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An algorithm for learning sparsifying transforms 
of multidimensional signals

ABSTRACT: Multidimensional signals contain information of an object in more than one 
dimension, and usually their processing relies on complex methods in comparison with 
their unidimensional counterparts. In signal processing, finding a sparse representation of a 
signal is of great importance for compression purposes. Analytical multidimensional bases 
such as the Fourier, Cosine, or Wavelet Transform have been conventionally used. Recently, 
the use of learned dictionaries that directly adapt to the given signal are becoming popular 
in tasks such as image classification, image denoising, spectral unmixing, and medical 
image reconstruction. This paper presents an algorithm to learn transformation bases for 
the sparse representation of multidimensional signals. The proposed algorithm alternates 
between a sparse coding step solved by hard or soft thresholding strategies, and an updating 
dictionary step solved by a conjugate gradient method. Furthermore, the algorithm is 
tested using both: two-dimensional and three-dimensional patches, which are compared 
in terms of the sparsity performance for different types of multidimensional signals such 
as hyperspectral images, computerized axial tomography images and, magnetic resonance 
images. The attained results are compared against traditional analytical transforms and the 
state-of-the-art dictionary learning method: K-SVD.

RESUMEN: Las señales multidimensionales contienen información de un objeto en más de 
una dimensión y, comúnmente, su procesamiento requiere métodos de mayor complejidad 
que las señales unidimensionales. En procesamiento de señales, la representación escasa 
de una señal es de gran importancia para fines de compresión. Convencionalmente, 
transformaciones analíticas como las transformadas de Fourier, Coseno o Wavelet, han sido 
utilizadas. Recientemente, se ha popularizado el uso de diccionarios entrenados, que se 
adaptan a una señal dada, en aplicaciones como clasificación de imágenes, eliminación de 
ruido, separación espectral, y reconstrucción de imágenes médicas. Este artículo presenta 
un algoritmo para entrenar bases de transformación para representación escasa de señales 
multidimensionales. El algoritmo propuesto alterna entre una codificación escasa que se 
resuelve por umbralización, y la actualización del diccionario que se resuelve mediante el 
método de gradiente conjugado. Además, el artículo incluye una comparación entre parches 
bidimensionales y tridimensionales en términos del nivel de escasez que ofrecen en diferentes 
tipos de señales multidimensionales como: imágenes hiperespectrales, imágenes de 
tomografía computarizada, e imágenes de resonancia magnética. Los resultados obtenidos 
son comparados contra transformaciones analíticas tradicionales y contra el método de 
entrenamiento de diccionarios más conocido en el estado del arte: K-SVD.
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1.	 Introduction

1.1. Motivation

Multidimensional signals are an important class of signals 
which are widely used in diverse applications such as medical 
imaging [1, 2], spectral remote sensing for target detection, 
classification or unmixing of substances [3, 4] and spectral 
imaging [5]. In these applications, the signals exhibit a 
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multidimensional structure, where each dimension has a 
physical meaning e.g., space, time, frequency, wavelength. 
As a consequence, these signals contain more information 
about a phenomenon, and their processing is expensive 
in terms of computational complexity compared to 
unidimensional signals. In this regard, a tool in signal 
processing to deal with this problem is the sparsity. 
A signal is sparse if its energy is concentrated in just a 
few number of its coefficients [6]. Natural signals and 
images are not commonly sparse, but they could have a 
sparse representation by using an appropriate basis or 
dictionary [7, 8]. The sparse representation of signals has 
long been exploited in signal and imaging processing for 
various tasks such as compression, denoising [9, 10], and 
compressive sensing [8, 11]. The most popular dictionaries 
to obtain sparse representations are the ones obtained 
through the use of the Discrete Cosine Transform (DCT), 
and the Wavelet transform [12]. This kind of dictionaries 
are called analytical dictionaries given that they model the 
signals through the use of mathematical functions, which 
allow fast and implicit implementations to obtain useful 
representations. However, these representations are as 
accurate as the underlying model allows it, because the 
model needs to cope with the complexity of the natural 
phenomena, and in reality these models are inclined to be 
simple [13]. The learning dictionaries approach exists since 
they fit a given model, in particular with more accuracy, 
thus extracting information directly from the data itself.

