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compatible. In WAFs, this layer has been called Object 
Relational Mapping (ORM). The ORMs map data from DB to 
OOP, allowing programmers to query DB records in a simple 
and powerful way without changing the OOP program point 
of view.

As mappings, ORMs can be used as abstraction barriers [9] 
between relational DBs and OOP programs. This is possible 
because, changes in the OOP or in the DB models affect the 
mapping function only, preventing them from propagating 
to the other side. Consequently, using ORMs is an important 
maintainability factor.

The maintainability benefits of ORMs have been included 
in most WAFs as a “off the shelf” pre-coded component. 
Unfortunately, off the shelf ORMs might threaten the overall 
application performance. In fact, when a programmer 
builds his own ORM, he is free to tailor it to the program, 
applying specific efficiency criteria to improve the query 
performance; in contrast, off the shelf ORMs craft the 
queries in a standardized way, making harder to achieve the 
same specific efficiency. 

Consequently, using off the shelve ORMs creates tension 
between maintainability and performance. On one hand, 
they ease the task of developing websites controlling the 
complexity of the software specification; on the other hand, 
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1. Introduction
Today, the task of producing web applications is widely 
addressed using a mixture of object oriented programming 
(OOP) [1], database (DB) products [2] and Web Application 
Frameworks (WAF) [3]. These techniques are used because 
they allow developers to represent data in a convenient way, 
increasing their productivity [1, 4-6].

However, objects and relational DBs belong to different 
paradigms, each one having its own data types and 
organization principles [7]. These differences have been 
called the impedance mismatch [7]. According to [8], 
Object Oriented Programming (OOP) languages are 
good at structuring complex non-persistent data having 
relationships, whilst relational DBs are good at structuring 
large amount of simple persistent data, but not good when 
dealing with complex associations. 

To solve the impedance mismatch problem an application 
requires an interface layer to make both paradigms 
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Figure 1  Persistence framework mode - from [11]

Similarly, in [12] the authors present a performance 
comparison between db4o and Hibernate by testing CRUD 
queries. The conclusion of this study was that db4o is faster 
than Hibernate, but, the authors stated concerns about 
using one session per query and left as future work to study 
the impact in performance of this setting.

In [13], the authors compared the performance of db4o 
and manually coded SQL queries, over a single table with 
29 attributes and no primary key. They considered four DB 
sizes ranging 1,000 to 80,000 tuples. The authors concluded 
that manually coded queries perform better, by a great 
margin, with the exception of the insertion queries.

In [17], the authors tested db4o and SQL by reading and 
writing on DBs of different sizes. They concluded that for 
low DB sizes db4o performance was closer to MySQL, 
whilst Hibernate was significantly slower. However, when 
DB size grow db4o’s performance rapidly degrades, while 
Hibernate’s and MySQL’s response times grow slower. This 
suggests that even when Hibernate do in fact introduce 
overhead, it is much more scalable than db4o, and scale 
closer to MySQL. 

The studies presented in [10-13] have the inconvenience 
that they focused on a single class/table and do not explore 
the complexities related to relationships. Those studies 
also present little implementation details, making difficult 
to reproduce the experiments.

Even when the study presented in [17] considered 
relationships, they are reduced to relationships between 
two class/tables (flights and airports), and the DB sizes 
were not large enough. So, even when Hibernate has a 
satisfying behavior, the evidence is not sufficient to say that 
it will remain as scalable as SQL queries.

3. Case study definition
3.1. Class diagram

In Figure 2 we present the  Class Diagram of an 
advertisement web application oriented to display photo 
albums. We drew the diagram using the notation proposed 
in [20].

Note that our CD has classes and class member names 
written in Spanish. This is because the source code names 
were written in that language and we did not want to 
misrepresent what was done before.

they can affect performance to the point that the program 
response times become unacceptable.

That tension has been studied by several authors [10-13] for 
the Hibernate ORM Framework [14]. However, they did not 
consider a case study complex enough to properly analyze 
the tension we described before. 

In our study, we went one step forward by analyzing the 
performance for queries of three complexity levels and 
three different DB sizes. We compared queries manually 
coded in SQL, optimized and non-optimized (in what 
follows optimized and non-optimized SQL queries) against 
queries automatically crafted by Hibernate (in what follows 
Hibernate queries). To test the queries we built a program in 
the Spring WAF. We selected Spring based on its popularity 
[15-18] and because it integrates easily with Hibernate.

