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ABSTRACT: Gene Ontology (GO) is one of the most important resources in bioinformatics,
aiming to provide a unified framework for the biological annotation of genes and proteins
across all species. Predicting GO terms is an essential task for bioinformatics, but the number
of available labelled proteins is in several cases insufficient for training reliable machine
learning classifiers. Semi-supervised learning methods arise as a powerful solution that
explodes the information contained in unlabelled data in order to improve the estimations
of traditional supervised approaches. However, semi-supervised learning methods have to
make strong assumptions about the nature of the training data and thus, the performance of
the predictor is highly dependent on these assumptions. This paper presents an analysis of
the applicability of semi-supervised learning assumptions over the specific task of GO terms
prediction, focused on providing judgment elements that allow choosing the most suitable
tools for specific GO terms. The results show that semi-supervised approaches significantly
outperform the traditional supervised methods and that the highest performances are
reached when applying the cluster assumption. Besides, it is experimentally demonstrated
that cluster and manifold assumptions are complementary to each other and an analysis
of which GO terms can be more prone to be correctly predicted with each assumption, is
provided.

RESUMEN: La Ontologia Genética (GO) es uno de los recursos mas importantes en la
bioinformatica, el cual busca proporcionar un marco de trabajo unificado para la anotacion
biolégica de genes y proteinas de todas las especies. La prediccion de términos GO es
una tarea esencial en bioinformatica, pero el nUmero de secuencias etiquetadas que se
encuentran disponibles es insuficiente en muchos casos para entrenar sistemas confiables
de aprendizaje de maquina. El aprendizaje semi-supervisado aparece entonces como una
poderosa solucion que explota la informacidn contenida en los datos no etiquetados, con el
fin de mejorar las estimaciones de las aplicaciones supervisadas tradicionales. Sin embargo,
los métodos semi-supervisados deben hacer suposiciones fuertes sobre la naturaleza de
los datos de entrenamiento y, por lo tanto, el desempeno de los predictores es altamente
dependiente de estas suposiciones. En este articulo se presenta un analisis de la aplicabilidad
de las diferentes suposiciones del aprendizaje semi-supervisado en la tarea especifica de
prediccion de términos GO, con el fin de proveer elementos de juicio que permitan escoger
las herramientas mas adecuadas para términos GO especificos. Los resultados muestran
que los métodos semi-supervisados superan significativamente a los métodos tradicionales
supervisados y que los desempefios mas altos son alcanzados cuando se implementa la
suposicion de cluster. Ademas se comprueba experimentalmente que las suposiciones de
cluster y manifold son complementarias entre si y se realiza un analisis de cuales términos
GO pueden ser mas susceptibles de ser correctamente predichos usando cada una de éstas.
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1. Introduction

Proteins are essential for living organisms due to the
diversity of molecular functions they perform, which are
also related to processes at cellular and phenotypical
levels. At molecular level, for instance, binding proteins
are capable of creating a wide variety of structurally and
chemically deferent surfaces, allowing for recognizing other
molecules and performing regulation functions; enzymes
use binding plus specific chemical reactivity for speeding
up molecular reactions; structural proteins constitute
some of the main morphological components of living
organisms, building resistant structures and being sources
of biomaterials. At the cellular level, proteins perform the
majority of functions of the organelles. Structural proteins
in the cytoskeleton are responsible for maintaining the
shape of the cell and keeping organelles in place; in the
endoplasmatic reticulum, binding proteins transport
molecules between and within cells; in the lysosome,
catalytic proteins break large molecules into small ones
for carrying out digestion (for a deeper description of
subcellular locations of proteins, see [1]). Phenotypical
roles of proteins are harder to determine, since phenotype
is the result of many cellular function assemblies and their
response under environmental stimuli. However, by the
comparison of genes descended from the same ancestor
across many different organisms, or by studying the effects
of modifying individual genes in model organisms, several
thousands of gene products have been associated with
phenotypes [2].

