting and the corresponding estimated VTA.

3.2. Generated dataset

The purpose of the dataset generated was to capture 
different parameter configurations and their corresponding 
VTAs. Figure 8 shows six samples of possible parameter 
combinations (see Table 1), and how they affect the volume 
that represents the spatial spread of neural activation due 
to the electric stimulation. A monopolar stimulation, with a 
low amplitude and a high pulse width value, is represented 
in Figure 8(a), it shows that high values of pulse width 
induce a small neural response. A bipolar stimulation, 
anode-cathode, is described by Figure 8(b), while a cathode-
cathode is described by Figure 8(e). The relevance in this 

configuration is to show how the polarity affects the VTA. 
The other Figures (Figure 8(c), Figure 8(d) and Figure 8(f)) 
allow us to see the influence of the parameter variations 
onto the estimated volume.

(a) (b)

0 V
-4.5 V
4.5 V

0 V
0 V
0 V

-4.5 V

90 s

Figure 7  Graphic representation of the model 
that solves the direct problem. (a) Extracellular 

potential generated by the DBS electrode in 
Comsol Multiphysics 

( ), 
 with a schematic representation of the 

stimulation delivered through each electrode 
contact. (b) Estimated V TA induced by the 

electrical stimulation

3.3. Inverse problem

Table 2 summarizes the accuracy obtained for each 
classification task in terms of the different resolutions 
of the input data. We obtain a slightly better accuracy 
for contacts  when the dimensionality of the 
input data is  The best result for contact c2 was 
obtained when the dimensionality of the input space was 
equal to . We apply the statistical significance 
test described in section II-B2 for each classification task, 
obtaining as a result that the performances for all the 
contacts are not statistically different in terms of the value 

Figure 6  Graphic representation of the V TA geometry taking different resolution 
values to asses behavior of SVM under lower dimensional input data (

), where 

(a) (b) (c) (d)



16

V. Gómez-Orozco et al.; Revista Facultad de Ingeniería, No. 79, pp. 9-18, 2016

differences are not significant for the amplitude, nor for 
the pulse width. Again, this could be explained due to the 
regular forms of the VTA as a consequence of the isotropic 
conductivities used in the extracellular potential model. The 
relative difference for the amplitude is about 24%, whereas 
the relative difference for the pulse width is about 30%.

Table 3  Relative differences for the amplitude 
and pulse width with several values of the 

dimensionality x  for the input space x

4. Discussion and conclusions
In this study, we developed a novel methodology to address 
the problem of finding optimal neurostimulation parameters 
that increase the effectiveness of the DBS therapy. Our 
method, first builds a dataset of volumes of tissue activated 
with their corresponding neurostimulation parameters. 
This dataset is built with an accurate physiological model 
that combines an extracellular potential model, and a 
multicompartment myelinated axonal model. We then 
use this dataset to design a machine learning algorithm 
that maps from the space of volumes of tissue activated to 
the values of the neurostimulation parameters. Since the 
representation of each VTA is given as a long vector of zeros 
and ones, in this paper, we use a kernel machine, a SVM, that 
allows us to handle spaces of high dimensionality. We obtain 
classification accuracies over 80% for predicting the states 
of the electrode contacts, and relative differences equal or 
lower than 30% for the amplitude and the pulse width of the 
rectangular pulse function. To the best of our knowledge, 
this is the first attempt in the literature for DBS, that looks 
to automatically tune the neurostimulation parameters 
from a previously specified VTA. Although the results 
shown in this paper may be considered as preliminary, we 
think these results are promising, and leave plenty of room 
for further improvement. First, in this paper we solved 

of m. This result can be explained by the fact that we are 
assuming isotropic conductivities for the extracellular 
potential model, and the shapes for the different VTA 
generated have regular forms. We expect that if we work 
with anisotropic conductivities, the shapes generated for 
the VTA will have irregular forms, and the dimensionality 
of the input space will become a relevant parameter. Based 
on the results of Table 2, we conclude that the classification 
accuracy is in the range of 81% (an error rate of 19%) for 
contact c2, and 88% (an error rate of 12%) for contact c1.

(a) (b)

(c) (d)

(e) (f)

Figure 8  Graphic representation of different 
samples of the dataset generated, and their 

respective amplitude (V), pulse width (µs) 
values, and electrode configuration

Table 3 shows the relative difference for the amplitude 
and the pulse width, in terms of the dimensionality m of 
the input space. Applying the statistical tests described 
before, we find that the discrepancies among the relative 

Table 2 Accuracy in each electrode contact configuration (anodal, cathodal or no stimulation) with 
different values of dimensionality m  of the input space x 
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the classification problems and the regression problems 
independently. We hope that by solving simultaneously the 
classification and regression problems, we may improve 
the performance metrics. This is a foundational idea in 
successful frameworks like transfer learning or multi-task 
learning. Second, the choice of the kernel may also help 
to improve the results. We would like to experimentally 
test the performance under different distance or similarity 
measures (other than the Hamming distance), and under 
different and more sophisticated kernels that exploit 
the geometric structure of the VTA [32, 33]. Third, the 
experiments of this paper show that it is possible to reduce 
the dimensionality of the input space without affecting the 
performance metrics. Reducing the dimensionality of the 
input space may ease the design of the machine learning 
model, improving the performance for classification and 
regression.

On a different line of work, we would like to apply the 
methodology for more realistic scenarios, for example, 
by using anisotropic conductivities for the extracellular 
potential model, reflecting the properties of the different 
brain tissues. Such anisotropic conductivities can be 
obtained from magnetic resonance imaging. For this type 
of study, it will be important to analyze the performance of 
the method for different patients.
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