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Applicability of semi-supervised learning 
assumptions for gene ontology terms prediction

ABSTRACT: Gene Ontology (GO) is one of the most important resources in bioinformatics, 
aiming to provide a unified framework for the biological annotation of genes and proteins 
across all species. Predicting GO terms is an essential task for bioinformatics, but the number 
of available labelled proteins is in several cases insufficient for training reliable machine 
learning classifiers. Semi-supervised learning methods arise as a powerful solution that 
explodes the information contained in unlabelled data in order to improve the estimations 
of traditional supervised approaches. However, semi-supervised learning methods have to 
make strong assumptions about the nature of the training data and thus, the performance of 
the predictor is highly dependent on these assumptions. This paper presents an analysis of 
the applicability of semi-supervised learning assumptions over the specific task of GO terms 
prediction, focused on providing judgment elements that allow choosing the most suitable 
tools for specific GO terms. The results show that semi-supervised approaches significantly 
outperform the traditional supervised methods and that the highest performances are 
reached when applying the cluster assumption. Besides, it is experimentally demonstrated 
that cluster and manifold assumptions are complementary to each other and an analysis 
of which GO terms can be more prone to be correctly predicted with each assumption, is 
provided.

RESUMEN: La Ontología Genética (GO) es uno de los recursos más importantes en la 
bioinformática, el cual busca proporcionar un marco de trabajo unificado para la anotación 
biológica de genes y proteínas de todas las especies. La predicción de términos GO es 
una tarea esencial en bioinformática, pero el número de secuencias etiquetadas que se 
encuentran disponibles es insuficiente en muchos casos para entrenar sistemas confiables 
de aprendizaje de máquina. El aprendizaje semi-supervisado aparece entonces como una 
poderosa solución que explota la información contenida en los datos no etiquetados, con el 
fin de mejorar las estimaciones de las aplicaciones supervisadas tradicionales. Sin embargo, 
los métodos semi-supervisados deben hacer suposiciones fuertes sobre la naturaleza de 
los datos de entrenamiento y, por lo tanto, el desempeño de los predictores es altamente 
dependiente de estas suposiciones. En este artículo se presenta un análisis de la aplicabilidad 
de las diferentes suposiciones del aprendizaje semi-supervisado en la tarea específica de 
predicción de términos GO, con el fin de proveer elementos de juicio que permitan escoger 
las herramientas más adecuadas para términos GO específicos. Los resultados muestran 
que los métodos semi-supervisados superan significativamente a los métodos tradicionales 
supervisados y que los desempeños más altos son alcanzados cuando se implementa la 
suposición de cluster. Además se comprueba experimentalmente que las suposiciones de 
cluster y manifold son complementarias entre sí y se realiza un análisis de cuáles términos 
GO pueden ser más susceptibles de ser correctamente predichos usando cada una de éstas. 
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1. Introduction
Proteins are essential for living organisms due to the 
diversity of molecular functions they perform, which are 
also related to processes at cellular and phenotypical 
levels. At molecular level, for instance, binding proteins 
are capable of creating a wide variety of structurally and 
chemically deferent surfaces, allowing for recognizing other 
molecules and performing regulation functions; enzymes 
use binding plus specific chemical reactivity for speeding 
up molecular reactions; structural proteins constitute 
some of the main morphological components of living 
organisms, building resistant structures and being sources 
of biomaterials. At the cellular level, proteins perform the 
majority of functions of the organelles. Structural proteins 
in the cytoskeleton are responsible for maintaining the 
shape of the cell and keeping organelles in place; in the 
endoplasmatic reticulum, binding proteins transport 
molecules between and within cells; in the lysosome, 
catalytic proteins break large molecules into small ones 
for carrying out digestion (for a deeper description of 
subcellular locations of proteins, see [1]). Phenotypical 
roles of proteins are harder to determine, since phenotype 
is the result of many cellular function assemblies and their 
response under environmental stimuli. However, by the 
comparison of genes descended from the same ancestor 
across many different organisms, or by studying the effects 
of modifying individual genes in model organisms, several 
thousands of gene products have been associated with 
phenotypes [2].