The Gene Ontology (GO) project aims to cover the whole
universe of protein functions by constructing controlled and
structured vocabularies known as ontologies, and applying
them in the annotation of gene products in biological
databases [3]. The project comprises three ontologies:
Molecular function (biochemical activities at the molecular
levell, cellular component (specific sub-cellular location
where a gene product is active) and biological process [events
at phenotypical level to which the protein contributes).
Recent methods for predicting GO terms employ machine
learning techniques trained over physical-chemical and
statistical attributes for predicting functional labels that
later can be subjected to experimental verification [4].
However, the succesfullness of supervised machine learning
strategies relies on the amount and quality of a labelled
set of instances needed to train the classifier. Labelled
instances are often difficult, expensive, or time consuming
to obtain, as they require the e orts of experienced human
annotators. Meanwhile unlabelled data may be relatively
easy to collect, but there has been few ways to use them
[5]. In the particular case of protein function prediction, it is
also a known fact that only a small number of proteins have
actually been annotated for certain functions. Therefore, it
is di cult to obtain sufficient training data for the supervised
learning algorithms and, consequently, the tools for protein
function prediction have very limited scopes [6]. Besides,
it is particularly hard to find the representative negative
samples because the available information in the annotation
databases, such as GO [3], only provides information about
which protein belongs to which functional class but there

is no certainty about which protein does not belong to the
class [7]. Under such circumstances, semi-supervised
learning methods provide an alternative approach to
protein annotation [6]. Semi-supervised learning (SSL) is
halfway between supervised and unsupervised learning: in
addition to labelled data, the algorithm is provided with an
amount of unlabelled samples that can be used to improve
the estimations.

One significant difference between supervised and
semi-supervised methods is that, unlike supervised
learning, in which a good generic learning algorithm
can perform well on a lot of real-world data sets without
specific domain knowledge, in semi-supervised learning it
is commonly accepted that there is no “black box” solution
and a good understanding of the nature of the data is
required to achieve successful performance [8]. There are
several different semi-supervised learning methods and
all of them have to make strong assumptions about the
relation of the probability of the feature space and the joint
probability of the feature space and the label set. These
methods include generative models, graph-based models,
semi-supervised support vector machines, and soon [9].

A few semi-supervised methods have been applied for
both gene function prediction (over the DNA sequence)
and protein function prediction (over the amino acids
sequence). [10] used a S®VMs for promoter recognition,
improving predictive performance by 55% over the standard
inductive SVM results. [11] used a “co-updating” schema
of two SVMs, each one trained over a different source of
data, for discriminating among five functional classes
in the yeast genome. For the problem of predicting the
functional properties of proteins, [12] conducted an
extensive study on the caveats of incorporating semi-
supervised learning and transduction for predicting various
functional properties of proteins corresponding to genes
in the yeast genome, founding that S®VMs significantly
decrease performance compared to inductive SVMs. [13]
used graph-based semi-supervised learning for functional
class prediction of yeast proteins, using protein interaction
networks for obtaining the graphs.

More recently, [14] proposes a generative semi-supervised
method for protein functional classification and provide
experimental results of classifying a set of eukaryotic
proteins into seven subcellular locations from the Cellular
Component ontology of GO. [6] proposed a new algorithm
to the negative samples in protein function prediction.
In detail, the one-class SVMs and two-class SVMs are
used as the core learning algorithm in order to identify
the representative negative samples so that the positive
samples hidden in the unlabelled data can be recovered. [15]
proposes a method for integrating multiple graphs within
a framework of semi-supervised learning and applies the
method to the task of protein functional class prediction in
yeast. The proposed method performs significantly better
than the same algorithm trained on any single graph.

In [16], we presented the prediction of protein sub-cellular
localizations with a semi-supervised  support vector
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machine over a database of over 108 Embryophiyta plants,
showing that semi-supervised learning significantly
outperforms the supervised learning approach in several
cases. However, since only one semi-supervised assumption
was employed, those results could be subjected to further
improvement when several assumptions are considered.
Moreover, our previous work only considered the molecular
function ontology and, if the other two ontologies are
included, the high diversity of data may need diverse tools
to be accurately classified.

The present work expands our previous results, presenting
an analysis of the applicability of semi-supervised
learning assumptions over the three ontologies of Gene
Ontology: molecular function, cellular component and
biological process. The analysis aims to demonstrate
that one semi-supervised assumption is insufficient to
classify the whole set of Gene Ontology terms and to
provide judgment elements that allow choosing the most
suitable tool for protein function prediction among the
existing semi-supervised alternatives. The results show
that semi-supervised approaches significantly outperform
the traditional supervised methods and that the highest
performances are reached when applying the cluster
assumption. Besides, it is experimentally demonstrated
that cluster and manifold assumptions are complimentary
to each other and an analysis of which GO terms can be
more prone to be correctly predicted with each assumption,
is provided.

2. Theoretical background

The main assumption made by semi-supervised learning
algorithms is the “semi-supervised smoothness
assumption” [8].

e Semi-supervised smoothness assumption: If two
points x,, and x, in a high-density region are close,
then so should be their corresponding label sets y,, y,.
Note that by transitivity, this assumption implies that
if two points are linked by a path of high density (e.g.,
if they belong to the same cluster], then their outputs
are likely to be close. If, on the other hand, they are
separated by a low-density region, then their outputs
need not be close.

