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1. Introduction
Animal biometrics has increased in recent years, since 
identifying individual animals and recognizing them at 
different places and time are important requirements in 
many biology tasks such as calculating animal population 
density, survival, analysis of a particular behavior and 
planning conservation measures [1, 2]. 

Animal identification strategies usually imply physical 
labeling using devices that could injure the animal, modify 
its behavior, or even change the survival possibilities [3]; 
also marking strategies are not suitable in large populations 
or extended periods of time.
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Non-intrusive approaches include the identification of 
genetic markers in excrement [4] and Photographic 
Mark-Recapture (PMR) [5]. The PMR method is based on 
visual identification using phenotypic appearance features 
like spots, stripes or morphology. Those features must be 
stable over time, unique and photographed under different 
conditions. This method is a two-photo comparison of one 
target and hundreds of possible subjects to find similarity 
between patterns. For this reason, the identification 
of larger animal populations by a human observer is 
a time-consuming task and, furthermore, the subjectivity, 
skills or experience of the expert could affect the objectivity 
of the study [2].

Automatic biometric identification offers an alternative to 
save time and to provide robustness to the identification 
process. There are two possible scenarios for a computer 
vision perspective. First, photos taken in the wild as photo 
trap framework; this media is commonly cluttered, with 
low contrast, containing trees, shrubs, other subjects 
and the target in multiple poses [6]. Another approach 
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is mark-recapture analysis, where the subject is 
photographed under controlled conditions and position. 
Additionally to the scenario, both cases present problems 
in natural appearance of skin, like shininess on reptiles, 3D 
shape, contamination produced by sand or environmental 
components, and scars.

Previous semi-automatic approximations include shapes 
for marine mammals [7-10] and elephants [6]; spots for 
Serengeti cheetahs [3], giraffes [5], turtles [11], seals [12] 
and stripes for tigers [1] and zebras [4] which a region 
of interest (ROI) is manually selected or cut and then, a 
segmentation is performed giving seeds to an adaptive 
shape algorithm as deformable shapes or active contours. 
Another technique avoids pattern segmentation and uses 
invariant point features such as SURF descriptors, Multi-
scale PCA, Scale-Cascaded Alignment, Histogram, SIFT 
and affine invariant variations to make a direct matching 
[13].

Our subjects are endangered lizards, Diploglossus 
millepunctatus, from Malpelo Island (Colombia) [14]. These 
reptiles, present a unique spot pattern per subject, this 
pattern are currently studied using mark-based methods. 
The results achieved show that simple cost functions with 
Markov Random Fields (MRF) or MRF framework can 
perform the segmentation of these patterns in multiple 
illumination variations and under noisy conditions. 

2. Related Work
Diploglossus millepunctatus spots do not have the same 
intensity values throughout the whole subject. This issue is 
most critical when high amounts of light irradiate the lizard 
and mask the spots in the illuminated regions. This scenario 
can be modeled with a MRF that can deal with uncertainty 
of pixel intensities that belong to a spot in a determinate 
region based on multiple soft criterions like local intensity, 
neighborhood relations and a broad number of patterns.

MRFs have been proven to be a suitable method to resolve 
computer vision tasks like image segmentation. [15] 
showed that with some seeds set by the user, objects can 
be segmented using hard constraints and histograms for 
object and background. In [16], the histograms of user seeds 
were replaced by Gaussian Mixture Models (GMM), one for 
background and one for foreground; and also a border 
matting algorithm was developed to fix transparency on 
segmented object edges. Another approach is [17], where 
a shape model was imposed through Layered Pictorial 
Structures to MRF, which favored specific trained shapes. 
The method in [18] does not need user interaction, it is based 
on color values form CIE-L*u*v* color space, and texture 
features from Gabor filtered images as data term with a 
GMM parameterized automatically with EM algorithm. 
In [19], the authors propose a multi-region segmentation 
method based on geometric interactions between objects 
that were previously segmented with user interaction or 
automatic framework.

Our approach uses mono-grid model-based segmentation 
that targets a specific object (lizard spots) in challenging 
scenarios. User interaction and previous training is not 
required. The model uses an appearance model based 
on RGB color space, gray-level image and smoothness 
constraints. Segmentation was tested under hard light 
contamination conditions, with noisy and blurry images, 
using three types of models and inference algorithms.