The Gene Ontology (GO) project aims to cover the whole 
universe of protein functions by constructing controlled and 
structured vocabularies known as ontologies, and applying 
them in the annotation of gene products in biological 
databases [3]. The project comprises three ontologies: 
Molecular function (biochemical activities at the molecular 
level), cellular component (specific sub-cellular location 
where a gene product is active) and biological process (events 
at phenotypical level to which the protein contributes). 
Recent methods for predicting GO terms employ machine 
learning techniques trained over physical-chemical and 
statistical attributes for predicting functional labels that 
later can be subjected to experimental verification [4]. 
However, the succesfullness of supervised machine learning 
strategies relies on the amount and quality of a labelled 
set of instances needed to train the classifier. Labelled 
instances are often difficult, expensive, or time consuming 
to obtain, as they require the e orts of experienced human 
annotators. Meanwhile unlabelled data may be relatively 
easy to collect, but there has been few ways to use them 
[5]. In the particular case of protein function prediction, it is 
also a known fact that only a small number of proteins have 
actually been annotated for certain functions. Therefore, it 
is di cult to obtain sufficient training data for the supervised 
learning algorithms and, consequently, the tools for protein 
function prediction have very limited scopes [6]. Besides, 
it is particularly hard to find the representative negative 
samples because the available information in the annotation 
databases, such as GO [3], only provides information about 
which protein belongs to which functional class but there 

is no certainty about which protein does not belong to the 
class [7]. Under such circumstances, semi-supervised 
learning methods provide an alternative approach to 
protein annotation [6]. Semi-supervised learning (SSL) is 
halfway between supervised and unsupervised learning: in 
addition to labelled data, the algorithm is provided with an 
amount of unlabelled samples that can be used to improve 
the estimations.

One significant difference between supervised and 
semi-supervised methods is that, unlike supervised 
learning, in which a good generic learning algorithm 
can perform well on a lot of real-world data sets without 
specific domain knowledge, in semi-supervised learning it 
is commonly accepted that there is no “black box” solution 
and a good understanding of the nature of the data is 
required to achieve successful performance [8]. There are 
several different semi-supervised learning methods and 
all of them have to make strong assumptions about the 
relation of the probability of the feature space and the joint 
probability of the feature space and the label set. These 
methods include generative models, graph-based models, 
semi-supervised support vector machines, and soon [9].

A few semi-supervised methods have been applied for 
both gene function prediction (over the DNA sequence) 
and protein function prediction (over the amino acids 
sequence). [10] used a S3VMs for promoter recognition, 
improving predictive performance by 55% over the standard 
inductive SVM results. [11] used a “co-updating” schema 
of two SVMs, each one trained over a different source of 
data, for discriminating among five functional classes 
in the yeast genome. For the problem of predicting the 
functional properties of proteins, [12] conducted an 
extensive study on the caveats of incorporating semi-
supervised learning and transduction for predicting various 
functional properties of proteins corresponding to genes 
in the yeast genome, founding that S3VMs significantly 
decrease performance compared to inductive SVMs. [13] 
used graph-based semi-supervised learning for functional 
class prediction of yeast proteins, using protein interaction 
networks for obtaining the graphs.

More recently, [14] proposes a generative semi-supervised 
method for protein functional classification and provide 
experimental results of classifying a set of eukaryotic 
proteins into seven subcellular locations from the Cellular 
Component ontology of GO. [6] proposed a new algorithm 
to the negative samples in protein function prediction. 
In detail, the one-class SVMs and two-class SVMs are 
used as the core learning algorithm in order to identify 
the representative negative samples so that the positive 
samples hidden in the unlabelled data can be recovered. [15] 
proposes a method for integrating multiple graphs within 
a framework of semi-supervised learning and applies the 
method to the task of protein functional class prediction in 
yeast. The proposed method performs significantly better 
than the same algorithm trained on any single graph. 

In [16], we presented the prediction of protein sub-cellular 
localizations with a semi-supervised  support vector 
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machine over a database of over 108 Embryophiyta plants, 
showing that semi-supervised learning significantly 
outperforms the supervised learning approach in several 
cases. However, since only one semi-supervised assumption 
was employed, those results could be subjected to further 
improvement when several assumptions are considered. 
Moreover, our previous work only considered the molecular 
function ontology and, if the other two ontologies are 
included, the high diversity of data may need diverse tools 
to be accurately classified.

The present work expands our previous results, presenting 
an analysis of the applicability of semi-supervised 
learning assumptions over the three ontologies of Gene 
Ontology: molecular function, cellular component and 
biological process. The analysis aims to demonstrate 
that one semi-supervised assumption is insufficient to 
classify the whole set of Gene Ontology terms and to 
provide judgment elements that allow choosing the most 
suitable tool for protein function prediction among the 
existing semi-supervised alternatives. The results show 
that semi-supervised approaches significantly outperform 
the traditional supervised methods and that the highest 
performances are reached when applying the cluster 
assumption. Besides, it is experimentally demonstrated 
that cluster and manifold assumptions are complimentary 
to each other and an analysis of which GO terms can be 
more prone to be correctly predicted with each assumption, 
is provided.