As the main goal of our study was to analyze the impact 
of query-complexity and DB size in the performance of 
Hibernate and SQL queries, we took measures to maintain 
constant all other variables. In particular, we used default 
configurations for Hibernate, Apache and MySQL, avoiding 
tune-ups. Moreover, to be sure we followed the best possible 
coding practices, we consulted the official documentation, 
online forums, taking the recommendations from [19] 
regarding Hibernate annotations. 

We present our research as follows: section 2 analyzes the 
related work; section 3 presents our case study problem; 
section 4 presents the problem Class Diagram and 
relational model; section 5 shows our efficiency findings. 
In section 6 and 7 the reader can find the details about 
the implementation: section 6 describes the Spring JAVA 
Classes and the way they relate to the Relational DB Tables, 
and section 7 describes the DB access elements built as 
JAVA DAOs. Finally, in section 8 we present conclusions and 
future work.

2. Related work
In [10], the authors present a performance analysis between 
Hibernate and Eclipselink involving stress testing and heap 
size measurement. The results give advantage to Hibernate 
for CRUD operations over 20,000 records; however, they 
did not analyze the performance for different DB sizes or 
optimized SQL queries.

The authors in [11] highlight the role of the “Persistent 
Framework” (the ORM) as a layer between a DB and 
the business classes (see Figure 1). They point out the 
importance of choosing properly such framework to 
improve performance. They compare the performance of 
the OJB and Hibernate persistence frameworks, by read/
writing 1000 objects in both a centralized and a distributed 
DB, concluding that OJB is slower.
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Figure 2  Class Diagram

3.2. Complexity levels of queries

In our study, we related the query complexity level, to 
complexity of the result obtained by reading the DB and 
turning the retrieved data into objects with relationships. 
Based on this line of thinking, we used three query 
complexity levels, each one associated to the effort needed 
to obtain the object structure represented in Figure 3.

Also, all of DB readings, with SQL or Hibernate, were filtered 
by the person’s name according to a random alphabetical 
character (as in SQL: “like %” + char + “%”). The resulting 
DB readings were to the first 50 root objects with no limit 
to related ones.

Level 1 - Persona

Level 1 is our lowest query complexity level. In this level, 
we retrieve a list of Persona objects. We consider low this 
query complexity level, because it only reads one DB table, 
and it only creates a simple object list. This occurs, for 
example, when we want to retrieve some of the people that 
are registered in the website.

Level 2 - Usuario and album

Level 2 is our intermediate query complexity level. In this 
level, we retrieve set of Usuario, Persona and Album objects. 
This query complexity level is intermediate, because it has 
data from three DB connected tables, and has to turn the 
data into a set of objects connected as shown in Figure 3. 
This occurs when we want to know the albums associated 
to a user with a given name.

Level 3 - Album and imagen

Level 3 is our highest query complexity level.  In this level, 
we retrieve a set of Usuario, Persona, Album and Imagen 
objects, as well as the image order number (numero Orden, 
see Figure 2). This query level occurs, for example, when 
we want to know what images are in albums of some user.

Figure 3  Goal object tree for each query level

This is the most complex scenario for two reasons. In the 
first place, increasing the search depth in a DB implies 
accessing more tables, and this is a process that can take 
a long time if the DB contains a large amount of records, 
or the queries are not optimized. In the second place, the 
objectual representation of many-to-many relationship 
between Album and Imagen needs to include an attribute as 
part of the relationship.

4. Designing the case study
We built a Spring web application following the 
Model-View-Controller (MVC) design pattern [21].

4.1. Database structure

In concordance to our CD, our DB has five tables, one for 
each class in our CD and one intersection table to represent 
the many-to-many relationship. In this way, the relationship 
attribute numeroOrden was represented with an extra 
column in the intersection table. In Figure 4 we show our 
DB relational model.