3. Methods
To show the insufficiency of classical segmentation 
methods and to prove the advantages our proposed model 
offers to cope with the before mentioned challenges, an 
analysis of lizard spots using several classical techniques 
was performed. On the basis of these analyses, and to solve 
the segmentation task, we propose and further explain a 
preprocessing methodology and a segmentation model 
based on energy. At the end of this section, three traditional 
approaches to solve the energy model are explained in 
more detail.

A Diagram of the proposed energy segmentation model is 
presented in Figure 1. The preprocessing step intends to 
highlight features, increases spots’ contrast, and helps to 
enhance the model’s score. The MRF model block extracts 
parameters from the input image to feed the mathematical 
model. Finally, the inference block solves the maximum a 
posteriori probability (MAP) problem of the MRF model and 
gives a mask with spots.

Figure 1  Overview of the proposed method
 

3.1. Preprocessing 

Non-uniform illumination and non-constant color of 
Diploglossus millepunctatus spots are essential objectives 
for preprocessing steps, since there is no unique threshold 
that can separate spots from foreground. A low value in 
binarization keeps all the spots, but also large amounts 
of light (Figure 2(b)). Moreover, a high threshold value 
(see Figure 2(c)) keeps the desired pattern without the 
presence of light but misses low-intensity spots. There is 
no prior knowledge about the optimal threshold value on 
every image. A common solution is Otsu’s method, which 
assumes binarization as bi-class clustering problem 
and selects a threshold value that minimizes intra-class 
variation. 

Histogram preprocessing techniques used to enhance 
contrast include histogram equalization and contrast 
correction. Histogram equalization is a global method 
that sparse the histogram of an image; however, this 
approximation does not produce good results (Figure 3(b)), 
because it masks the spots closest to brightness regions 
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intensities. Then again, contrast correction is a point 
operation that enhances contrast multiplying intensities 
of a pixel by a fixed value between 1 and 3 and casting it 
to a value between 0 and 255. This causes a significant 
contrast enhancement in dark regions (Figure 3(c)), but 
gaps among spots and higher intensity regions remain 
unchanged. Global techniques as histogram equalization 
or point operations like contrast correction are strategies 
that use global statistics of an image or just modified pixel 
values with a constant; they do not observe local variation 
on contrast and assume equal distribution of intensities in 
an image. 

Local operations like adaptive thresholding (AT) and contrast 
adaptive histogram equalization (CLAHE) observe a local 
window in each pixel and calculate the optimum threshold 
value or intensity to split histogram. Local algorithms 

depend on window selections and, since intensity, size and 
distribution of regions are random, windowing size has to 
vary throughout the image. Results using AT and CLAHE 
are exhibited in Figure 4(b) and 4(c), both presenting bad 
choices of correction values, caused by the fixed size of the 
observed window.

The final implementation must equalize light and let the 
color values constant to exploit spot color information. 
This reasoning is done using color spaces that convert RGB 
color space to representations independent of brightness: 
HSV, L*a*b* and HSI color spaces. Due to the equalization 
of aleatory light distribution, a CLAHE was applied after the 
RGB to L*a*b* conversion in the brightness channel on 3 
different color spaces. After that, L*a*b* space showed a 
more uniform distribution. In order to separate spots from 
light regions, a saturation correction was implemented. 

Figure 2 Local threshold with several parameters: (a) raw image, (b) low threshold value, (c) high 
threshold value, (d) Otsu threshold method

Figure 3  Histogram preprocessing: (a) raw image, (b) histogram equalization, (c) saturation correction

Figure 4  Local preprocessing: (a) raw image, (b) adaptive threshold, (c) CLAHE

  (a)                                                 (b)                                                    (c)                                                 (d) 

  (a)                                               (b)                                                 (c)                                           

  (a)                                            (b)                                               (c)                                        
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possible combinations of segmented pixels that minimizes 
the energy function used as the segmentation criteria as 
shown in Figure 7, based on [15].

There are different ways to define an energy function. One 
of them is to define an energy function (Eq. (1)) in terms of 
the disagreement between S and the observed data or Edata 
and the measurement of the smoothness or Esmooth

                 (1)

Election of energy functions is a difficult task because 
different elections in the Esmooth produce different results 
in final segmented image [21]. For example, in some 
regularization based approaches [22] Esmooth makes S 
smooth everywhere. This produces poor results at object 
boundaries. 