Such assumption originates the two common assumptions
used in semi-supervised learning:

e  Cluster assumption: If points are in the same cluster,
they are likely to be of the same class. This assumption
does not imply that each class forms a single, compact
cluster, it only means that there are no instances of
two distinct classes in the same cluster. The cluster
assumption can be formulated in an equivalent way:

e Lowdensity separation: The decision boundary should
lie in a low-density region.

e Manifold assumption: The (high-dimensional] data lie
(roughly) on a low-dimensional manifold. Instances
that are close according to the manifold geodesic
distance are likely to be of the same class.

According to each assumption, there are three main
families of semi-supervised methods: generative methods
(cluster assumption), density-based methods (low
density separation), and graph-based methods (manifold
assumption). In the following sub-sections, each family of
methods will be reviewed, emphasizing on the assumptions
made by each one. It should be pointed out that, since
semi-supervised learning is a rapidly evolving field, the
review is necessarily incomplete. A wider review in this
matter can also be found on [9].

2.1. Generative methods

Generative methods follow a common strategy of
augmenting the set of labelled samples with a large set
of unlabelled data and combining the two sets with the
Expectation-Maximization algorithm, in order to improve
the parameter estimates [17]. They assume a probabilistic

model P(X,¥)=p(»)p(x|y), where p(x|y) is an
identifiable mixture distribution. The most commonly
employed distributions are the Gaussian Mixture Models
shown in Eq. (1).

p(x|y) =Y mN(x|0)
el (1

where N (x|6@) is the Gaussian distribution with
parameters @ =[u,,X,], being M the mean vector and
X, the covariance matrix of the k-th Gaussian component,

and n, the mixing components such that Z”kzl for

k=12,... K. k=1

Ideally, only one labelled example per component is needed
to fully determine the mixture distribution. In this setting,
any additional information on p(X)is useful and the EM
algorithm can be used for estimating 6. A strength of the
generative approach is that knowledge of the structure of
the problem or the data can naturally be incorporated by
modelling it [8]. However, generative techniques provide an
estimate of p(X) along the way, although this is not required
for classification, and in general this proves wasteful given
limited data. For example, maximizing the joint likelihood
of a finite sample need not lead to a small classification
error, because depending on the model, it may be possible
to increase the likelihood more by improving the t of P(x)
than the t of P(VIX) [8].

The works of [18, 191, among others, showed to be strong
methods for classifying text data. Furthermore, [20] have
applied the EM algorithm on mixture of multinomial for
the task of text classification, showing better performance
than those trained only from the supervised set. [21] extend
generative mixture models by including a “bias correction”
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term and discriminative training using the maximum
entropy principle. However, anecdotal evidence is that many
more studies were not published because they obtained
negative results, showing that learning a mixture model
will often degrade the performance of a model fit using
only the labelled data [22]; one published study with these
conclusions is [18]. This is due to the strong assumption
done by generative methods: the data actually comes from
the mixture model, where the number of components, prior
p(x), and conditional p(x|y)are all correct [9].

2.2. Density-based methods

With the rising popularity of support vector machines
(SVMs), Semi-Supervised SVMs (S®VMs] emerged as an
extension to standard SVMs for semi-supervised learning.
SVMs find a labelling for all the unlabelled data, and a
separating hyperplane, such that maximum margin is
achieved on both the labelled data and the (now labelled]
unlabelled data. As a result, unlabelled data guide
the decision boundary away from dense regions. The
assumption of S®VMs is that the classes are well-separated,
such that the decision boundary falls into a low density
region in the feature space, and does not cut through dense
unlabelled data [9].

In a similar way to the conventional SVMs, the optimization
problem for an S®*VMs can be stated as follows shown in
Eq. (2.

0" = argmin %||¢9||2 +Ci£(f0(xi)yi)+
0T i=1
A0 f(x))

i=L+1 [2]

where ¢(t) = max(0,1 - ¢} is the hinge loss function, C is the
trade-o parameter and A is a new regularization parameter.
The first two terms in the above equation correspond to the
traditional solution for the standard supervised SVM, while
the last term puts f; (x;) of the unlabelled points x away
from 0 (thereby implementing the low density assumption)
[24].