2. Theoretical background
The main assumption made by semi-supervised learning 
algorithms is the “semi-supervised smoothness 
assumption” [8].

•	 Semi-supervised smoothness assumption: If two 
points x1, and x2 in a high-density region are close, 
then so should be their corresponding label sets y1, y2. 
Note that by transitivity, this assumption implies that 
if two points are linked by a path of high density (e.g., 
if they belong to the same cluster), then their outputs 
are likely to be close. If, on the other hand, they are 
separated by a low-density region, then their outputs 
need not be close.

Such assumption originates the two common assumptions 
used in semi-supervised learning:

•	 Cluster assumption: If points are in the same cluster, 
they are likely to be of the same class. This assumption 
does not imply that each class forms a single, compact 
cluster, it only means that there are no instances of 
two distinct classes in the same cluster. The cluster 
assumption can be formulated in an equivalent way:

•	 Low density separation: The decision boundary should 
lie in a low-density region.

•	 Manifold assumption: The (high-dimensional) data lie 
(roughly) on a low-dimensional manifold. Instances 
that are close according to the manifold geodesic 
distance are likely to be of the same class.

According to each assumption, there are three main 
families of semi-supervised methods: generative methods 
(cluster assumption), density-based methods (low 
density separation), and graph-based methods (manifold 
assumption). In the following sub-sections, each family of 
methods will be reviewed, emphasizing on the assumptions 
made by each one. It should be pointed out that, since 
semi-supervised learning is a rapidly evolving field, the 
review is necessarily incomplete. A wider review in this 
matter can also be found on [9].

2.1. Generative methods

Generative methods follow a common strategy of 
augmenting the set of labelled samples with a large set 
of unlabelled data and combining the two sets with the 
Expectation-Maximization algorithm, in order to improve 
the parameter estimates [17]. They assume a probabilistic 

model ( , ) ( ) ( | )p y p y p y=x x , where ( | )p yx  is an 
identifiable mixture distribution. The most commonly 
employed distributions are the Gaussian Mixture Models 
shown in Eq. (1).
							     

	                  (1)

where  is the Gaussian distribution with 
parameters , being  the mean vector and 
Σk the covariance matrix of the k−th Gaussian component,
and πk the mixing components such that π k

k=1

K

∑ = 1 for 

k = 1,2,…,K .

Ideally, only one labelled example per component is needed 
to fully determine the mixture distribution. In this setting, 
any additional information on ( )p x is useful and the EM 
algorithm can be used for estimating  A strength of the 
generative approach is that knowledge of the structure of 
the problem or the data can naturally be incorporated by 
modelling it [8]. However, generative techniques provide an 
estimate of ( )p x  along the way, although this is not required 
for classification, and in general this proves wasteful given 
limited data. For example, maximizing the joint likelihood 
of a finite sample need not lead to a small classification 
error, because depending on the model, it may be possible 
to increase the likelihood more by improving the t of ( )p x
than the t of  [8].

The works of [18, 19], among others, showed to be strong 
methods for classifying text data. Furthermore, [20] have 
applied the EM algorithm on mixture of multinomial for 
the task of text classification, showing better performance 
than those trained only from the supervised set. [21] extend 
generative mixture models by including a “bias correction” 
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term and discriminative training using the maximum 
entropy principle. However, anecdotal evidence is that many 
more studies were not published because they obtained 
negative results, showing that learning a mixture model 
will often degrade the performance of a model fit using 
only the labelled data [22]; one published study with these 
conclusions is [18]. This is due to the strong assumption 
done by generative methods: the data actually comes from 
the mixture model, where the number of components, prior

( )p x , and conditional ( | )p yx are all correct [9].

2.2. Density-based methods

With the  rising  popularity of support vector machines 
(SVMs), Semi-Supervised SVMs (S3VMs) emerged as an 
extension to standard SVMs for semi-supervised learning. 
S3VMs find a labelling for all the unlabelled data, and a 
separating hyperplane, such that maximum margin is 
achieved on both the labelled data and the (now labelled) 
unlabelled data. As a result, unlabelled data guide 
the decision boundary away from dense regions. The 
assumption of S3VMs is that the classes are well-separated, 
such that the decision boundary falls into a low density 
region in the feature space, and does not cut through dense 
unlabelled data [9].