1.2. Related work

In the literature, there exists two main models for the sparse 
representation of signals named the synthesis and the 
analysis models [14]. The synthesis sparse coding problem 
is the most popular and it states that a signal y ∈ℝn can be 
represented in a dictionary D ∈ Rn×d as a linear combination 
of a few elemental columns, called atoms [9, 13]. This means 
that the signal can be obtained as y = Dx, where x ∈ ℝd is 
the sparse representation, with ‖x‖0≪d, where ‖∙‖0 is the l0 
quasi-norm that counts the non-zero entries of a vector. In 
this model, the sparse representation x can be obtained by 
solving the optimization problem in Eq. (1) [6, 15]

	 min‖y – Dx‖2
2 ,     s.t.‖x‖0 ≤ s,	 (1)

	   
 x

	

where s is the desired sparsity level of the representation, ‖∙‖2 
is the l2 norm , and s≪d. Finding the solution 
to this problem is non-deterministic polynomial-time  
hard (NP-hard). Despite of this, there are algorithms 
that can find a solution in polynomial time, under certain 
conditions [6, 15]. On the other hand, the analysis model 
states that a signal y can be represented in an analysis 
dictionary Ω ∈ℝm×n via inner products with its rows, referred 
as analysis atoms, with ‖Ωy‖0 = m – l, where Ωy∈ℝm is 
sparse, and l are its number of zeros, called the co-sparsity 
[16]. In contrast to the synthesis model, this model allows 
obtaining the representation just by multiplying the signal y 
with the analysis dictionary Ω. 

The sparse representation models can be adapted to train 
dictionaries from training signals. There exist various state-
of-the-art works that explore dictionary learning using the 
synthesis approach [17, 18], and the analysis approach [19–
21], but most of them have to solve a non-convex problem 
where finding a solution is NP-Hard. As an alternative 
to the two previously mentioned models, there exist the 
so called transform model [22]. This model states that a 
signal y can be approximately represented in a sparse way 
in a transform basis W ∈ ℝm×n, as Wy=x+e, where x∈ℝm is 
sparse with ‖x‖0≪m, and e is the representation error in 
the transform domain. This model is a generalization of 
the analysis model with Ωy exactly sparse and, unlike the 
analysis model, it allows the sparse representation x not 
to be constrained to lie in the range space of the transform 
W [22], which implies that the transform model is more 
general than the analysis model. Assuming that Wy≅x, 
the problem of obtaining a sparse representation x, given a 
sparsity level s for a signal y with a known transform basis 
W can be formulated as in Eq. (2)

	 min‖Wy – x‖2
2 ,     s.t.‖x‖0 ≤s.	 (2)

	   
 x

	
The corresponding solution to the problem in Eq. (2) is 
obtained by hard thresholding Wy, i.e. by retaining its 
s largest coefficients. In comparison, the synthesis and 
analysis models, need to solve the sparse coding problem, 
dealing with NP-hard problems.

The transform model in Eq. (2) can be generalized in 
order to obtain a sparsifying transform W from a matrix of 
training signals Y ∈ ℝn×N with sparse representation X, such 
that each column represents a training signal, with N as 
the number of training signals. Constraining the model to 
obtain a square transform can be formulated by minimizing 
the error given by ‖WY-X‖F

2, where W∈ℝn×n, X∈ℝn×N [22], and 
by expressing it as in Eq. (3)

min‖WY–X‖F
2 – λ log det W + μ‖W‖F

2,   s.t.‖Xi‖0≤s  ∀i,	 (3)
 W,X

	
where X is column-sparse, and ‖∙‖F is the Frobenius norm 

. Note that, in Eq. (3) the log det W  term 
penalizes the transforms with small determinants, helping 
to obtain a full rank transform W, thus avoiding trivial 
solutions, such as those composed by repeated rows. 
Similarly, the ‖W‖F

2 term helps to control the condition 
number of the transform W [22]. 

