
97

D. A. Alvarez-Eraso et al.; Revista Facultad de Ingeniería, No. 80, pp. 97-108, 2016

compatible. In WAFs, this layer has been called Object
Relational Mapping (ORM). The ORMs map data from DB to
OOP, allowing programmers to query DB records in a simple
and powerful way without changing the OOP program point
of view.

As mappings, ORMs can be used as abstraction barriers [9]
between relational DBs and OOP programs. This is possible
because, changes in the OOP or in the DB models affect the
mapping function only, preventing them from propagating
to the other side. Consequently, using ORMs is an important
maintainability factor.

The maintainability benefits of ORMs have been included
in most WAFs as a “off the shelf” pre-coded component.
Unfortunately, off the shelf ORMs might threaten the overall
application performance. In fact, when a programmer
builds his own ORM, he is free to tailor it to the program,
applying specific efficiency criteria to improve the query
performance; in contrast, off the shelf ORMs craft the
queries in a standardized way, making harder to achieve the
same specific efficiency.

Consequently, using off the shelve ORMs creates tension
between maintainability and performance. On one hand,
they ease the task of developing websites controlling the
complexity of the software specification; on the other hand,

Hibernate and spring - An analysis of
maintainability against performance

ABSTRACT: Web application frameworks and ORM tools reduce time and effort needed
when developing quality applications; but, since they are numerous and heterogeneous
choosing the best suited is not an easy task. The comparative studies of these tools do not
consider case studies of the necessary complexity to precisely measure their advantages
and disadvantages. In order to contribute to the solution of this problem, we measured the
HIBERNATE ORM response times for different queries in a rather complex case study with
different database sizes, and compared the results with the ones obtained by using manually
coded queries. Our comparison is relevant because even though ORMs are an important
maintainability factor, not optimal queries can lead to bottle necks.

RESUMEN: Los frameworks para el desarrollo de aplicaciones web y las herramientas ORM
permiten reducir el tiempo y esfuerzo al producir aplicaciones de software de calidad. Se
han hecho estudios comparativos sobre estas herramientas pero dado que son numerosas
y heterogéneas, escoger la más adecuada no es fácil. Hay estudios comparativos sobre
estas herramientas, sin embargo no consideraron un dominio suficientemente complejo que
permitan medir más precisamente sus ventajas y desventajas. Para aportar en la solución,
comparamos el tiempo de respuesta de diferentes consultas en un dominio más complejo
y con diferentes tamaños de base de datos. La comparación basada en este aspecto es
importante ya que los ORM son un factor de mantenibilidad importante y porque consultas
no optimizadas pueden conducir a cuellos de botella.

* Corresponding author: Danny Alejandro Alvarez Eraso
e-mail: daalvareze@unal.edu.co
ISSN 0120-6230
e-ISSN 2422-2844

ARTICLE INFO

KEYWORDS
ORM, performance, spring
framework, hibernate,
maintainability

ORM, desempeño, spring
framework, hibernate,
mantenibilidad

Received June 09, 2015
Accepted April 11, 2016

Revista Facultad de Ingeniería, Universidad de Antioquia, No. 80, pp. 97-108, 2016

DOI: 10.17533/udea.redin.n80a11

Hibernate y spring - un análisis mantenibilidad contra desempeño
Danny Alejandro Alvarez-Eraso1*, Fernando Arango-Isaza1

Facultad de Minas, Universidad Nacional de Colombia. Carrera 80 # 65-223 - Núcleo Robledo. A. A. 1027. Medellín, Colombia.

1. Introduction
Today, the task of producing web applications is widely
addressed using a mixture of object oriented programming
(OOP) [1], database (DB) products [2] and Web Application
Frameworks (WAF) [3]. These techniques are used because
they allow developers to represent data in a convenient way,
increasing their productivity [1, 4-6].

However, objects and relational DBs belong to different
paradigms, each one having its own data types and
organization principles [7]. These differences have been
called the impedance mismatch [7]. According to [8],
Object Oriented Programming (OOP) languages are
good at structuring complex non-persistent data having
relationships, whilst relational DBs are good at structuring
large amount of simple persistent data, but not good when
dealing with complex associations.

To solve the impedance mismatch problem an application
requires an interface layer to make both paradigms

98

D. A. Alvarez-Eraso et al.; Revista Facultad de Ingeniería, No. 80, pp. 97-108, 2016

Figure 1 Persistence framework mode - from [11]

Similarly, in [12] the authors present a performance
comparison between db4o and Hibernate by testing CRUD
queries. The conclusion of this study was that db4o is faster
than Hibernate, but, the authors stated concerns about
using one session per query and left as future work to study
the impact in performance of this setting.