Again, as in the supervised case, the kernel trick can
be used for constructing nonlinear S®VMs. While the
optimization in SVM is convex and can be solved with
QP-hard complexity, optimization in S*VM is a non-convex
combinatorial task with NP-Hard complexity. Most of the
recent work in S°VM has been focused on the optimization
procedure (a full survey in this matter can be found in
[24]). Among the proposed methods for solving the non-
convex optimization problem associated with S®VMs, one
of the first implementations is the S3VM“ by [25], which
is based on local combinatorial search guided by a label
switching procedure. [26] presented a method based on
gradient descent on the primal, that performs significantly
better than the optimization strategy pursued in S®VMUoht,

the work by [22] proposes the use of a global optimization
technique known as “continuation”, often leading to lower
test errors than other optimization algorithms; [27] uses
the Concave-Convex procedure, providing a highly scalable
algorithm in the non-linear case.

Other recent proposals include [28] which focuses on the
class-imbalance problem and proposes a cost-sensitive
S%VM; [29] which describes Laplacian twin support
vector machines; and several approaches to adaptive
regularizations like [30, 311.

2.3. Graph-based methods

Graph-based methods start with a graph where the nodes
are the labelled and unlabelled data points, and (weighted)
edges reflect the similarity of nodes. The assumption is that
nodes connected by a large-weight edge tend to have the
same label, and labels can propagate throughout the graph.
In other words, graph-based methods do the assumption
that labels are smooth with respect to the graph, such that
they vary slowly on the graph. That is, if two instances are
connected by a strong edge, their labels tend to be the
same [9].

This family of methods enjoy nice properties from spectral
graph theory. They commonly use an energy function as
objective in the optimization problem, ensuring that the
labels will change slowly through the graph (consequently
implementing the manifold assumption) [32].

A graph is represented by the (L + U] x (L + U) weight matrix
W, W.= 0 if there is no edge between instances Xx; and X
Once the graph has been defined, a real function over the
nodes can be defined f,:X —°.In order to achieve that
unlabelled points that are similar (as determined by the
edges of the graph) to have similar labels, the quadratic
energy function shown in Eq. (3] can be used as objective:

0 = argmin

8T

W AIACSEIAED]

(3)

Since this objective function is minimized by constant
functions, it is necessary to constrain f, to take values
Jo(X)=,  for all the labelled data X, € X, . Finally, let
D be the diagonal degree matrix, where Dl-,:z W. is

ij
the degree of node X, . The combinatorial Lapladian A is
defined as in Eq. (4).

A=D-w (4)
and it is easy to verify Eq. (5):

0 = argmin{f;Afo }

0T (5)

Most graph-based methods are inherently transductive,
giving predictions for only those points in the unlabelled
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set, and not for an arbitrary test point. The simplest strategy
for extending the method for unseen data is by dividing
the input space into Voronoi cells centered on the labelled
instances. From an algorithmic point of view, this strategy is
equal to classify instances by its 1-nearest-neighbour. [21]
proposed an approach that combines generative mixture
models and discriminative regularization using the graph
Laplacian in order to provide an inductive model. Laplacian
SVMs, proposed by [33], provide a natural inductive
algorithm since they use a modified SVM for classification.
The optimization problem in this case is regularized by the
introduction of a term for controlling the complexity of the
model according to Eq. (6):

0" = argmin Zﬁ(ﬁ(xi)yi)+2,2Wii

6eT i

(£ )= fo(x))

(6)

where WU, is the weight between the j—th and j—th
instances in the graph and A is again a regularization
parameter. A lot of experiments show that Laplacian SVM
achieves state of the art performance in graph-based
semi-supervised classification [29].

3. Proposed methodology:
semi-supervised learning for
predicting gene ontology terms
in Embryophyta plants

3.1. Selected semi-supervised
algorithms

In order to test the efficiency of semi-supervised learning
in the task of predicting protein functions, two state of
the art methods were chosen, each one implementing a
different semi-supervised assumption: S®*VM following
the concave-convex optimization procedure (CCP) [27]
(implementing the low-density separation assumption and
consequently the cluster assumption] and Laplacian-SVM
[34] (implementing the manifold assumption).

e CCP S®VM: The S°VM proposed by [27, 34] was chosen
since it provides high scalability in the non-linear case,
making it the most suitable choice for the amounts
of Embryophyta proteins in the databases used in this
work. Consider the set of labelled points X, ={x,}-,
for which labels {¥,}-, are provided, and the points
X, ={x,}2", the labels of which are not known.
The objective function to be optimized in this case,
corresponds to Eq. (7):

I, ()= % 161 +c2f(n(xi)yi)+z_ﬁ (1 £ 1)