In a similar way to the conventional SVMs, the optimization 
problem for an S3VMs can be stated as follows shown in 
Eq. (2).
	

θ * =  argmin
θ∈T

1
2

||θ ||2 +C ℓ( fθ (xi )yi )
i=1

L

∑ +λ ℓ(| fθ (xi ) |)
i=L+1

L+U

∑⎧
⎨
⎩

⎫
⎬
⎭

θ * =  argmin
θ∈T

1
2

||θ ||2 +C ℓ( fθ (xi )yi )
i=1

L

∑ +λ ℓ(| fθ (xi ) |)
i=L+1

L+U

∑⎧
⎨
⎩

⎫
⎬
⎭                         (2)

where ℓ(t) = max(0,1 − t) is the hinge loss function, C is the 
trade-o parameter and λ is a new regularization parameter. 
The first two terms in the above equation correspond to the 
traditional solution for the standard supervised SVM, while 
the last term puts ( )if xq  of the unlabelled points xi away 
from 0 (thereby implementing the low density assumption) 
[24].

Again, as in the supervised case, the kernel trick can 
be used for constructing nonlinear S3VMs. While the 
optimization in SVM is convex and can be solved with 
QP-hard complexity, optimization in S3VM is a non-convex 
combinatorial task with NP-Hard complexity. Most of the 
recent work in S3VM has been focused on the optimization 
procedure (a full survey in this matter can be found in 
[24]). Among the proposed methods for solving the non-
convex optimization problem associated with S3VMs, one 
of the first implementations is the S3VMlight by [25], which 
is based on local combinatorial search guided by a label 
switching procedure. [26] presented a method based on 
gradient descent on the primal, that performs significantly 
better than the optimization strategy pursued in S3VMlight; 

the work by [22] proposes the use of a global optimization 
technique known as “continuation”, often leading to lower 
test errors than other optimization algorithms; [27] uses 
the Concave-Convex procedure, providing a highly scalable 
algorithm in the non-linear case.

Other recent proposals include [28] which focuses on the 
class-imbalance problem and proposes a cost-sensitive 
S3VM; [29] which describes Laplacian twin support 
vector machines; and several approaches to adaptive 
regularizations like [30, 31].

2.3. Graph-based methods

Graph-based methods start with a graph where the nodes 
are the labelled and unlabelled data points, and (weighted) 
edges reflect the similarity of nodes. The assumption is that 
nodes connected by a large-weight edge tend to have the 
same label, and labels can propagate throughout the graph. 
In other words, graph-based methods do the assumption 
that labels are smooth with respect to the graph, such that 
they vary slowly on the graph. That is, if two instances are 
connected by a strong edge, their labels tend to be the 
same [9].

This family of methods enjoy nice properties from spectral 
graph theory. They commonly use an energy function as 
objective in the optimization problem, ensuring that the 
labels will change slowly through the graph (consequently 
implementing the manifold assumption) [32].

A graph is represented by the (L + U) × (L + U) weight matrix 
W, Wij = 0 if there is no edge between instances ix  and jx . 
Once the graph has been defined, a real function over the 
nodes can be defined . In order to achieve that 
unlabelled points that are similar (as determined by the 
edges of the graph) to have similar labels, the quadratic 
energy function shown in Eq. (3) can be used as objective:
			    

θ * =  argmin
θ∈T

1
2

Wij
ij
∑ ( fθ (xi )− fθ (x j ))

2⎧
⎨
⎩⎪

⎫
⎬
⎭⎪      (3)

	
Since this objective function is minimized by constant 
functions, it is necessary to constrain fθ  to take values 
fθ (xi ) = yi , for all the labelled data xi ∈XL . Finally, let 
D be the diagonal degree matrix, where Dii =  

j
∑ Wij  is 

the degree of node ix . The combinatorial Laplacian ∆ is 
defined as in Eq. (4).	
			 