In [13], the authors compared the performance of db4o
and manually coded SQL queries, over a single table with
29 attributes and no primary key. They considered four DB
sizes ranging 1,000 to 80,000 tuples. The authors concluded
that manually coded queries perform better, by a great
margin, with the exception of the insertion queries.

In [17], the authors tested db4o and SQL by reading and
writing on DBs of different sizes. They concluded that for
low DB sizes db4o performance was closer to MySQL,
whilst Hibernate was significantly slower. However, when
DB size grow db4o’s performance rapidly degrades, while
Hibernate’s and MySQL’s response times grow slower. This
suggests that even when Hibernate do in fact introduce
overhead, it is much more scalable than db4o, and scale
closer to MySQL.

The studies presented in [10-13] have the inconvenience
that they focused on a single class/table and do not explore
the complexities related to relationships. Those studies
also present little implementation details, making difficult
to reproduce the experiments.

Even when the study presented in [17] considered
relationships, they are reduced to relationships between
two class/tables (flights and airports), and the DB sizes
were not large enough. So, even when Hibernate has a
satisfying behavior, the evidence is not sufficient to say that
it will remain as scalable as SQL queries.

3. Case study definition
3.1. Class diagram

In Figure 2 we present the Class Diagram of an
advertisement web application oriented to display photo
albums. We drew the diagram using the notation proposed
in [20].

Note that our CD has classes and class member names
written in Spanish. This is because the source code names
were written in that language and we did not want to
misrepresent what was done before.

they can affect performance to the point that the program
response times become unacceptable.

That tension has been studied by several authors [10-13] for
the Hibernate ORM Framework [14]. However, they did not
consider a case study complex enough to properly analyze
the tension we described before.

In our study, we went one step forward by analyzing the
performance for queries of three complexity levels and
three different DB sizes. We compared queries manually
coded in SQL, optimized and non-optimized (in what
follows optimized and non-optimized SQL queries) against
queries automatically crafted by Hibernate (in what follows
Hibernate queries). To test the queries we built a program in
the Spring WAF. We selected Spring based on its popularity
[15-18] and because it integrates easily with Hibernate.

As the main goal of our study was to analyze the impact
of query-complexity and DB size in the performance of
Hibernate and SQL queries, we took measures to maintain
constant all other variables. In particular, we used default
configurations for Hibernate, Apache and MySQL, avoiding
tune-ups. Moreover, to be sure we followed the best possible
coding practices, we consulted the official documentation,
online forums, taking the recommendations from [19]
regarding Hibernate annotations.

We present our research as follows: section 2 analyzes the
related work; section 3 presents our case study problem;
section 4 presents the problem Class Diagram and
relational model; section 5 shows our efficiency findings.
In section 6 and 7 the reader can find the details about
the implementation: section 6 describes the Spring JAVA
Classes and the way they relate to the Relational DB Tables,
and section 7 describes the DB access elements built as
JAVA DAOs. Finally, in section 8 we present conclusions and
future work.

2. Related work
In [10], the authors present a performance analysis between
Hibernate and Eclipselink involving stress testing and heap
size measurement. The results give advantage to Hibernate
for CRUD operations over 20,000 records; however, they
did not analyze the performance for different DB sizes or
optimized SQL queries.

The authors in [11] highlight the role of the “Persistent
Framework” (the ORM) as a layer between a DB and
the business classes (see Figure 1). They point out the
importance of choosing properly such framework to
improve performance. They compare the performance of
the OJB and Hibernate persistence frameworks, by read/
writing 1000 objects in both a centralized and a distributed
DB, concluding that OJB is slower.

99

D. A. Alvarez-Eraso et al.; Revista Facultad de Ingeniería, No. 80, pp. 97-108, 2016

Figure 2 Class Diagram

3.2. Complexity levels of queries

In our study, we related the query complexity level, to
complexity of the result obtained by reading the DB and
turning the retrieved data into objects with relationships.
Based on this line of thinking, we used three query
complexity levels, each one associated to the effort needed
to obtain the object structure represented in Figure 3.

Also, all of DB readings, with SQL or Hibernate, were filtered
by the person’s name according to a random alphabetical
character (as in SQL: “like %” + char + “%”). The resulting
DB readings were to the first 50 root objects with no limit
to related ones.

Level 1 - Persona

Level 1 is our lowest query complexity level. In this level,
we retrieve a list of Persona objects. We consider low this
query complexity level, because it only reads one DB table,
and it only creates a simple object list. This occurs, for
example, when we want to retrieve some of the people that
are registered in the website.