(7)

where the function ¢(t) = max(0,1-Itl) is the hinge loss
function. The main problem with this objective function, in
contrast to the classical SVM objective, is that the additional
term is non-convex and gives rise to local minima.
Additionally, it has been experimentally observed that
the objective function tends to give unbalanced solutions,
classifying all the unlabelled points in the same class.
A constraint should be imposed on the data to avoid this
problem [26], as shown in Eg. (8):

L+U

1 < 1
zzyi :E Z fe(xi)

i=1 i=L+1 (8)

which ensures that the number of unlabelled samples
assigned to each class will be the same fraction as in the
labelled data. CCP decomposes a non-convex function J
into a convex component J _ and a concave component
J.e - Ateach iteration, the concave part is replaced by the
tangential approximation at the current point and the sum
of this linear function and the convex part is minimized to
get the next iterate. The first two terms in Eq. (7) are convex,
while the third term can be decomposed into the sum of a
convex function (Eq. 9) plus a concave one (Eq. 10):

J,,. =max(0,1-[z|)+2|¢] 9)

Jcave:_2|t| (10)
If an unlabelled point is currently classified positive, then
at the next iteration, the convex loss on this point will be

determined by Eq. (11):

) 0 if =1,
(=3 (-1 if |11,
4t if t<-1

(11)

The CCP algorithm for the semi-supervised support vector
machines is presented in Algorithm 1 (Table 1).

e Laplacian SVM: Regarding the graph-based
algorithms, Laplacian support vector machines
(Lap-SVM) were chosen since, according to [29], many
experiments show that Lap-SVM achieves state of the
art performance among graph-based semi-supervised
classification methods. This method, as proposed in
[33], uses an objective function that is slightly different
to Eg. (6) and can be seen in Eq. (12):
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Table 1 Concave-convex optimization procedure algorithm for semi-supervised suﬁport

vector machines

Algorithm 1 CCP for SSVM

Require: Initial @ from the supervised SVM

while convergence of yiis not met do

yi L fﬁ(xi)7

i=L+1LL+2,...,L+U

0 = arg min {%H 0| +CZ€(fB(xi)yi)+l i J;”(fg(xi)yi)}

end while
return @

i=L+1

1 L
JLapSVM(a) =Zzﬁ(f6’(xi)yi)+/1,4 || 0”2 +
i=1

A

s

(12)

where A, and A are two regularizing constants that must be
set by the user. [32], also demonstrated a modified version
of the Representer Theorem that ensures that the solution
function can be given again by linear combination of kernel
functions and the Lap-SVMs can be implemented by using
a standard SVM quadratic solver.

The S®%M and Lap-SVM were used as base classifiers, both
of them with the Gaussian kernel. For the Lap-SVM, the
K-NN graph was selected for implementing the manifold
regularization term, since there is some empirical evidence
that suggests that fully connect graphs performs worse
than sparse graphs [9].

All the parameters of the algorithms, including the
dispersion of the kernels, the trade-o parameters of the
SVMs, the regularization constants of both methods and
the number of neighbours for constructing the graph, were
tuned with a particle swarm optimization meta-heuristic.
The decision making was implemented following the one
against-all strategy with SMOTE oversampling for avoiding
class-imbalance. Also, the 5-fold cross-validation strategy
was implemented for assessing the performance of the
predictors.

3.2. Database

The database designed in [4] was used as the set of
labeled instances. This database is conformed by all the
available Embryophyta proteins at UniProtKB/Swiss-Prot
database [35] (file version: 10/01/2013), with at least one
annotation in the Gene Ontology Annotation (GOA] project
[36] (file version: 7/01/2013). In order to avoid the presence
of protein families that could bias the results, the dataset
was filtered at several 30% of sequence identity using
the Cd-Hit software [37]. The set of labelled instances is
then conformed by 3368 protein sequences, from which

1973 sequences are annotated with molecular functions,
2210 with cellular components and 2798 with biological
processes [4].

Classes are defined by the plants GO slim developed by The
Arabidopsis Information Resource - TAIR [38], (file version:
14/03/2012). Positive samples associated to each GO term
are selected by considering the propagation principle of
GO: if a protein is predicted to be associated to any given
GO term, it must be automatically associated to all the
ancestors of that category and thus, it is enough to predict
only the lowest level entries. As in [4], in order to explicitly
note thatsome GO termsare notincluding their descendants
categories, such incomplete GO terms are marked with an
asterisk throughout the paper. The resulting set comprises
14 GO terms in the molecular function ontology, 20 GO
terms in the cellular component ontology and 41 GO terms
in the biological process ontology. Table 2 shows the final
list of categories, as well as the acronyms used to cite them
throughout this paper.