The data term energy function could consider different 
factors as the interaction with the user, the shape or 
different characteristics of the target object [21]. In 
non-supervised object segmentation, the introduction of 
previously known information about the target object in 

This process highlights Red and Green channels and, 
hence, spots were turned brighter than the light regions 
(Figure 5(b)).

Figure 6 shows the final preprocessing method applied. 
First, CLAHE on the Luminance channel of L*a*b* space is 
applied, followed by a point operation (saturation correction) 
in HSI color space, and finally, the image is transformed to 
RGB space.

3.2. Model

Probabilistic image segmentation approaches try to 
calculate the probability of a pixel or number of pixels 
belonging to a certain feasible image class. These classes 
are modeled as a discrete random variable, taking values in 
L = {1, 2, ..., S}, with S as the maximum number of feasible 
classes in the image. The set of these labels is a random 
field, called the label process [18]. Each pixel in the input 
image is assumed as a random variable Y, which could take 
a discrete value between 0 and 255. These values constitute 
the observations Z and are related to the hidden variables 
X, related to the labels L1and L2, which correspond to the 
pixel label either as a spot or as a background. Each pixel is 
connected to a pixels neighborhood.

In this work, the random variables are related through 
energy functions that determine whether the pixel belongs 
to a determined class. The inference process is based on 
both, the individual values of the pixel or group of pixels and 
the neighborhood relations. These relations are computed 
using the cliques [20]. This graph topology allows the 
interaction of each pixel or group of pixels only with their 
closer neighborhood which is called a first order Markov 
blanket.

A desirable result of the segmentation process is to find a 
combination of segmented regions S from the group of all 

  (a)                                              (b)                             

  (a)                                              (b)                                 

 Figure 5  Preprocessing results: (a) raw image, (b) preprocessed image

Figure 6  Overview of the preprocessing method 

Figure 7  Source image and segmented regions S 
that minimize the energy function
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performing the inference process. In order to solve this 
task, this work uses three algorithms: graph cuts, loopy 
belief propagation, and dual decomposition; each algorithm 
has a different approximation to the solution and thus, they 
show differences in the final result.

The general idea of the graph cuts algorithm is to minimize 
the energy function through cuts in the probability flow of 
information inside the model. First, when the set L has 
cardinality of two, additional nodes called Sink and Source 
with connections to all nodes in the model, are added. The 
new graph must be divided or “Cut” in two parts, where 
each part contains one of the added nodes. These cuts are 
made based on the min cut-max flow theorem [22] claiming 
that the min cut in the edges of the extended graph of G is 
the assignation of potentials that maximizes the probability.

The push-relabeling method is a way to perform the min cut 
task, which maintains a preflow f and a distance labeling d 
in the graph, and then begins the discharge operation. In 
the end, the excess at the sink is equal to the minimum cut 
value. The final stage of the push-relabeling algorithm is 
to convert f into a flow. This is reached by computing the 
decomposition of f and reducing f on paths [21].

Loopy belief propagation, as graph cuts, tries to calculate 
the solution that corresponds to the MAP. It is a message 
passing-based algorithm where the convergence is secured 
[23]. The inferences process is performed indirectly and, as 
the simple belief propagation, few exchanges of messages 
are sufficient to compute the required probability task.

Loopy belief propagation algorithm defines clusters  in 
all the edges of the graph G with m taken from 1 till the 
total amount of edges, each cluster sends a message to his 
Neighbors, this message  from cluster c1 to cluster 
c2  connected through a node x2 with n taken from 1 till the 
total amount of nodes are calculated using the factors of 
each node and the message sent by the Neighbors clusters 
[20] in an iterative process which calculates the beliefs over 
the graph G. 

Dual decomposition algorithm is based on the derivation 
of a complex problem into simpler and solvable problems 
where the solution of the whole problem is the solution 
from these sub-problems. This algorithm is based on the 
strategy of dividing the graphical model into a different 
set of slaves or tractable components that try to solve the 
inference task locally based on neighborhood relations.