Level 2 - Usuario and album

Level 2 is our intermediate query complexity level. In this
level, we retrieve set of Usuario, Persona and Album objects.
This query complexity level is intermediate, because it has
data from three DB connected tables, and has to turn the
data into a set of objects connected as shown in Figure 3.
This occurs when we want to know the albums associated
to a user with a given name.

Level 3 - Album and imagen

Level 3 is our highest query complexity level. In this level,
we retrieve a set of Usuario, Persona, Album and Imagen
objects, as well as the image order number (numero Orden,
see Figure 2). This query level occurs, for example, when
we want to know what images are in albums of some user.

Figure 3 Goal object tree for each query level

This is the most complex scenario for two reasons. In the
first place, increasing the search depth in a DB implies
accessing more tables, and this is a process that can take
a long time if the DB contains a large amount of records,
or the queries are not optimized. In the second place, the
objectual representation of many-to-many relationship
between Album and Imagen needs to include an attribute as
part of the relationship.

4. Designing the case study
We built a Spring web application following the
Model-View-Controller (MVC) design pattern [21].

4.1. Database structure

In concordance to our CD, our DB has five tables, one for
each class in our CD and one intersection table to represent
the many-to-many relationship. In this way, the relationship
attribute numeroOrden was represented with an extra
column in the intersection table. In Figure 4 we show our
DB relational model.

Figure 4 Relational model for our case study

4.2. Class model in spring
framework

Given that Hibernate does not allow linking classes to
multiple tables, we decided to code a JAVA class for every
DB table. Consequently, we defined {Album, Imagen, Usuario
and Persona} classes. In order to represent the primitive
data from the DB tables, we used private String attributes
in the classes. Finally, we included a Long id attribute as the
Hibernate identification strategy.

D. A. Alvarez-Eraso et al.; Revista Facultad de Ingeniería, No. 80, pp. 97-108, 2016

100100

consequence of the cache mechanisms that are present in
Spring, Hibernate and MySQL. Even the operative system
affects the performance; as when querying the database,
the data retrieved will either be actually read from the hard
drive or taken from the already loaded data in RAM memory.

Consequently, we present our results in two steps. The
first step presents the experiment raw data using time vs
iteration graphs. The second step compares performance
relying on the average response time. The average response
time is interesting since it is an estimate of the time in which
the application will respond in a real environment. We can
expect to find similar behavior when multiple clients use
the website at the same time. The actual results for every
reading level and DB size are presented below.

5.1. Results per complexity level

Level 1 results for 100,000 tuples are shown in Figure 5, for
500,000 in Figure 6 and for 1,000,000 in Figure 7.

Figure 6 Level 1 queries with 100,000 tuples

4.3. Relationships of the class model

In the Spring code, we represented relationships
between two classes with object valued attributes of the
corresponding type in both classes [22]. The relationship’s
cardinality determines if the attribute is a single object or a
collection of objects.

For one-to-one relationships, we included an attribute of the
other side type in both classes. For example, to represent
the relationship between Usuario and Persona, we added
an Usuario typed attribute in Persona and a Persona typed
attribute in Usuario.

For one-to-many relationships, we did as in the one-to-one
for the one-side of the relationship, whilst for the many-

side we used a list-of-objects attribute of the opposite side
type. For example, the one-to-many relationship between
Usuario and Album was represented with one Usuario typed
attribute in Album and one List<Album> typed attribute in
Usuario.

The many-to-many relationship between Album and Imagen
classes is more complex as it has an attribute that will
be lost if modeled with two typed-list attributes. Given
that the many-to-many relationship was solved in the DB
with an intersection table containing an extra column, we
decided to use a new class (AlbumXImagen.java) containing
an attribute for numeroOrden. Additionally, to maintain
consistency, from the point of view of Album and Imagen
classes, we included an AlbumXImagen-typed attribute in
both of them, as shown in Figure 5.

// Joining relationship

 private List<AlbumXImagen>

 albumXimagenList; // ...

Figure 5 Joining attribute placed in Album and Imagen Classes

We represented the inheritance relationship between
Usuario and Persona using object valued attributes instead
of using JAVA inheritance. We did so because, no matter if
the inheritance was modeled as an object valued attribute
or extending a parent class, the underlying process for
reading data is theoretically the same as it needs to read
both tables using the foreign key.

5. Results
The following results show the impact of the query
complexity in the performance of Hibernate and both
optimized and non-optimized SQL queries. They were
obtained by running our application for the three complexity
and three different DB sizes.

To run the application we used Apache 2.4.4, MySQL 5.6.12
and Hibernate 4.2.2. Final software versions. Also, the
experiments were made in a Samsung ultrabook, Intel
Core I5-3337U CPU @1.80GHz x 4, 4GB DDR3 RAM, and 64
bits Windows 8. We ran all test the same day, in the same
machine, with the same processes load, avoiding tune-ups
that could give advantage to Hibernate or SQL queries.