Figure 4  Relational model for our case study

4.2. Class model in spring 
framework

Given that Hibernate does not allow linking classes to 
multiple tables, we decided to code a JAVA class for every 
DB table. Consequently, we defined {Album, Imagen, Usuario 
and Persona} classes. In order to represent the primitive 
data from the DB tables, we used private String attributes 
in the classes. Finally, we included a Long id attribute as the 
Hibernate identification strategy.
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consequence of the cache mechanisms that are present in 
Spring, Hibernate and MySQL. Even the operative system 
affects the performance; as when querying the database, 
the data retrieved will either be actually read from the hard 
drive or taken from the already loaded data in RAM memory.

Consequently, we present our results in two steps. The 
first step presents the experiment raw data using time vs 
iteration graphs. The second step compares performance 
relying on the average response time. The average response 
time is interesting since it is an estimate of the time in which 
the application will respond in a real environment. We can 
expect to find similar behavior when multiple clients use 
the website at the same time. The actual results for every 
reading level and DB size are presented below.

5.1. Results per complexity level

Level 1 results for 100,000 tuples are shown in Figure 5, for 
500,000 in Figure 6 and for 1,000,000 in Figure 7.

Figure 6  Level 1 queries with 100,000 tuples

4.3. Relationships of the class model

In the Spring code, we represented relationships 
between two classes with object valued attributes of the 
corresponding type in both classes [22]. The relationship’s 
cardinality determines if the attribute is a single object or a 
collection of objects.

For one-to-one relationships, we included an attribute of the 
other side type in both classes. For example, to represent 
the relationship between Usuario and Persona, we added 
an Usuario typed attribute in Persona and a Persona typed 
attribute in Usuario.

For one-to-many relationships, we did as in the one-to-one 
for the one-side of the relationship, whilst for the many-

side we used a list-of-objects attribute of the opposite side 
type. For example, the one-to-many relationship between 
Usuario and Album was represented with one Usuario typed 
attribute in Album and one List<Album> typed attribute in 
Usuario.

The many-to-many relationship between Album and Imagen 
classes is more complex as it has an attribute that will 
be lost if modeled with two typed-list attributes. Given 
that the many-to-many relationship was solved in the DB 
with an intersection table containing an extra column, we 
decided to use a new class (AlbumXImagen.java) containing 
an attribute for numeroOrden. Additionally, to maintain 
consistency, from the point of view of Album and Imagen 
classes, we included an AlbumXImagen-typed attribute in 
both of them, as shown in Figure 5.

// Joining relationship

  private List<AlbumXImagen>

       albumXimagenList; // ...

Figure 5  Joining attribute placed in Album  and  Imagen Classes

We represented the inheritance relationship between 
Usuario and Persona using object valued attributes instead 
of using JAVA inheritance. We did so because, no matter if 
the inheritance was modeled as an object valued attribute 
or extending a parent class, the underlying process for 
reading data is theoretically the same as it needs to read 
both tables using the foreign key.

5. Results
The following results show the impact of the query 
complexity in the performance of Hibernate and both 
optimized and non-optimized SQL queries. They were 
obtained by running our application for the three complexity 
and three different DB sizes. 

To run the application we used Apache 2.4.4, MySQL 5.6.12 
and Hibernate 4.2.2. Final software versions. Also, the 
experiments were made in a Samsung ultrabook, Intel 
Core I5-3337U CPU @1.80GHz x 4, 4GB DDR3 RAM, and 64 
bits Windows 8. We ran all test the same day, in the same 
machine, with the same processes load, avoiding tune-ups 
that could give advantage to Hibernate or SQL queries.

We performed reading tests for each complexity level 
defined in section 3.2. Tests were executed in a DB with 
100,000; 500,000 and 1,000,000 tuples. Additionally, every 
test was executed multiple times, measuring the execution 
time in every iteration. 

We performed each test multiple times because, execution 
time changes for each successive repetition of the test 
showing a tendency to descend. Those changes occur as a 
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Figure 7  Level 1 queries with 500,000 tuples

Figure 8  Level 1 queries with 1,000,000 tuples

Level 2 results for 100,000 tuples are shown in Figure 8, for 
500,000 in Figure 9, and for 1,000,000 in Figure 10.

Figure 9  Level 2 queries with 100,000 tuples

Figure 10  Level 2 queries with 500,000 tuples

Figure 11  Level 2 queries with 1,000,000 tuples

Level 3 results for 100,000 tuples are shown in Figure 11, 
for 500,000 in Figure 12 and for 1,000,000 tuples in Figure 
13.