We worry about the definition of the problem and the 
sub-problems. For this purpose, we define a set of 
subtrees T over the graph G where trees in T should cover 
at least once every node of G. For each tree T ∈ T. ∈ We 
set a smaller MRF defined on the nodes and edges on the 
tree T, this problem is the decomposition of the big MRF 
problem into a series of smaller MRF problems (one per 
each tree T). The relaxation of the coupling constraints by 
introducing Lagrange multipliers set out the solution of the 
problem via dual decomposition as shown in [24], where the 
whole problem is simplified at point of be a group of MRF 
optimizations over trees T ⊂ G.

the energy function as foreground specific intensity range 
of values or background-foreground contrast information 
could even improve the inference process.

In this work, three different energy functions were tested 
in order to properly represent the task to solve in the 
segmentation process. As each pixel in the image is taken 
as spot or as scale, each energy function is integrated by 
two terms: The term  is aware of the membership of 
the pixel p in the neighborhood P to the class scale and 
the tern  is aware of the membership of the pixel p to 
the class spot. In those energy functions IGp represents the 
grayscale intensity value of the pixel p, ILp represents the 
intensity value of the pixel p after applying a three-label 
discretization over the image (this discretization is aware 
of the visual difference between the scales and the spots, 
which have higher intensity values) and ICp  represents the 
color properties of the spot highlighted in the preprocessing 
step. Eq. (2) is identified as Function 1, Eqs. (3) and (4) as 
Functions 2 and 3, respectively. 

                 (2)

                 (3)

                 (4)

An interesting smooth term energy function is the Potts 
model, which is the simplest discontinuity preserving 
model. In this energy function model, discontinuities 
between any pair of labels are penalized equally and can be 
reduced to the multi-way minimization problem [15], which 
is known to be a NP-complete problem, where NP means 
non-deterministic polynomial time.

In principle, the graphical model of an image can answer 
different queries about the variables related to the model. 
Having a set of observations Z, any information about the 
variables implicit in the model ideally could be obtained 
based on a conditional probability distribution. Unfortunately, 
the process to obtain this information is a NP-hard problem 
even in simple Markov chains. Furthermore, there are loops 
inside the topology of the model [20] impeding the task of 
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4. Experimental Framework
4.1. Dataset

The database was provided from “Facultad de Ciencias 
Exactas y Naturales” from the University of Antioquia and 
is made up of 450 images of Diploglossus millepunctatus 
lizards exposed to dust, with differences in light between the 
images and taken from diverse orientations and distances. 
Squared samples of 700x700 pixels were randomly 
taken from 40 raw photos and extracted in three labeled 
conditions: ideal, standard, and contaminated (see Figure 

8). Labeled condition criterions were proposed based on 
visual perception criteria taking into consideration the 
light exposure, visual identification of sand or dust and the 
image resolution. Ideal condition images have a low light 
exposition, are mostly free of dust and have a resolution 
that allows the clear observation of the lizard skin. Standard 
condition includes images with the existence of sand or 
dust, light exposure and low resolution but in conditions 
that allow the visual recognition of the spots. Finally, 
contaminated images have mostly light over exposition as 
a main characteristic, but also the existence of sand and 
poor resolution.

4.2. Experiments

Typical lizard spots segmentation processes are performed 
manually due to the need of an expert criterion of what skin 
pattern could be considered as a spot. Following the visual 
criterion, the manual segmentation was taken to create a 
Ground truth dataset used to confront the accuracy of the 
experiments performed.

As explained in Section 3, the whole process depends on 
the variation of the preprocessing step, the smooth term, 
data term energy function and the inference algorithm.

Based on a literature review, the selected energy term Esmooth 
functions were Potts, absolute truncated and absolute 
functions due to good results presented on similar issues. 
Similarly, the loopy belief propagation, dual decomposition 
and graph cuts algorithms were implemented as inference 
algorithms over both, the preprocessing images and the 
RAW images varying the Edata term of the energy function. 
The combination of these blocks in the whole process was 
performed with different inner block parameters and the 
best results are reported in the next section.

Cost functions were tested with the three different smooth 
terms previously explained; Potts model was tested with 
k=1 and discrete values from 0 to 9 for similarity and 
dissimilarity metrics. The Truncated Square function has 
a threshold parameter that was moved from 10 to 100 in 
steps of 10 and a weight that was adjusted from 0.2 to 1 
in steps of 0.2. All the experiments were performed using 
OpenGM [25] library.