We performed reading tests for each complexity level
defined in section 3.2. Tests were executed in a DB with
100,000; 500,000 and 1,000,000 tuples. Additionally, every
test was executed multiple times, measuring the execution
time in every iteration.

We performed each test multiple times because, execution
time changes for each successive repetition of the test
showing a tendency to descend. Those changes occur as a

D. A. Alvarez-Eraso et al.; Revista Facultad de Ingeniería, No. 80, pp. 97-108, 2016

101101

Figure 7 Level 1 queries with 500,000 tuples

Figure 8 Level 1 queries with 1,000,000 tuples

Level 2 results for 100,000 tuples are shown in Figure 8, for
500,000 in Figure 9, and for 1,000,000 in Figure 10.

Figure 9 Level 2 queries with 100,000 tuples

Figure 10 Level 2 queries with 500,000 tuples

Figure 11 Level 2 queries with 1,000,000 tuples

Level 3 results for 100,000 tuples are shown in Figure 11,
for 500,000 in Figure 12 and for 1,000,000 tuples in Figure
13.

Figure 12 Level 3 queries with 100,000 tuples

Figure 13 Level 3 queries with 500,000 tuples

The average response times for the three reading levels
are presented in Table 1. Rows marked with “2*”, in the
column level/tuples correspond to MySQL optimized level
2 response times.

D. A. Alvarez-Eraso et al.; Revista Facultad de Ingeniería, No. 80, pp. 97-108, 2016

102102

Figure 14 Level 3 queries with 1,000,000 tuples

Table 1 Average response times

5.2. Discussion

As the DB size grows, the application’s response time grows
too. This occurs because the search space gets bigger and
the Join clauses are especially sensitive to the amount of
records. In Figure 14, 15 and 16 we present the average
response time in function of the database size.

Our average response times, for levels one and two, show
that the performance of Hibernate and non-optimized SQL
queries is similar in a DB with few records and simple
relationships. This behavior was already described by
[17]. However, when going from half million records to one
million, we can see that Hibernate and non-optimized SQL
queries’ response time is strongly non-linear. This non
linearity is shown for level 1, 2 and 3 in Figure 14 and 15,
where performance times grow tree and almost five times
respectively.

In fact, in Level 1 with DB sizes of 100,000, 500,000 and
1,000,000 tuples, Hibernate is in average 158 (132%), 107
(21%), and 140 (10%) ms slower respectively. In Level 2 with
the same DB sizes Hibernate in average is 141 (56%) and
44(2%) ms slower than the not optimized SQL respectively.
Our findings for 1,000,000 seem odd as Hibernate was
faster for 191 ms (-2% faster). This was probably caused
by the cache capabilities of all of the technologies we
used, and because in this test level the SQL query is not

optimized. Furthermore, the reader must remember that
all of our tests include tuple selection based on a randomly
generated name.

Figure 15 Level 1 average time in function of the
DB size

Figure 16 level 2 average time in function of the
DB size

On the other hand, authors in [17] suggested that their work
is susceptible of optimization. Our results for optimized
level two and level three queries show a severe gap between
the performance of Hibernate and SQL (see Figure 15 and
16). In Level 2, when we optimized the SQL query with DB
sizes of 100,000, 500,000 and 1,000,000 tuples, Hibernate is
in average 378.8 (2,859%), 2,555.8 (13,853%) and 10,066.35
(58,525%) ms slower respectively. In Level 3, with the same
DB sizes Hibernate, is in average 475 (842%), 2.855 (5,079%)
and 11,201 (5,139%) ms slower respectively. There is a big
difference in this case.

In contrast as we did with SQL, we could not identify a good
way of optimizing level 3 queries using Hibernate. We could
not even find specific HQL´s documentation regarding
this topic. So, to the best of our knowledge, we made sure
that Hibernate Level 3 queries minimized unnecessary DB
accesses.

However, another unexpected finding was that hibernate
reports doing 26 queries to obtain the results for our
level-three-complexity scenario. In Figure 17 we show a
fragment of the Spring console output of those undesirable
queries.

D. A. Alvarez-Eraso et al.; Revista Facultad de Ingeniería, No. 80, pp. 97-108, 2016

103103

Figure 18 Hibernate console output for level 3 scenario

Figure 19 Linking a class and table - Album case

@Entity @Table(name="album")

public class Album {

@Id @GeneratedValue private Long id;

@Column(name="nombre")

 private String nombre;

 ... }

Finally, as the details behind our results can be of particular
interest to certain readers we present them as follows, in
section 6 we show how we linked Hibernate to our CD and
in section 7 we present how the DB was accessed with both
Hibernate and SQL.