Figure 12  Level 3 queries with 100,000 tuples

Figure 13 Level 3 queries with 500,000 tuples

The average response times for the three reading levels 
are presented in Table 1. Rows marked with “2*”, in the 
column level/tuples correspond to MySQL optimized level 
2 response times.
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Figure 14 Level 3 queries with 1,000,000 tuples

Table 1 Average response times

5.2. Discussion

As the DB size grows, the application’s response time grows 
too. This occurs because the search space gets bigger and 
the Join clauses are especially sensitive to the amount of 
records. In Figure 14, 15 and 16 we present the average 
response time in function of the database size.

Our average response times, for levels one and two, show 
that the performance of Hibernate and non-optimized SQL 
queries is similar in a DB with few records and simple 
relationships. This behavior was already described by 
[17]. However, when going from half million records to one 
million, we can see that Hibernate and non-optimized SQL 
queries’ response time is strongly non-linear. This non 
linearity is shown for level 1, 2 and 3 in Figure 14 and 15, 
where performance times grow tree and almost five times 
respectively.

In fact, in Level 1 with DB sizes of 100,000, 500,000 and 
1,000,000 tuples, Hibernate is in average 158 (132%), 107 
(21%), and 140 (10%) ms slower respectively. In Level 2 with 
the same DB sizes Hibernate in average is 141 (56%) and 
44(2%) ms slower than the not optimized SQL respectively. 
Our findings for 1,000,000 seem odd as Hibernate was 
faster for 191 ms (-2% faster). This was probably caused 
by the cache capabilities of all of the technologies we 
used, and because in this test level the SQL query is not 

optimized. Furthermore, the reader must remember that 
all of our tests include tuple selection based on a randomly 
generated name.

Figure 15  Level 1 average time in function of the 
DB size

Figure 16  level 2 average time in function of the 
DB size

On the other hand, authors in [17] suggested that their work 
is susceptible of optimization. Our results for optimized 
level two and level three queries show a severe gap between 
the performance of Hibernate and SQL (see Figure 15 and 
16). In Level 2, when we optimized the SQL query with DB 
sizes of 100,000, 500,000 and 1,000,000 tuples, Hibernate is 
in average 378.8 (2,859%), 2,555.8 (13,853%) and 10,066.35 
(58,525%) ms slower respectively. In Level 3, with the same 
DB sizes Hibernate, is in average 475 (842%), 2.855 (5,079%) 
and 11,201 (5,139%) ms slower respectively. There is a big 
difference in this case.

In contrast as we did with SQL, we could not identify a good 
way of optimizing level 3 queries using Hibernate. We could 
not even find specific HQL´s documentation regarding 
this topic. So, to the best of our knowledge, we made sure 
that Hibernate Level 3 queries minimized unnecessary DB 
accesses.

However, another unexpected finding was that hibernate 
reports doing 26 queries to obtain the results for our 
level-three-complexity scenario. In Figure 17 we show a 
fragment of the Spring console output of those undesirable 
queries.
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Figure 18  Hibernate console output for level 3 scenario

Figure 19  Linking a class and table - Album case

@Entity @Table(name="album")

public class Album {

@Id @GeneratedValue private Long id;

@Column(name="nombre")

    private String nombre;

   ...   }

Finally, as the details behind our results can be of particular 
interest to certain readers we present them as follows, in 
section 6 we show how we linked Hibernate to our CD and 
in section 7 we present how the DB was accessed with both 
Hibernate and SQL.

6. Implementation
We made sure the most convenient implementation for 
our tests were achieved by focusing on query complexity 
and DB size be the only variables impacting performance. 
So, we searched all the available literature we could and 
followed the official documentation, online forums and the 
recommendations of [19] regarding aspects influencing the 
performance of Hibernate. The authors in [19] define an 
anti-pattern as a bad practice that has a negative impact 
in application performance, and presents five of them 

regarding relationships. On this ground, we constructed 
the best possible implementation based on the acquired 
knowledge.