Δ ≡ D -W                                       (4)

and it is easy to verify Eq. (5):
	                                                                                         	

	        
θ * =  argmin

θ∈T
fθ
TΔfθ{ }

                  (5)

Most graph-based methods are inherently transductive, 
giving predictions for only those points in the unlabelled 
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J
S3VM
(θ ) = 1

2
||θ ||2 +C ℓ

i=1

L

∑ fθ (xi )yi( ) + λ ℓ
i=L+1

L+U

∑ | fθ (xi ) |( )
(7)

where the function ℓ(t) = max(0,1−|t|) is the hinge loss 
function. The main problem with this objective function, in 
contrast to the classical SVM objective, is that the additional 
term is non-convex and gives rise to local minima. 
Additionally, it has been experimentally observed that 
the objective function tends to give unbalanced solutions, 
classifying all the unlabelled points in the same class. 
A constraint should be imposed on the data to avoid this 
problem [26], as shown in Eq. (8):
						    

1
L

yi
i=1

L

∑ = 1
U

fθ
i=L+1

L+U

∑ (xi )
                  (8)

	
which ensures that the number of unlabelled samples 
assigned to each class will be the same fraction as in the 
labelled data. CCP decomposes a non-convex function J
into a convex component vexJ and a concave component 

caveJ . At each iteration, the concave part is replaced by the 
tangential approximation at the current point and the sum 
of this linear function and the convex part is minimized to 
get the next iterate. The first two terms in Eq. (7) are convex, 
while the third term can be decomposed into the sum of a 
convex function (Eq. 9) plus a concave one (Eq. 10):
							     

Jvex = max(0,1− | t |)+ 2 | t |            (9)
							     

		  Jcave = −2 | t |                      (10)

If an unlabelled point is currently classified positive, then 
at the next iteration, the convex loss on this point will be 
determined by Eq. (11):
							     

	

ℓ
∼

(t) =
0 if t ≥1,

(1− t) if | t |<1,
−4t if t ≤ −1

⎧

⎨
⎪

⎩
⎪

                 (11)

The CCP algorithm for the semi-supervised support vector 
machines is presented in Algorithm 1 (Table 1).

•	 Laplacian SVM: Regarding the graph-based 
algorithms, Laplacian support vector machines 
(Lap-SVM) were chosen since, according to [29], many 
experiments show that Lap-SVM achieves state of the 
art performance among graph-based semi-supervised 
classification methods. This method, as proposed in 
[33], uses an objective function that is slightly different 
to Eq. (6) and can be seen in Eq. (12):

	

set, and not for an arbitrary test point. The simplest strategy 
for extending the method for unseen data is by dividing 
the input space into Voronoi cells centered on the labelled 
instances. From an algorithmic point of view, this strategy is 
equal to classify instances by its 1-nearest-neighbour. [21] 
proposed an approach that combines generative mixture 
models and discriminative regularization using the graph 
Laplacian in order to provide an inductive model. Laplacian 
SVMs, proposed by [33], provide a natural inductive 
algorithm since they use a modified SVM for classification. 
The optimization problem in this case is regularized by the 
introduction of a term for controlling the complexity of the 
model according to Eq. (6):

θ * = argmin
θ∈T

ℓ
i
∑ fθ (xi )yi( ) + λ Wij

ij
∑ fθ (xi )− fθ (x j )( )2⎧

⎨
⎩⎪

⎫
⎬
⎭⎪           

       

θ * = argmin
θ∈T

ℓ
i
∑ fθ (xi )yi( ) + λ Wij

ij
∑ fθ (xi )− fθ (x j )( )2⎧

⎨
⎩⎪

⎫
⎬
⎭⎪                    (6)

where Wij is the weight between the i − th and j − th
instances in the graph and λ is again a regularization 
parameter. A lot of experiments show that Laplacian SVM 
achieves state of the art performance in graph-based 
semi-supervised classification [29].

3. Proposed methodology: 
semi-supervised learning for 
predicting gene ontology terms 
in Embryophyta plants

3.1. Selected semi-supervised 
algorithms

In order to test the efficiency of semi-supervised learning 
in the task of predicting protein functions, two state of 
the art methods were chosen, each one implementing a 
different semi-supervised assumption: S3VM following 
the concave-convex optimization procedure (CCP) [27] 
(implementing the low-density separation assumption and 
consequently the cluster assumption) and Laplacian-SVM 
[34] (implementing the manifold assumption).

•	 CCP S3VM: The S3VM proposed by [27, 34] was chosen 
since it provides high scalability in the non-linear case, 
making it the most suitable choice for the amounts 
of Embryophyta proteins in the databases used in this 
work. Consider the set of labelled points 1{ }L

L i i== x  
for which labels 1{ }L

i iy =  are provided, and the points  
1{ }L U

U i i L
+

= += x  the labels of which are not known. 
The objective function to be optimized in this case, 
corresponds to Eq. (7):
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1973 sequences are annotated with molecular functions, 
2210 with cellular components and 2798 with biological 
processes [4].