6. Implementation
We made sure the most convenient implementation for
our tests were achieved by focusing on query complexity
and DB size be the only variables impacting performance.
So, we searched all the available literature we could and
followed the official documentation, online forums and the
recommendations of [19] regarding aspects influencing the
performance of Hibernate. The authors in [19] define an
anti-pattern as a bad practice that has a negative impact
in application performance, and presents five of them

regarding relationships. On this ground, we constructed
the best possible implementation based on the acquired
knowledge.

6.1. Linking classes and tables

Hibernate can establish a link between a JAVA class
and a DB table by using annotations. Annotations in the
class definitions link them to the corresponding DB table
while annotating attributes link such attributes with
the corresponding table column, or with another object
according to relationship defined by the foreign key.

Thus, we linked our CD’s class models with our DB tables
using @Entity, @Table, @Id, @GeneratedValue for Hibernate
identification strategy, and @Column for the primitive class
members. In Figure 19 we present Album’s case as an
example.

Figure 17 Level 3 average time in function of the DB size

D. A. Alvarez-Eraso et al.; Revista Facultad de Ingeniería, No. 80, pp. 97-108, 2016

104104

For one-to-one and one-to-many relationships we used @
oneToOne, @OneToMany and @ManyToOne annotations. In
all cases, we defined the inverse relationship using the @
JoinColumn annotation.

6.2. Many to many relationships

To link this relationship, Hibernate offers @ManyToMany
annotations, but in our class diagram this relationship has
an attribute. Because of this, we split such relationship in
two one-to-many relationships.

This caused Album and Imagen classes to be linked through
AlbumXImagen. So, from AlbumXImagen class’ point of view
this relationship becomes two new ones whose cardinality
resembles an intersection table. This is, we put two @
manyToOne and two @JoinColumns annotation in this linking
class.

7. Database access

7.1. Controllers and DAOs

We used controllers with two main purposes. In first place,
to execute DB queries either using SQL or Hibernate; and
in second place, to measure and report response times by
using Date.getTime() before and after of the connection,
querying, and object assembly processes. These controllers
serve the HTTP request using a Data Access Object (DAO)
[23]. We built two DAO classes one using Hibernate and
another using SQL.

Our DAO classes access the DB using @autowired BEANs
[24]. Hibernate DAO uses the sessionFactory BEAN and @
Repository annotation to manage DB transaction whilst SQL
DAO uses the MySQL dataSource BEAN.

// reading tree from a DAO using Hibernate

Session s =

 mySessionFactory.getCurrentSession();

Criteria criteria = //instantiation

 s.createCriteria(<OBJ_CLASS>);

// criteria definition

... // varies with the query level

List<CLASS> result =(List<CLASS>)

 criteria.list();// DB Access and obj tree

Figure 20 Hibernate DAO structure in our implementation

Figure 21 Level 1 criteria definition

Figure 22 Level 2 criteria definition

// criteria instantiation

createCriteria(Persona.class).add(

Restrictions.like("nombre","%"+nombre+"%")).addOrder(Order.desc("nombre"))

.setMaxResults(50);

// criteria instantiation

createCriteria(Usuario.class).createAlias(

"persona", "p").add(Restrictions.

 like("p.nombre", "%"+nombre+"%"))

 .addOrder(Order.desc("p.nombre"))

 .setMaxResults(50)

.setFetchMode("albumes", FetchMode.JOIN)

.setFetchMode("persona", FetchMode.JOIN)

.setFetchMode("albumes.albumXimagenList",

 FetchMode.SELECT);

D. A. Alvarez-Eraso et al.; Revista Facultad de Ingeniería, No. 80, pp. 97-108, 2016

105105

and Imagen objects. As a result, this scenario reads data
from all tables in the DB and construct the corresponding
object tree.

Our first attempt to build the required criteria was to set
<OBJ_CLASS> equals to Usuario and, in addition to level 2
query restrictions, we modified AlbumXImagen’s fetch mode
from SELECT to JOIN. However, this approach resulted in
this execution exception: “Request processing failed; nested
exception is org.hibernate.loader.MultipleBagFetchException:
cannot simultaneously fetch multiple bags”. Not being
clear from the Hibernate’s documentation the nature of
this error, we assumed it was caused by the join depth
complexity. The reader must remember that every Usuario
has a List of Albums and every one of those also has a List
of AlbumXImagen, see Figure 3.

After digging a little more in the problem we solved the
issue by adjusting our model’s classes. This is, we changed
both @OneToMany and @ManyToOne annotations so the
related data would be eagerly loaded. Thus, we modified the
albumXimagenList attribute in Album and imagen classes as
a non-lazy collection, in Figure 23 we show this modification
in the Java file.