Regarding unlabeled instances, all the available
Embryophyta proteins at UniProtKB/SwissProt database
that has no entries in the GOA project were added as the
core set of unlabeled samples. Also, proteins associated
to the nodes in the functional path of a GO term that were
not associated to the node itself, were left as unlabeled
instances regarding that classifier. Finally, 30000 unlabeled
instances were randomly chosen in order to accomplish an
approximate relation of ten unlabeled instances per each
labeled one.

Both labeled and unlabeled sequences were characterized
according to the procedure described in section [4] obtaining
three types of attributes: physical-chemical features,
primary structure composition statistics and secondary
structure composition statistics (see Table 3).

4. Results and discussion

Figure 1 shows a comparison between the results with
the S®VM (orange line) and the SVM method presented
in [4] (green line). Classes are ordered according to the
performance of the SS®*VM method from top to bottom.
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. For classification purposes, classes marked with an asterisk (*)

were redefined. (Adapted from [4])

Class Acronym Class Acronym
Molecular Function Biological Process
Nucleotide binding Ntbind Reproduction* Reprod*
Molecular function® MF* Carbohydrate metabolic process ChMet
DNA binding OnaBind Generation of precursor metabolites and
FER . MetEn
Transcription factor activity TranscFact energy
RNA binding RnaBind Mucleobase, nucleoside, nucleotide, nucleic NaMet*
Catalytic activity® Catal* acid metabolic process*
Receptor binding RecBind DMNA metabolic process DnaMet
Transporter activity Transp Translation Transl
Binding* Bind* Protein medification process ProtMod
Protein binding* ProtBind* Lipid metabolic process LipMet
Kinase activity Kinase Transport Transport
Transferase activity® Transf* Response to stress StressResp
Hydrolase activity Hydrol Cell cycle CellCycle
Enzyme regulator activity EnzReg Cell cormmunication® CellComm*
Signal transduction SigTransd
Cell-cell signaling Cell-cell
Cellular Component Multicellular organismal development® MultDev*
Cellular component® cce Biolegical process* BP*
Extracellular region ExtcellReg Metabolic process*® Met*
Cell wall Cellwall Cell death CellDeath
Intracellular* Intracell* Catabelic process Catabolic
Nucleus* Mucleus* Biosynthetic process* Biosint*
MNucleoplasm MuclPlasm Response to external stimulus® ExtResp*
Nucleolus Mucleolus Tropism Tropism
Cytoplasm* CitPlasm* Response to biotic stimulus BioResp
Mitochondrion Mitochond Response to abiotic stimulus AbioResp
Endosome Endosome Anatomical structure morphogenesis StrMorph
Vacuole Vacuole Response to endogenous stimulus EndoResp
Peroxisome Peroxisome Embrycnic development EmbDev
Endoplasmatic reticulum EndRet Post-embryonic development™® PostDev*
Golgi apparatus GolgiApp Pollination Poll
Cytosol Cytosol Flower development FlowerDev
Ribosome Ribosome Cellular process* cp=*
Plasma membrane PlasmMb Response to extracellular stimulus ExtcellResp
Plastid Plastid Photosyntesis Photosyn
Thylakoid Thylk Cellular component organization CellOrg
Membrane* Mb* Cell growth CellGrowth
Protein metabolic process® ProtMet*
Cellular hemeostasis CellHom
Secondary metabolic process SecMet
Cell di erentiation CellDi
Growth* Growth*
Regulation of gene expression, epigenetic RGE

Left plots show sensitivity, specificity and geometric mean
achieved with the five-fold cross-validation procedure,
while right plots depicts the corresponding p-values
obtained from a paired t-test at a 95% significance level.
Orange bars show the cases when the S®VM significantly
outperforms the supervised SVM and green bars show the
opposite case.