6.1. Linking classes and tables

Hibernate can establish a link between a JAVA class 
and a DB table by using annotations. Annotations in the 
class definitions link them to the corresponding DB table 
while annotating attributes link such attributes with 
the corresponding table column, or with another object 
according to relationship defined by the foreign key.

Thus, we linked our CD’s class models with our DB tables 
using @Entity, @Table, @Id, @GeneratedValue for Hibernate 
identification strategy, and @Column for the primitive class 
members. In Figure 19 we present Album’s case as an 
example.

Figure 17  Level 3 average time in function of the DB size
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For one-to-one and one-to-many relationships we used @
oneToOne, @OneToMany and @ManyToOne annotations. In 
all cases, we defined the inverse relationship using the @
JoinColumn annotation.

6.2. Many to many relationships

To link this relationship, Hibernate offers @ManyToMany 
annotations, but in our class diagram this relationship has 
an attribute. Because of this, we split such relationship in 
two one-to-many relationships.

This caused Album and Imagen classes to be linked through 
AlbumXImagen. So, from AlbumXImagen class’ point of view 
this relationship becomes two new ones whose cardinality 
resembles an intersection table. This is, we put two @
manyToOne and two @JoinColumns annotation in this linking 
class.

7. Database access 

7.1. Controllers and DAOs

We used controllers with two main purposes. In first place, 
to execute DB queries either using SQL or Hibernate; and 
in second place, to measure and report response times by 
using Date.getTime() before and after of the connection, 
querying, and object assembly processes. These controllers 
serve the HTTP request using a Data Access Object (DAO) 
[23]. We built two DAO classes one using Hibernate and 
another using SQL.

Our DAO classes access the DB using @autowired BEANs 
[24]. Hibernate DAO uses the sessionFactory BEAN and @
Repository annotation to manage DB transaction whilst SQL 
DAO uses the MySQL dataSource BEAN.

// reading tree from a DAO using Hibernate

Session s =

    mySessionFactory.getCurrentSession();

Criteria criteria =   //instantiation

    s.createCriteria(<OBJ_CLASS>);

// criteria definition

... // varies with the query level

List<CLASS> result =(List<CLASS>)

 criteria.list();// DB Access and obj tree 

Figure 20  Hibernate DAO structure in our implementation

Figure 21  Level 1 criteria definition

Figure 22  Level 2 criteria definition

// criteria instantiation 

createCriteria(Persona.class).add(

Restrictions.like("nombre","%"+nombre+"%")).addOrder(Order.desc("nombre")) 

.setMaxResults(50);

// criteria instantiation

createCriteria(Usuario.class).createAlias(

"persona", "p").add(Restrictions.

    like("p.nombre", "%"+nombre+"%"))

 .addOrder(Order.desc("p.nombre"))

 .setMaxResults(50)

.setFetchMode("albumes", FetchMode.JOIN)

.setFetchMode("persona", FetchMode.JOIN)

.setFetchMode("albumes.albumXimagenList",

    FetchMode.SELECT);
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and Imagen objects. As a result, this scenario reads data 
from all tables in the DB and construct the corresponding 
object tree.

Our first attempt to build the required criteria was to set 
<OBJ_CLASS> equals to Usuario and, in addition to level 2 
query restrictions, we modified AlbumXImagen’s fetch mode 
from SELECT to JOIN. However, this approach resulted in 
this execution exception: “Request processing failed; nested 
exception is org.hibernate.loader.MultipleBagFetchException: 
cannot simultaneously fetch multiple bags”. Not being 
clear from the Hibernate’s documentation the nature of 
this error, we assumed it was caused by the join depth 
complexity. The reader must remember that every Usuario 
has a List of Albums and every one of those also has a List 
of AlbumXImagen, see Figure 3. 

After digging a little more in the problem we solved the 
issue by adjusting our model’s classes. This is, we changed 
both @OneToMany and @ManyToOne annotations so the 
related data would be eagerly loaded. Thus, we modified the 
albumXimagenList attribute in Album and imagen classes as 
a non-lazy collection, in Figure 23 we show this modification 
in the Java file.