This approach has the inconvenient that even when it solves
the execution problem, the way classes were mapped
causes both album and albumXimagenList attributes are
always loaded. This lead queries to poor performance when
those data are not required, take our level 2 queries for
example. On this ground, we defined the required criteria as
shown in Figure 24:

7.2. Object trees with hibernate

All of our Hibernate DAO methods for retrieving object trees
are alike, the only code section that changes corresponds
to the query criteria, see Figure 20. This criteria was
constructed using Session’s createCriteria() method. Where
<OBJ_CLASS> is the type of the resulting data, and <CLASS>
is the type of the List used to capture the Hibernate API
result, generally both classes are the same.

level 1 Hibernate reading

In this level, we retrieve a List of Persona. So, we defined
a Criteria with <OBJ_CLASS> equals to Persona (see Figure
21), and we added the name and page size restrictions (see
section 3.2). Here, the variable nombre contains a random
char between [a-z] (same for level 2 and level 3).

Level 2 Hibernate queries

In this level, we retrieve a List of Usuario including
relationships with Persona and Album. So, we defined a
Criteria with <OBJ_CLASS> equals to Usuario (see Figure 22)
and, in addition to the name and page size restrictions, we
added relationship constrains (see Figure 4) making sure
Imagen or AlbumXImagen data was not retrieved.

Level 3 Hibernate queries

In this level, we retrieve a List of Usuario with full direct
or indirect data, this is, with Persona, Album, AlbumXImagen

// Album.JAVA file

@OneToMany(mappedBy = "album")

@LazyCollection(LazyCollectionOption.FALSE)

private List<AlbumXImagen>albumXimagenList;

Figure 23 Setting the joining attribute as non-lazy Collection

Figure 24 Level 3 criteria definition

Figure 25 Level 1 SQL query

createCriteria(Usuario.class).createAlias(

"persona","p").add(Restrictions

.like("p.nombre", "%" + nombre + "%"))

 .addOrder(Order.desc("p.nombre"))

 .setMaxResults(50)

 .setFetchMode("albumes", FetchMode.JOIN);

SELECT * from persona

 WHERE nombre like '%nombre%'

 ORDER BY nombre DESC LIMIT 0, 50"

D. A. Alvarez-Eraso et al.; Revista Facultad de Ingeniería, No. 80, pp. 97-108, 2016

106106

ResultSet. This mechanism has the advantage of reading
every tuple just one time. This approach solves the problem
with and algorithm with order O(n).

Level 1 SQL queries

In this level, we retrieve a List of Persona using the SQL
query shown in Figure 25. Also, we assembled the object
tree from this Resultset using a simple loop that creates a
Persona instance containing every row field as attributes.

Level 2 SQL queries

In this level, we retrieve a List of Usuario with Persona and
Album data using the SQL query shown in Figure 26. Also,
we assembled the object tree from this Resultset using one
Usuario typed map.

Although this code is totally functional, the query can be
optimized. We did this optimization as an attempt to prove
that Hibernate cannot find the best way of solving the join
order execution. We present our optimized SQL query in
Figure 27.

Level 3 SQL queries

In this level, we retrieve a List of Usuarios with Persona,
Album, Imagen and AlbumXImagen data using the SQL query
shown in Figure 28. Also, we assembled the object tree
using two typed maps, one for Usuario and one for Album.

7.3. Object trees with SQL

All data obtained with manually coded SQL queries will
be used as a reference to assess Hibernate´s results.
To achieve the best performance in this DAO, we always
accessed the DB using a single query, and building the
required object tree with that result only.

Additionally, all of the three DAO methods are structured in
a similar way; the two code sections that change correspond
to the executed SQL statement and the construction of the
object tree.

Object assemble using typed maps

To be able to compare SQL response times with those from
Hibernate, it is necessary to recreate the same conditions.
Given that executeQuery() method responds with a ResultSet
collection instead with a set objects, we need to transform
that resultSet.

Transforming tuples into objects is a simple task when
the resulting data belongs to a single class (like in level 1
scenario); however, the same task becomes harder when
such data belongs to many classes (like in level 2 and 3
scenarios).

To reduce the time the program takes to transform level
2 and 3 Resultsets into objects, we used a typed map
- HashMap<id, object>- for every row contained in the

SELECT p.id AS persona_id,

 p.nombre AS persona_nombre,... FROM usuario

 u LEFT JOIN persona p ON p.id = u.persona_id

 RIGHT JOIN album al ON al.usuario_id = u.id

 WHERE p.nombre like '%nombre%'

 ORDER BY p.nombre DESC LIMIT 0, 50"

Figure 26 Level 2 SQL query

Figure 27 Level 2 Optimized SQL query

SELECT uxp.persona_id, uxp.person_nombre,... FROM((SELECT u.id, p.id, ...