In this paper, we propose an algorithm to learn sparsifying 
transforms from multidimensional signals based on the 
transform model given in Eq. (3). The proposed algorithm 
exhibits better performance than analytical transforms 
for sparse representations, and in contrast to synthesis 
or analysis dictionary learning strategies, the transform 
model allows approximating WY by a column-sparse matrix 
X, leading to a simpler, faster and cheaper implementation.
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2.	 Proposed algorithm
In this section, an algorithm is proposed to solve the 
problem in Eq. (3). This algorithm alternates between two 
stages, a sparse coding stage in which the problem seeks 
to find sparse representations X of the training signals 
Y, fixing the transform basis W; followed by a dictionary 
update stage, where the transform W is updated by fixing 
the just found sparse representation X. The stages are 
detailed as follows:

2.1. Sparse coding step

In this step Eq. (3) is solved by fixing the dictionary W. This 
can be written as Eq. (4)

	 	 (4)

An easier problem than that in Eq. (4) can be obtained by 
relaxing the  quasi-norm constraint to the  norm, moving 
it to the objective function using Lagrange multipliers. The 
resulting optimization problem can be formulated as in Eq. (5)

	 	 (5)

where η is a regularization parameter, and ‖∙‖1 represents 
the  norm. The relaxed problem in Eq. (5) can then be 
solved through a soft thresholding as presented in Eq. (6)

	 	 (6)

where the subscripts i,j index the matrix entries. An 
alternative solution to the optimization problem in Eq. (4) 
can be obtained by hard thresholding, that is, by maintaining 
the s largest coefficients in each of the columns of WY [22]. 

2.2. Dictionary update step

This step involves solving Eq. (3) by fixing the previously 
found sparse representation matrix X. This solution can 
be modeled as the unconstrained non-convex optimization 
problem in Eq. (7)

	 	 (7)

A solution to problem in Eq. (7) can be found using algorithms 
such as the steepest descent, the conjugate gradient, among 
other mathematical optimization algorithms [23]. This work 
uses a conjugate gradient algorithm with backtracking line 
search given its faster convergence compared with steepest 
descent. To ease the process of finding the gradient of Eq. 
(7), we rewrite Eq. (7) as in Eq. (8),

  (8)

by using the fact that , where “tr(.)” 
represents the trace. Expanding Eq. (8) it is obtained Eq. 
(9) as,

(9)
where the last line follows by the property of the trace 
being a linear mapping. Therefore, the gradient of the 
function f(W) in Eq. (9) is given by Eq. (10),

∇W f(W) = 2WYYT + 2μW – 2XYT – λW–T,	 (10)

by using the fact that ∇A tr(AAT)=2A, and ∇A logdet(A)=A–T. 
For the conjugate gradient algorithm iterations, 
various stopping criteria can be selected, but based on 
empirically results, it is used a fixed number of iterations, 
due to the fast convergence of the algorithm. An initial 
W transform with positive determinant must be chosen 
for the algorithm to work. The proposed algorithm is 
summarized in Algorithm 1. 