This approach has the inconvenient that even when it solves 
the execution problem, the way classes were mapped 
causes both album and albumXimagenList attributes are 
always loaded. This lead queries to poor performance when 
those data are not required, take our level 2 queries for 
example. On this ground, we defined the required criteria as 
shown in Figure 24:

7.2. Object trees with hibernate

All of our Hibernate DAO methods for retrieving object trees 
are alike, the only code section that changes corresponds 
to the query criteria, see Figure 20. This criteria was 
constructed using Session’s createCriteria() method. Where 
<OBJ_CLASS> is the type of the resulting data, and <CLASS> 
is the type of the List used to capture the Hibernate API 
result, generally both classes are the same.

level 1 Hibernate reading

In this level, we retrieve a List of Persona. So, we defined 
a Criteria with <OBJ_CLASS> equals to Persona (see Figure 
21), and we added the name and page size restrictions (see 
section 3.2). Here, the variable nombre contains a random 
char between [a-z] (same for level 2 and level 3).

Level 2 Hibernate queries

In this level, we retrieve a List of Usuario including 
relationships with Persona and Album. So, we defined a 
Criteria with <OBJ_CLASS> equals to Usuario (see Figure 22) 
and, in addition to the name and page size restrictions, we 
added relationship constrains (see Figure 4) making sure 
Imagen or AlbumXImagen data was not retrieved. 

Level 3 Hibernate queries

In this level, we retrieve a List of Usuario with full direct 
or indirect data, this is, with Persona, Album, AlbumXImagen 

// Album.JAVA file

@OneToMany(mappedBy = "album")

@LazyCollection(LazyCollectionOption.FALSE)

private List<AlbumXImagen>albumXimagenList;

Figure 23  Setting the joining attribute as non-lazy Collection

Figure 24  Level 3 criteria definition

Figure 25  Level 1 SQL query

createCriteria(Usuario.class).createAlias(

"persona","p").add(Restrictions

.like("p.nombre", "%" + nombre + "%"))

 .addOrder(Order.desc("p.nombre"))

 .setMaxResults(50)

 .setFetchMode("albumes", FetchMode.JOIN);

SELECT * from persona

 WHERE nombre like '%nombre%'

 ORDER BY nombre DESC LIMIT 0, 50"
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ResultSet. This mechanism has the advantage of reading 
every tuple just one time. This approach solves the problem 
with and algorithm with order O(n).

Level 1 SQL queries

In this level, we retrieve a List of Persona using the SQL 
query shown in Figure 25. Also, we assembled the object 
tree from this Resultset using a simple loop that creates a 
Persona instance containing every row field as attributes.

Level 2 SQL queries

In this level, we retrieve a List of Usuario with Persona and 
Album data using the SQL query shown in Figure 26. Also, 
we assembled the object tree from this Resultset using one 
Usuario typed map.

Although this code is totally functional, the query can be 
optimized. We did this optimization as an attempt to prove 
that Hibernate cannot find the best way of solving the join 
order execution. We present our optimized SQL query in 
Figure 27.

Level 3 SQL queries

In this level, we retrieve a List of Usuarios with Persona, 
Album, Imagen and AlbumXImagen data using the SQL query 
shown in Figure 28. Also, we assembled the object tree 
using two typed maps, one for Usuario and one for Album.

7.3. Object trees with SQL

All data obtained with manually coded SQL queries will 
be used as a reference to assess Hibernate´s results. 
To achieve the best performance in this DAO, we always 
accessed the DB using a single query, and building the 
required object tree with that result only.

Additionally, all of the three DAO methods are structured in 
a similar way; the two code sections that change correspond 
to the executed SQL statement and the construction of the 
object tree.

Object assemble using typed maps

To be able to compare SQL response times with those from 
Hibernate, it is necessary to recreate the same conditions. 
Given that executeQuery() method responds with a ResultSet 
collection instead with a set objects, we need to transform 
that resultSet.

Transforming tuples into objects is a simple task when 
the resulting data belongs to a single class (like in level 1 
scenario); however, the same task becomes harder when 
such data belongs to many classes (like in level 2 and 3 
scenarios).

To reduce the time the program takes to transform level 
2 and 3 Resultsets into objects, we used a typed map 
- HashMap<id, object>- for every row contained in the 

SELECT p.id AS persona_id, 

 p.nombre AS persona_nombre,... FROM usuario

 u LEFT JOIN persona p ON p.id = u.persona_id

 RIGHT JOIN album al ON al.usuario_id = u.id

 WHERE p.nombre like '%nombre%'

 ORDER BY p.nombre DESC LIMIT 0, 50"

Figure 26  Level 2 SQL query

Figure 27  Level 2 Optimized SQL query

SELECT uxp.persona_id, uxp.person_nombre,... FROM((SELECT u.id, p.id, ...