Classes are defined by the plants GO slim developed by The 
Arabidopsis Information Resource - TAIR [38], (file version: 
14/03/2012). Positive samples associated to each GO term 
are selected by considering the propagation principle of 
GO: if a protein is predicted to be associated to any given 
GO term, it must be automatically associated to all the 
ancestors of that category and thus, it is enough to predict 
only the lowest level entries. As in [4], in order to explicitly 
note that some GO terms are not including their descendants 
categories, such incomplete GO terms are marked with an 
asterisk throughout the paper. The resulting set comprises 
14 GO terms in the molecular function ontology, 20 GO 
terms in the cellular component ontology and 41 GO terms 
in the biological process ontology. Table 2 shows the final 
list of categories, as well as the acronyms used to cite them 
throughout this paper.

Regarding unlabeled instances, all the available 
Embryophyta proteins at UniProtKB/SwissProt database 
that has no entries in the GOA project were added as the 
core set of unlabeled samples. Also, proteins associated 
to the nodes in the functional path of a GO term that were 
not associated to the node itself, were left as unlabeled 
instances regarding that classifier. Finally, 30000 unlabeled 
instances were randomly chosen in order to accomplish an 
approximate relation of ten unlabeled instances per each 
labeled one.

Both labeled and unlabeled sequences were characterized 
according to the procedure described in section [4] obtaining 
three types of attributes: physical-chemical features, 
primary structure composition statistics and secondary 
structure composition statistics (see Table 3).

4. Results and discussion
Figure 1 shows a comparison between the results with 
the S3VM (orange line) and the SVM method presented 
in [4] (green line). Classes are ordered according to the 
performance of the SS3VM method from top to bottom. 

	

	                       (12)

where λA and λI are two regularizing constants that must be 
set by the user. [32], also demonstrated a modified version 
of the Representer Theorem that ensures that the solution 
function can be given again by linear combination of kernel 
functions and the Lap-SVMs can be implemented by using 
a standard SVM quadratic solver.

The S3VM and Lap-SVM were used as base classifiers, both 
of them with the Gaussian kernel. For the Lap-SVM, the 
K-NN graph was selected for implementing the manifold 
regularization term, since there is some empirical evidence 
that suggests that fully connect graphs performs worse 
than sparse graphs [9].

All the parameters of the algorithms, including the 
dispersion of the kernels, the trade-o parameters of the 
SVMs, the regularization constants of both methods and 
the number of neighbours for constructing the graph, were 
tuned with a particle swarm optimization meta-heuristic. 
The decision making was implemented following the one 
against-all strategy with SMOTE oversampling for avoiding 
class-imbalance. Also, the 5-fold cross-validation strategy 
was implemented for assessing the performance of the 
predictors.

3.2. Database

The database designed in [4] was used as the set of 
labeled instances. This database is conformed by all the 
available Embryophyta proteins at UniProtKB/Swiss-Prot 
database [35] (file version: 10/01/2013), with at least one 
annotation in the Gene Ontology Annotation (GOA) project 
[36] (file version: 7/01/2013). In order to avoid the presence 
of protein families that could bias the results, the dataset 
was filtered at several 30% of sequence identity using 
the Cd-Hit software [37]. The set of labelled instances is 
then conformed by 3368 protein sequences, from which 

Table 1 Concave-convex optimization procedure algorithm for semi-supervised support 
vector machines
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semi-supervised term in the training of the SVM improves 
the performance of the system, thus providing information 
about the accomplishment of the cluster assumption when 
the unlabelled data is incorporated to the training process. 
Figure 1(a) shows that six out of the fourteen molecular 
functions considered in this ontology were significantly 
improved. In particular, Receptor binding, Transcription 
factor activity and Enzyme regulator activity have a special 
importance, considering that the SVM method was 
outperformed by BLASTp in those three GO terms when 

Table 2  Definition of the classes. For classification purposes, classes marked with an asterisk (*) 
were redefined. (Adapted from [4])

Left plots show sensitivity, specificity and geometric mean 
achieved with the five-fold cross-validation procedure, 
while right plots depicts the corresponding p-values 
obtained from a paired t-test at a 95% significance level. 
Orange bars show the cases when the S3VM significantly 
outperforms the supervised SVM and green bars show the 
opposite case.