 FROM usuario u LEFT JOIN persona p

 ON p.id = u.persona_id WHERE

 p.nombre like '%nombre%' LIMIT 0, 50) uxp)

LEFT JOIN album al ON al.usuario_id = uxp.id

ORDER BY uxp.persona_nombre DESC

D. A. Alvarez-Eraso et al.; Revista Facultad de Ingeniería, No. 80, pp. 97-108, 2016

107107

8. Conclusions
In this research we compared the performance of Hibernate
and SQL queries. We analyzed how overhead varies with the
complexity of the query in a complex and flexible case study
susceptible to be implemented in other technologies.

We tested Hibernate and SQL queries maintaining the
same conditions for the three query complexity levels and
DB sizes. To that end, we ran all tests the same day, in the
same machine, with the same process load, using default
configurations for Spring, Hibernate, Apache and MySQL,
and maintaining the same DB optimization features. This
way, we left the complexity of the query as the only variable
responsible for the query performance comparison.

Our main conclusion is that Hibernate performance is
similar to non-optimized SQL queries. This is, when
queries need to access a single table, response times are
comparable to those from SQL and even better (as reported
in [17]). On the contrary, when the query complexity grows
Hibernate proved to be much slower than optimized SQL
queries. This happens because Hibernate cannot find the
optimal join execution order, when accessing multiple
tables with a relationship-deep of two levels or more.

We want to highlight the fact that query complexity was the
most important variable in our study, and it proved to be the
reason of the rapidly growing response times. Moreover,
the performance gap related to Hibernate cannot be easily
avoided by controlling joins or sub-queries execution
order. An ideal ORM should provide a simple but powerful
mechanism to control, when necessary, how those queries
must access DB tables and ease the task of querying them
with a single sentence.

This means that novice developers need to be careful when
using ORM tools in complex scenarios to avoid overhead
issues. In those cases, ORM usage will benefit developers
only in the maintainability aspect. We also noted that in
very complex scenarios, Hibernate will even lose the query
optimization features available in different DB products as
it exhibits the n+1 queries problem.

SELECT uxp.persona_id, uxp.persona_nombre...

FROM ((SELECT u.id, u.avatar, ...

 FROM usuario u LEFT JOIN persona p

 ON p.id = u.persona_id WHERE

 p.nombre like '%nombre%' LIMIT 0, 50) uxp)

LEFT JOIN album al ON al.usuario_id = uxp.id

LEFT JOIN album_x_imagen axi

 ON al.id = axi.album_id

LEFT JOIN imagen i ON axi.imagen_id = i.id

ORDER BY uxp.persona_nombre DESC

Figure 28 Level 3 SQL query
Secondarily, even though we performed tests for three
DB sizes only, Hibernate and non-optimized SQL queries’
average response time vs DB-size curves appear to be
strongly non-linear. Plus, the ratio of optimized-SQL and
Hibernate-average-response-time is not constant and
grows with the DB size (see Figure 15 and 16), suggesting
that they belong to different complexity orders. Clearly there
is a big gap between both Hibernate and non-optimized
SQL queries, when compared to optimized SQL queries.
However, more research is needed to properly determine
the complexity order.

Finally, we want to point out that we had to change our class
model to be able to retrieve data in level 3 scenario when
using Hibernate. Even when this change was needed, it
sacrifices the semantics of other queries. This is, by making
eager the load of two attributes in level three complexity
level, we also force level two and level one to load those
attributes when they are not required. This is an issue we
expect to solve in the future.

As future work, we will study more in depth the causes that
lead Hibernate to poor performance. Additionally, we will
test other ORM tools for JAVA and from other languages
to determine if this problem is specific to Hibernate or
transversal. To do so, we will use our case study as a
benchmark.

9. References
1. G. Booch, “Object-oriented development”, IEEE Trans.

Softw. Eng., vol. SE-12, no. 2, pp. 211–221, 1986.
2. V. Srinivasan and D. Chang, “Object persistence in

object-oriented applications”, IBM Syst. J., vol. 36, no.
1, pp. 66-87, 1997.

3. I. Vuksanovic and B. Sudarevic, “Use of Web
Application Frameworks in the Development of Small
Applications”, in 34th Int. Conv. MIPRO, Opatija, Croatia,
2011, pp. 458–462.

4. G. Low and S. Huan, “Impact of object oriented
development on software quality”, in 9th International
Workshop Software Technology and Engineering Practice

D. A. Alvarez-Eraso et al.; Revista Facultad de Ingeniería, No. 80, pp. 97-108, 2016

108108

15. Hotframeworks, Web framework rankings |
HotFrameworks. [Online]. Available: http://
hotframeworks.com/. Accessed on: May. 26, 2015.