The main purpose of this comparison is to verify whether
or not the inclusion of the additional cluster-based

semi-supervised term in the training of the SVM improves
the performance of the system, thus providing information
about the accomplishment of the cluster assumption when
the unlabelled data is incorporated to the training process.
Figure 1(a) shows that six out of the fourteen molecular
functions considered in this ontology were significantly
improved. In particular, Receptor binding, Transcription
factor activity and Enzyme regulator activity have a special
importance, considering that the SVM method was
outperformed by BLASTp in those three GO terms when
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Table 3 Features extracted from amino acid sequences (Taken from [4])

Nature Description Number
Sequence length 1
Molecular weight 1
) ) Positively charged residues (%) 1
Physical-chemical . .
Negatively charged residues (%) 1
Isoelectric point 1
GRAVY 1
) o Amino acid frequencies 20
Primary structure statistics Amino acid dimer frequencies 400
Structure frequencies 3
Secondary structure statistics Structural dimer frequencies 9
Total 438

using the supervised model (see [4]). The inclusion of the
cluster assumption also improved the performance on
Hydrolase activity*, Binding* and Protein binding*. Regarding
the Cellular Component ontology (Figure 1(b)), eight cellular
components were significantly improved, while other two
(Mitochondria and Cytoplasm*) also reached high p-values
over 0.9. Finally, sixteen biological processes presented
statistically significant improvements when including
the unlabelled data with the semi-supervised cluster
assumption. Only one biological process, Lipid metabolic
process, suffered a statistically significant deterioration,
which indicates that the unlabelled data is presenting a
misleading cluster structure regarding this GO term.

In order to analyse how this improvements affect the
system when compared to conventionally used prediction
tools, Figure 2 shows a comparison between the results
with the S°%M (orange line) and the traditional BLASTp
method (blue line). It can be seen from figure 2(a) that the
S®VM significantly outperforms BLASTp in five molecular
functions, while BLASTp remains better than the SVM only
for Transcription factor activity.

Regarding the cellular component ontology, there are only
two cellular components for which there is no statistically
significant difference between BLASTp and the S3VM:
Perixosome and Endosome. For all the remaining eighteen
cellular components, the semi-supervised method obtained
superior performance. A similar behaviour is shown at
figure 2(c), where the S%M significantly outperforms
BLASTp in 35 out of the 41 biological processes, while the
remaining six process showed no statistical difference
between the methods.

On the other hand, Figure 3 shows the comparison between
the supervised SVM and the Laplacian-SVM. This analysis
provides information about the impact of incorporating
unlabelled data on the training set but, this time, by
implementing the semi-supervised manifold assumption.
This time, it is possible to see that there are less GO terms
that have been improved by the inclusion of the unlabelled
data. For the molecular function ontology (Figure 3(al),
only the Nucleotide binding and Enzyme regulator activity

GO terms were significantly improved respecting the
supervised SVM; in turn the implementation of the manifold
assumption significantly degraded the performance for
the GO term Transcription factor activity. Regarding the
cellular component ontology (Figure 3(b)), improvements
are present for Perixosome, Vacuole and the root node of
the ontology, while a decrease is evinced for the Nucleus*
GO term. As for the biological process ontology, seven GO
terms enhanced their prediction performance (Embryonic
development, Response to extracellular stimulus, Response
to external stimulus*, Metabolic process*, Response to biotic
stimulus, Cell communication and the root node of the
ontology), while other two were worsened (Cell cycle and
DNA metabolic process).

Figure 4 depicts a comparison between the results obtained
with BLASTp and the LapSVM method. The first important
result that can be inferred from the present analysis is
that, in general terms, for the problem of protein function
prediction, the semi-supervised cluster assumption holds
for many more cases than the semi-supervised manifold
assumption. However, the most important aspect to be
analyzed here, is how the results in Figure 4 complement
the results from Figure 2. Only two molecular functions
presented an statistically significant superior performance
with the Lap-SVM over BLASTp. One of them, RNA binding,
did not show statistical significance when comparing
BLASTp and S®VM. The same behaviour is present for
the Perixosome cellular component and for the biological
processes Transport and Lipid metabolic process. These
results indicate that the manifold assumption is best suited
than the cluster assumption for this particular GO terms. A
few GO terms were not improved by any of the assumptions.

5. Conclusions

In this paper, an analysis of the suitability of
semi-supervised methods for the prediction of protein
functions in Embryophyta plants was performed. A review
of the state of the art of semi-supervised classifiers was
presented, highlighting the different assumptions that each
method does about the underlying distribution of the data.
Two semi-supervised methods were chosen to perform the