The main purpose of this comparison is to verify whether 
or not the inclusion of the additional cluster-based 
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GO terms were significantly improved respecting the 
supervised SVM; in turn the implementation of the manifold 
assumption significantly degraded the performance for 
the GO term Transcription factor activity. Regarding the 
cellular component ontology (Figure 3(b)), improvements 
are present for Perixosome, Vacuole and the root node of 
the ontology, while a decrease is evinced for the Nucleus* 
GO term. As for the biological process ontology, seven GO 
terms enhanced their prediction performance (Embryonic 
development, Response to extracellular stimulus, Response 
to external stimulus*, Metabolic process*, Response to biotic 
stimulus, Cell communication and the root node of the 
ontology), while other two were worsened (Cell cycle and 
DNA metabolic process).

Figure 4 depicts a comparison between the results obtained 
with BLASTp and the LapSVM method. The first important 
result that can be inferred from the present analysis is 
that, in general terms, for the problem of protein function 
prediction, the semi-supervised cluster assumption holds 
for many more cases than the semi-supervised manifold 
assumption. However, the most important aspect to be 
analyzed here, is how the results in Figure 4 complement 
the results from Figure 2. Only two molecular functions 
presented an statistically significant superior performance 
with the Lap-SVM over BLASTp. One of them, RNA binding, 
did not show statistical significance when comparing 
BLASTp and S3VM. The same behaviour is present for 
the Perixosome cellular component and for the biological 
processes Transport and Lipid metabolic process. These 
results indicate that the manifold assumption is best suited 
than the cluster assumption for this particular GO terms. A 
few GO terms were not improved by any of the assumptions.

5. Conclusions
In this paper, an analysis of the suitability of 
semi-supervised methods for the prediction of protein 
functions in Embryophyta plants was performed. A review 
of the state of the art of semi-supervised classifiers was 
presented, highlighting the different assumptions that each 
method does about the underlying distribution of the data. 
Two semi-supervised methods were chosen to perform the 

Table 3  Features extracted from amino acid sequences (Taken from [4])

using the supervised model (see [4]). The inclusion of the 
cluster assumption also improved the performance on 
Hydrolase activity*, Binding* and Protein binding*. Regarding 
the Cellular Component ontology (Figure 1(b)), eight cellular 
components were significantly improved, while other two 
(Mitochondria and Cytoplasm*) also reached high p-values 
over 0.9. Finally, sixteen biological processes presented 
statistically significant improvements when including 
the unlabelled data with the semi-supervised cluster 
assumption. Only one biological process, Lipid metabolic 
process, suffered a statistically significant deterioration, 
which indicates that the unlabelled data is presenting a 
misleading cluster structure regarding this GO term.

In order to analyse how this improvements affect the 
system when compared to conventionally used prediction 
tools, Figure 2 shows a comparison between the results 
with the S3VM (orange line) and the traditional BLASTp 
method (blue line). It can be seen from figure 2(a) that the 
S3VM significantly outperforms BLASTp in five molecular 
functions, while BLASTp remains better than the S3VM only 
for Transcription factor activity.

Regarding the cellular component ontology, there are only 
two cellular components for which there is no statistically 
significant difference between BLASTp and the S3VM: 
Perixosome and Endosome. For all the remaining eighteen 
cellular components, the semi-supervised  method obtained 
superior performance. A similar behaviour is shown at 
figure 2(c), where the S3VM significantly outperforms 
BLASTp in 35 out of the 41 biological processes, while the 
remaining six process showed no statistical difference 
between the methods. 

On the other hand, Figure 3 shows the comparison between 
the supervised SVM and the Laplacian-SVM. This analysis 
provides information about the impact of incorporating 
unlabelled data on the training set but, this time, by 
implementing the semi-supervised manifold assumption. 
This time, it is possible to see that there are less GO terms 
that have been improved by the inclusion of the unlabelled 
data. For the molecular function ontology (Figure 3(a)), 
only the Nucleotide binding and Enzyme regulator activity 
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Figure 1  Comparison between the S3VM method and the supervised SVM. Bars in the left plots show 
sensitivity and specificity of the S3VM and lines depict geometric mean for S3VM (orange) and the 

classical supervised SVM (green). Right plots depict the p-values obtained by paired t-tests at a 95% 
significance level. For each ontology, the best predicted categories are ordered from top to bottom

(a) Molecular function (b) Cellular Component

(c) Biological process
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Figure 2  Comparison between BLASTp and the S3VM method. Bars in the left plots show sensitivity 
and specificity of the S3VM and lines depict geometric mean for S3VM (orange) and BLASTp (blue). 