16. T. Shan, W. Bank and W. Hua, “Taxonomy of Java Web
Application Frameworks”, IEEE International Conference
on e-Business Engineering (ICEBE), Shanghai, China,
2006, pp. 378-385.

17. V. Nagy, “Performance Analysis of Relational
Databases, Object-Oriented Databases and ORM
Frameworks”, Bachelor Degree Project, University of
Skövde, Skövde, Sweden, 2014.

18. J. Arthur and S. Azadegan, “Spring Framework for
Rapid Open Source J2EE Web Application Development:
A Case Study”, in 6th Int. Conf. on Software Engineering,
Artificial Intelligence, Networking and Parallel/Distributed
Computing and 1st ACIS International Workshop on Self-
Assembling Wireless Network (SNPD/SAWN), Towson,
USA, 2005, pp. 90–95.

19. P. Węgrzynowicz, “Performance antipatterns of
one to many association in hibernate”, in Federated
Conference on Computer Science and Information
Systems (FedCSIS), Kraków, Poland, 2013, pp. 1475–
1481.

20. Object Management Group (OMG), Unified Modeling
Language ™ (UML®). [Online]. Available: http://www.
omg.org/spec/UML/. Accessed on: Apr. 20, 2016.

21. G. Krasner and S. Pope, “A description of the model-
view-controller user interface paradigm in the
smalltalk-80 system”, J. Object Oriented Program., vol.
1, no. 3, pp. 26–49, 1988.

22. G. King, “Chapter 7. Collection mapping”, in HIBERNATE
- Relational Persistence for Idiomatic Java, 2004. [Online].
Available: https://docs.jboss.org/hibernate/orm/3.6/
reference/en-US/html/collections.html. Accessed on:
Dec. 18. 2015.

23. Oracle Corporation, Core J2EE Patterns - Data Access
Object, 2002. [Online]. Available: http://www.oracle.
com/technetwork/java/dataaccessobject-138824.
html. Accessed on: Apr. 25, 2015.

24. Oracle Corporation, Java SE Desktop Technologies.
[Online]. Available: http://www.oracle.com/
technetwork/java/javase/tech/index-jsp-138795.html.
Accessed on: May 25, 2015.

(STEP), Pittsburgh, USA, 1999, pp. 3–11.
5. N. Wilde and R. Huitt, “Maintenance support for object-

oriented programs”, IEEE Trans. Softw. Eng., vol. 18, no.
12, pp. 1038–1044, 1992.

6. J. Kienzle and A. Romanovsky, “Framework based on
design patterns for providing persistence in object-
oriented programming languages”, IEE Proc. - Softw.,
vol. 149, no. 3, pp. 77-85, 2002.

7. C. Ireland, D. Bowers, M. Newton and K. Waugh,
“A Classification of Object-Relational Impedance
Mismatch”, in 1st International Confernce on Advances in
Databases, Knowledge, and Data Applications (DBKDA),
Gosier, France, 2009, pp. 36–43.

8. C. Murdaca, “An Object-Relational Compiler”, in
2009 WRI World Congress on Computer Science and
Information Engineering, Los Angeles, USA, 2009, pp.
438–442.

9. H. Abelson, G. Sussman and J. Sussman, Structure and
Interpretation of Computer Programs, 2nd ed. Cambridge,
USA: The MIT Press, 1996.

10. M. Cuervo, D. Peñalosa and A. Alarcón, “Evaluación
y análisis de rendimiento de los frameworks de
persistencia Hibernate y Eclipselink”, Ventana
Informática, no. 24, pp. 9-23, 2011.

11. Z. Zhou and Z. Chen, “Performance Evaluation of
Transparent Persistence Layer in Java Applications”,
in International Conference on Cyber-Enabled Distributed
Computing and Knowledge Discovery (CyberC),
Huangshan, China, 2010, pp. 21–26.

12. P. van Zyl, D. Kourie and A. Boake, “Comparing the
performance of object databases and ORM tools”, in
Annual research conference of the South African institute
of computer scientists and information technologists on
IT research in developing couuntries (SAICSIT), New
York, USA, 2006, pp. 1–11.

13. K. Roopak, K. Swati, S. Ritesh and S. Chickerur,
“Performance Comparison of Relational Database with
Object Database (DB4o)”, in 5th International Conference
on Computational Intelligence and Communication
Networks (CICN), Mathura, India, 2013, pp. 512–515.

14. Hibernate, Hibernate. Everything data. [Online].
Available: http://hibernate.org/. Accessed on: Mar.
10, 2016.