 FROM usuario u LEFT JOIN persona p 

 ON p.id = u.persona_id WHERE 

 p.nombre like '%nombre%' LIMIT 0, 50 ) uxp)

LEFT JOIN album al ON al.usuario_id = uxp.id

ORDER BY uxp.persona_nombre DESC



D. A. Alvarez-Eraso et al.;  Revista Facultad de Ingeniería, No. 80, pp. 97-108, 2016

107107

8. Conclusions
In this research we compared the performance of Hibernate 
and SQL queries. We analyzed how overhead varies with the 
complexity of the query in a complex and flexible case study 
susceptible to be implemented in other technologies.

We tested Hibernate and SQL queries maintaining the 
same conditions for the three query complexity levels and 
DB sizes. To that end, we ran all tests the same day, in the 
same machine, with the same process load, using default 
configurations for Spring, Hibernate, Apache and MySQL, 
and maintaining the same DB optimization features. This 
way, we left the complexity of the query as the only variable 
responsible for the query performance comparison.

Our main conclusion is that Hibernate performance is 
similar to non-optimized SQL queries. This is, when 
queries need to access a single table, response times are 
comparable to those from SQL and even better (as reported 
in [17]). On the contrary, when the query complexity grows 
Hibernate proved to be much slower than optimized SQL 
queries. This happens because Hibernate cannot find the 
optimal join execution order, when accessing multiple 
tables with a relationship-deep of two levels or more.

We want to highlight the fact that query complexity was the 
most important variable in our study, and it proved to be the 
reason of the rapidly growing response times. Moreover, 
the performance gap related to Hibernate cannot be easily 
avoided by controlling joins or sub-queries execution 
order. An ideal ORM should provide a simple but powerful 
mechanism to control, when necessary, how those queries 
must access DB tables and ease the task of querying them 
with a single sentence.

This means that novice developers need to be careful when 
using ORM tools in complex scenarios to avoid overhead 
issues. In those cases, ORM usage will benefit developers 
only in the maintainability aspect. We also noted that in 
very complex scenarios, Hibernate will even lose the query 
optimization features available in different DB products as 
it exhibits the n+1 queries problem.

SELECT uxp.persona_id, uxp.persona_nombre...

FROM (( SELECT u.id, u.avatar, ...

 FROM usuario u LEFT JOIN persona p

 ON p.id = u.persona_id WHERE 

 p.nombre like '%nombre%' LIMIT 0, 50) uxp) 

LEFT JOIN album al ON al.usuario_id = uxp.id

LEFT JOIN album_x_imagen axi

   ON al.id = axi.album_id

LEFT JOIN imagen i ON axi.imagen_id = i.id

ORDER BY uxp.persona_nombre DESC 

Figure 28  Level 3 SQL query
Secondarily, even though we performed tests for three 
DB sizes only, Hibernate and non-optimized SQL queries’ 
average response time vs DB-size curves appear to be 
strongly non-linear. Plus, the ratio of optimized-SQL and 
Hibernate-average-response-time is not constant and 
grows with the DB size (see Figure 15 and 16), suggesting 
that they belong to different complexity orders. Clearly there 
is a big gap between both Hibernate and non-optimized 
SQL queries, when compared to optimized SQL queries. 
However, more research is needed to properly determine 
the complexity order.

Finally, we want to point out that we had to change our class 
model to be able to retrieve data in level 3 scenario when 
using Hibernate. Even when this change was needed, it 
sacrifices the semantics of other queries. This is, by making 
eager the load of two attributes in level three complexity 
level, we also force level two and level one to load those 
attributes when they are not required. This is an issue we 
expect to solve in the future.

As future work, we will study more in depth the causes that 
lead Hibernate to poor performance. Additionally, we will 
test other ORM tools for JAVA and from other languages 
to determine if this problem is specific to Hibernate or 
transversal. To do so, we will use our case study as a 
benchmark.
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