Right plots depict the p-values obtained by paired t-tests at a 95% significance level. For each 
ontology, the best predicted categories are ordered from top to bottom

(a) Molecular function (b) Cellular Component

(c) Biological process



29

J. A. Jaramillo-Garzón et al.; Revista Facultad de Ingeniería, No. 79, pp. 19-32, 2016

Figure 3  Comparison between the Lap-SVM method and the supervised SVM. Bars in the left plots 
show sensitivity and specificity of the Lap-SVM and lines depict geometric mean for Lap-SVM (orange) 

and the classical supervised SVM (green). Right plots depict the p-values obtained by paired t-tests 
at a 95% significance level. For each ontology, the best predicted categories are ordered from top to 

bottom

(a) Molecular function (b) Cellular Component

(c) Biological process
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Figure 4  Comparison between BLASTp and the Lap-SVM method. Bars in the left plots show sensitivity 
and specificity of the Lap-SVM and lines depict geometric mean for LapSVM (orange) and BLASTp 

(blue). Right plots depict the p-values obtained by paired t-tests at a 95% signi cance level. For each 
ontology, the best predicted categories are ordered from top to bottom

(a) Molecular function (b) Cellular Component

(c) Biological process
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from networks”, in Semi-supervised learning, 1st ed., O. 
Chapelle, B. Schölkopf and A. Zien (eds). Cambridge, 
USA: MIT Press, 2006, pp. 339-352.

14.	 B. King and C. Guda, “Semi-supervised learning for 
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Programming, vol. 16, no. 1, pp. 5-29, 2008.
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3292, 2009.
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99-103.
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learning of mixture models”, in 20th International 
Conference on Machine Learning (ICML), Washington 
D.C., USA, 2003, pp. 99-106.
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classifier with learning based on both labelled and 
unlabelled data”, in Conference on Information Science 
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19.	 G. McLachlan and T. Krishnan, The EM algorithm and 
extensions, 2nd ed. St. Lucia, Australia: John Wiley & 
Sons, 2007.

20.	 K. Nigam, A. McCallum, S. Thrun and T. Mitchell, “Text 
classification from labeled and unlabeled documents 
using EM”, Machine learning, vol. 39, no. 2, pp. 103-
134, 2000.

21.	 A. Fujino, N. Ueda and K. Saito, “A hybrid generative/
discriminative approach to semi-supervised classifier 
design”, in 20th National Conference on Artificial 
Intelligence (AAAI), Pittsburgh, USA, 2005, pp. 764-769.

22.	 X. Zhu and J. Lafferty, “Harmonic mixtures: combining 
mixture models and graph-based methods for 
inductive and scalable semi-supervised learning”, 
in 22nd International Conference on Machine Learning 
(ICML), Bonn, Germany, 2005, pp. 1052-1059.

23.	 O. Chapelle, M. Chi and A. Zien, “A continuation method 
for semi-supervised SVMs”, in 23rd international 
conference on Machine learning (ICML), Pittsburgh, USA, 
2006, pp. 185-192.

24.	 O. Chapelle, V. Sindhwani and S. Keerthi, “Optimization 
techniques for semi-supervised support vector 
machines”, Journal of Machine Learning Research, vol. 
9, pp. 203-233, 2008.

25.	 T. Joachims, “Transductive inference for text 
classification using support vector machines”, in 16th 

International Conference on Machine Learning (ICML), 
Bled, Slovenia, 1999, pp. 200-209.

26.	 O. Chapelle and A. Zien, “Semi-supervised 
classification by low density separation”, in 10th 
Int. Workshop on Artificial Intelligence and Statistics 
(AISTATS), Bridgetown, Barbados, 2005, pp. 57-64.

27.	 R. Collobert, F. Sinz, J. Weston and L. Bottou, “Large 
scale transductive SVMs”, Journal of Machine Learning 
Research, vol. 7, pp. 1687-1712, 2006.

tests, each representing one of the main semi-supervised 
assumptions: cluster assumption and manifold assumption. 
The results show that semi-supervised  learning applied 
to the prediction of GO terms in Embryophyta organisms, 
significantly outperforms the supervised learning 
approach, at the same time outperforming the commonly 
used sequence alignment strategy in most cases. In 
general terms, the highest performance were reached 
when applying the cluster assumption. However, several GO 
terms that were not significantly improved with the cluster 
assumption, achieved higher performance with the manifold 
based semi-supervised method, demonstrating that a 
single assumption is not enough for improving the learning 
process by the exploitation of the additional unlabelled 
data. As future work, it is desirable to implement a unified 
strategy exploiting both assumptions at the same time, in 
order to achieve high performances in most applications. 
Also, classifiers devoted to hierarchical classification, such 
as decision trees, could be used to improve classification 
performance.
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