J. A. Jaramillo-Garzdn et al.; Revista Facultad de Ingenieria, No. 79, pp. 19-32, 2016

Sensitivity : ) Sensitivity :
RecBind | m  Specificity | 0.98 | ‘ Ribosome | o gpecificity [ 0.86 | I
~o s°vm T Nucleolus | ~#~ S°VM | 100 I
TranscFact —e— SVM I 0.98 I| Thylk —e— SVM | o | T
1 5 |
Transp | 086 | : Nucleus* [ 0.99 H
+ Plastid 074 |
Hydrol* I 1.00 | |
I EndRet [ 0.89 | 1
« I |
Transf | 0.86 | \ ExtcellReg | 0.85 | |
| - T
MF* | 089 | | Cytosol I 08 1
: Cellwall [ 0.99 ]
RnaBind 063 \ GolgiApp | [ 087 |
I |
Kinase |f | 084 | | CytPlasm* | 093 i

| -

Mb* 0.95
Bind* | - ] b [ ]
! Vacuole [ 0.95 1
?
ProtBind* | 0.99 : NuclPlasm 0.71 !
DnaBind o7 \ Perixosome [ 095 |
e ! Mitochond | 0ot I

Catal [ i ccr | 1
T
* 0.87
EnzReg | s : Intracell* |’ | | :
T PlasmMb | 088 | |
NtBind | 001 | : Endosome | 0.64 :
] |
N N B B B B T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0.0 0.2 04 06 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
Performance 1 - (p-value) Performance 1 - (p-value)
(a) Molecular function (b) Cellular Component

Sensitivity !
PRoiesrt | m  Specificity — 0
MetEn —o- s°wm — 7.00 )
0 N
Tropism —e— SVM S — 1
aMet — .68 ] |
FlowerDev .00 T
rans — 792 M
CellCycle - 1
Ci ||E|%r:1 — Jg,? ]
el — = T +
EmbDev —_— 007 L]
ProtMod . — 075 ] T
[N, ——————— FL - T 1
ecMet - =, 099 |
CellGrowth | = .98 |
ChMet - FL o 097 T
Catabolic = - 0.79 ] 1
CellOrg |==————— — 058 ] 1
ProtMet = .99 ]
MultDev* |==————===== = , 092 1
NaMet* f—- T8 1l |
CellComm — 00 ]
ExtcellRes T35 y
StrMorpl ) T90_ I
SigTransd T.76 ] |
oftese == s =3
ro = 2
S ——— - — -
ol 1 S|
(t)F?IIDiff - ——] :|
xtResp* |
StressRes, gl 092 T
N ———— - 7!
g el S Toz !
BP* — = 700 :
Met* Ay 082 1
BioResp : g C OS5t |
Transport —U'QE—L| 08 ]
LipMet | =y ; '
|

T T T T T T T T T T

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
Performance 1 - (p-value)

(c) Biological process

Figure 1 Comparison between the S°VM method and the supervised SVM. Bars in the left plots show
sensitivity and specificity of the S°VM and lines depict geometric mean for S°VM (orange) and the
classical supervised SVM (green). Right plots depict the p-values obtained by paired t-tests at a 95%
significance level. For each ontology, the best predicted categories are ordered from top to bottom
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Figure 2 Comparison between BLASTp and the S°VM method. Bars in the left plots show sensitivity
and specificity of the S°VM and lines depict geometric mean for S°VM (orange) and BLASTp (blue).
Right plots depict the p-values obtained by paired t-tests at a 95% significance level. For each
ontology, the best predicted categories are ordered from top to bottom
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Figure 3 Comparison between the Lap-SVM method and the supervised SVM. Bars in the left plots
show sensitivity and specificity of the Lap-SVM and lines depict geometric mean for Lap-SVM (orange)
and the classical supervised SVM (green). Right plots depict the p-values obtained by paired t-tests
at a 95% significance level. For each ontology, the best predicted categories are ordered from top to
bottom
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Figure 4 Comparison between BLASTp and the Lap-SVM method. Bars in the left plots show sensitivity
and specificity of the Lap-SVM and lines depict geometric mean for LapSVM (orange) and BLASTp
(blue). Right plots depict the p-values obtained by paired t-tests at a 95% signi cance level. For each
ontology, the best predicted categories are ordered from top to bottom
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tests, each representing one of the main semi-supervised
assumptions: cluster assumption and manifold assumption.
The results show that semi-supervised learning applied
to the prediction of GO terms in Embryophyta organisms,
significantly —outperforms the supervised learning
approach, at the same time outperforming the commonly
used sequence alignment strategy in most cases. In
general terms, the highest performance were reached
when applying the cluster assumption. However, several GO
terms that were not significantly improved with the cluster
assumption, achieved higher performance with the manifold
based semi-supervised method, demonstrating that a
single assumption is not enough for improving the learning
process by the exploitation of the additional unlabelled
data. As future work, it is desirable to implement a unified
strategy exploiting both assumptions at the same time, in
order to achieve high performances in most applications.
Also, classifiers devoted to hierarchical classification, such
as decision trees, could be used to improve classification
performance.
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