Figure 8 Database images examples: (a) ideal, (b) standar, (c) contaminated
  (a)                                            (b)                                             (c)                                           

5. Results
Tables 1, 2 and 3 show performances of the model with 
each cost function and inference algorithm. Numbers 
correspond to mean of efficiency in each condition, where 
efficiency is calculated as sum of true positives with true 
negatives terms of confusion matrix. Only Potts model 
results are presented since truncated absolute difference 
and absolute different functions always performed worst. In 
Tables 1, 2, and 3 loopy belief propagation (LBP) is shown; 
dual decomposition (DD) algorithm shows the same results 
as LBP and therefore it is not included in the Tables 1, 2, 
and 3.

The results show that a cost function built with intensity 
differences, like energy function (2), performs poorly 
segmentation when the image has low contrast between 
foreground and background. However, preprocessing 
enhances this performance significantly pushing the 
efficiency from 49.60% to 84.87%. Posterization function (3) 
showed the worst results due to insufficient seed provision. 
The color-based cost function (4) shows the best results in 
preprocessed images, owing to color nature of lizard spots 
and the gain that preprocessing step gives to these color 
characteristics. 

At this point, it is necessary to see how a preprocessing step 
can improve the segmentation task. 

Images that have been passed through the preprocessing 
step achieve higher performance once the inference 
process is performed, because the enhancement of the 
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Table 1 Results in ideal condition image

Table 2 Results in standard conditions

Table 3  Results in contaminated conditions

Figure 9  Example image in ideal conditions (See in digital format for better visualization)

Figure 10  Example image in standard conditions

  (a)                                                (b)                                                    (c)                                                 (d)  
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6. Conclusions
In this paper, a segmentation model for Diploglossus 
millepunctatus lizards based on MRF is proposed. Extensive 
experiments using Eqs. (2), (3) and (4) as cost functions, 
inference methods, loopy belief propagation, dual 
decomposition and Graph cuts are used. A preprocessing 
approximation dealing with color spaces, global and local 
enhancing and segmentation methods is performed. 
Results show best performance with Potts function 
as smooth term and intensity build data term (2) with 
preprocessed images that reach 84.87%, 71.49% and 
67.70% of confidence in ideal, standard and contaminated 
images respectively. In raw images color based data term 
(4) reaches 69.7%, 64.16% and 58.98% of confidence in 
ideal, standard and contaminated images respectively. 
The model shows promising performance to automatize 
segmentation processes in PMR and to reduce processing 
time and subjectivity.

In future work, the cost functions will have extra terms 
that include considerations of shape through pictorial 
structures concept [17]. Color constraints will be modeled 
through GMM framework training and specific modeled 
to Diploglossus millepunctatus spots. The work will be 
extended to other animals and species. Figure 12 shows 
the cost function (2) applied to a whale shark dataset [26] to 
extract spots patterns. Figures 12(b) and 12(d) achieve good 
performance using the same model as used for Diploglossus 
millepunctatus.

contrast between scales and spots after the preprocessing 
step. This enhancement makes the data closer to the 
mathematical model suggested in this work.

Loopy belief propagation gives better segmentation but 
is computationally expensive. Due to the optimization of 
processing time, Graph cuts reach similar percentages in 
less time. Dual decomposition achieves similar results as 
Loopy belief propagation, but has the worst inference time. 
The Figures 9, 10 and 11 show example images of each 
evaluated condition. The first column is the raw image, the 
second the ground truth in which the red regions represent 
the manually marked spots, the third column shows the 
result of segmentation as black spots, and the final column 
is a merge in which yellow represents true positives, 
black true negatives, red false negatives, and green false 
positives. 

As shown, although the proposed model can solve the 
spot segmentation task under inner image variant 
illumination conditions, if a single image region is 
significantly overexposed or the whole image is under 
conditions where even for the human eye the spots and 
the brightness are indistinguishable, the model flawed. 
This imprecision can be observed in the final segmentation 
of images under contaminated conditions (Figure 11) 
where under-segmentation occurs. Also, it is common 
that the model ignores spots that span few pixels and dark 
spots with intensity similar to the background. Large spots 
with narrow parts are usually divided into two parts with 
the narrow part as the break point, as common in energy 
segmentation approaches.

Figure 11  Example image in contaminated conditions

Figure 12  Result on whale shark database: (a) input image 1, (b) segmented image 1, (c) input image 
2, (d) segmented image 2

  (a)                                              (b)                                                   (c)                                               (d)  

(a)                                               (b)                                                 (c)                                                 (d)  
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