Algorithm 1
1: Input: training signal matrix Y∈ℝn×N, parameters λ, 

and μ, desired sparsity level s, number of iterations of 
overall algorithm k

2: Output: dictionary W∈ℝm×n, sparse representation 
X∈ℝn×N

3: Initialization: set W = Wi

4 for i = 1, …, k do
5: Sparse coding: solve

min ‖WY-X‖F
2 ,     s.t.‖Xi

 ‖0 ≤s   ∀i
   X

6: Dictionary update: solve
7: min‖WY-X‖F

2 –λ log det W + μ‖W‖F
2

  w

8: end for
9: Return: W, X 

Solving the sparse coding and dictionary update problems 
could become computationally expensive for large signals. 
Therefore, we propose to use small-size non-overlapping 
patches to reduce the computational burden of the 
algorithm. The training signals Y are then proposed to be 
vectorized patches of a certain three-dimensional image. 
Two setups were considered using non-overlapping patches 
taken from the three-dimensional images: two-dimensional 
(2D) and three-dimensional (3D) patches. The use of patches 
entail dictionaries that can adapt to high correlated training 
signals with similar sparsity, thus allowing more flexibility. 
An sketch of the patch extraction procedure is depicted in 
Figure 1. The two-dimensional patches consist of taking a 
predefined number of pixels along two dimensions with the 
remaining dimension fixed. The three-dimensional patches 
consist of taking a predefined number of pixels along the 
three dimensions of the images.
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Figure 1 Proposed setups for three-dimensional 
signals. a) 2D patch, b) 3D patch

Having an image as a three-dimensional array F∈ℝN×M×L, 
it can be written in an indexed form as Fi,j,k, where i, j and 
k indexes are the two spatial and the spectral coordinate, 
respectively. The patches size in the spatial coordinate x 
is defined as p, and in the spatial coordinate y is defined 
as q. The vectorized 2D patches of the three-dimensional 
array are formulated as the lth column of the training signal 
matrix Y as given in Eq. (11)

    (11)

for i=0,1,…,pq-1, l=0,1,…,  –1, where v = , u= , and “mod” 
is the modulo operation. For the 3D patches approach, a 
similar process is followed but additionally defining the 
patch size in the spatial coordinate z as r. The vectorized 3D 
patches of the three-dimensional array are then formulated 
as the lth column of the training signal matrix Y as in Eq. (12)

 (12)

for i=0,1,…,pqr-1, l=0, 1, …,  –1, where t = .

3.	 Experiments
Several experiments with real multidimensional images 
were conducted to show the benefits of the proposed 

algorithm. Experiments were performed using three 
test multidimensional signals shown in Figure 2: an 
hyperspectral image (HSI) composed of a section of a Lego 
scene with spatial resolution of 128×128, with 24 spectral 
bands [24]; a magnetic resonance image (MRI) composed of 
a resized scene of a head scan, property of the U.S. National 
Library of Medicine [25], with dimensions 128×128×32; 
and a computerized axial tomography scan (CAT) image 
of a human thorax acquired with a computed tomography 
scanner Toshiba Aquilion 64 with dimensions 128×128×60.

The hyperspectral images are three-dimensional images 
consisting of large amounts of two dimensional spatial 
information of a scene across a multitude of spectral 
bands (wavelengths). In contrast, the magnetic resonance 
images are three-dimensional images with three spatial 
coordinates captured with a magnetic field and pulses of 
radio waves. Similarly, the computerized axial tomography 
images are three-dimensional images with three spatial 
coordinates captured using X-rays, to obtain projections at 
different angles with respect to an object of interest. 

The size of the patches used for the 2D case was set to 
be 8×8 pixels, and for the 3D patches was set to be 8×8×4 
pixels. As used in common image processing applications 
[26], the mean of the patches (DC values) are removed 
prior to processing; that is, only mean-subtracted patches 
are processed, but the means are added back later only 
for display purposes. The proposed algorithm was run 
for a fix number of 20 iterations. The sparsity level of the 
signals was varied between 15% and 50%. For the sparse 
coding step, although soft thresholding is convex, the hard 
thresholding scheme was used due to the overhead to 
adjust the parameter η in Eq. (6). For the transform update 
step, the conjugate gradient algorithm was used and run for 
a fixed number of 10 iterations. The initial transform Wi was 
chosen to be the 2D DCT matrix. An estimate of the training 
matrix is calculated as Y ̂= W-1X, and used to reconstruct 
the training multidimensional image. This output image 
is compared against the input multidimensional image in 
order to measure the quality of the results reached by the 
algorithm. The best parameters λ and μ in Eq. (10) were 
found for each experiment by try-and-error running the 
algorithm multiple times.

(a) (b) (c)

Figure 2 Multidimensional training images. (a) HSI image with size 128×128×24, (b) MRI image with 
size 128×128×32, (c) CAT image with size 128×128×60
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In particular, three sets of experiments were performed 
to test the proposed algorithm using the three 
multidimensional images shown in Figure 2. In the 
first experiment, we perform a sensitive analysis of the 
regularization parameters λ and μ, seeking for the best 
values, since their correct selection highly impacts the 
final result. In the second experiment, we compare the 
performance of the proposed algorithm using either 2D 
and 3D patches with the best regularization parameters 
found in Experiment #1, against analytical transforms such 
as DCT and the identity, and the state of the art dictionary 
learning algorithm K-SVD [17]. In order to quantify the 
reconstruction quality of the multidimensional test images 
from the learned dictionary W, the peak signal-to-noise 
ratio (PSNR) metric was calculated. The third experiment 
analyzes the concentration of the non-zero values of the 
signals after being represented on the attained dictionaries. 

The higher the concentration of the non-zero values, the 
better the representation dictionary.

3.1. Experiment #1: Regularization 
parameters search

Figure 3 shows the performance of the algorithm for 
different sparsity settings between 15% and 50%, versus 
the value of the parameters λ and μ, in terms of the PSNR 
of the reconstructed images attained from the estimation of 
the training matrix Ŷ. The regularization parameters were 
varied in the interval [10-5, 101], and where set to be equal 
(λ = μ). The latter setting empirically proved to maintain a 
good leverage between the terms in the objective function. 
The parameters which yield the highest PSNR for each 
image are shown in Table 1, and these were chosen to be 
used for the rest of the experiments.

(a) (b) (c)

(d) (e) (f)
Figure 3 Sensitive analysis of the regularization parameters λ  and μ  for the different 

multidimensional test images in terms of PSNR, using 2D patches and 3D patches, respectively for 
(a-d) HSI image, (b-e) MRI image, and (c-f) CAT image

Table 1  Best regularization parameters λ  and μ  for the 3 test databases using 2D and 3D patches

Sparsity
2D Patches 3D Patches

.15 .20 .25 .30 .35 .40 .45 .50 .15 .20 .25 .30 .35 .40 .45 .50
HSI 5e-1 1e-2 5e-3 1e-1 1e0 1e-3 5e-3 1e-2 1e0 5e-2 1e-3 5e-1 1e-3 1e0 5e-2 5e-1
MRI 1e0 5e-1 5e-2 1e0 1e0 1e-1 1e0 5e-1 5e-2 1e-2 1e-2 1e-2 1e-1 5e-2 1e-2 5e-2
CAT 1e0 5e-2 1e-1 1e-2 1e0 5e-3 1e-2 1e-2 1e0 1e0 1e-2 5e-2 1e-3 1e-3 5e-1 5e-3
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3.2. Experiment #2: Comparison with 
state-of-the-art methods

In order to test the accuracy of the proposed algorithm 
to create sparsifying dictionaries, we compare it against 
analytical dictionaries obtained through the DCT and the 
identity matrix. Moreover, we compare the proposed method 
against the widely-used state of the art dictionary learning 
algorithm K-SVD, which has shown to be reliable. Figure 
4 summarizes several simulations that were performed 
varying the sparsity level of the signals to be represented by 
the dictionary. Note that the best regularization parameters 
were used for the proposed algorithm using either 2D or 3D 
patches, as given in Table 1.

In Figure 4, it can be observed that the analytical transforms 
generated from the identity matrix and the DCT perform 
worse than the dictionary learning algorithms, being the 
DCT dictionary the closest one. Comparing the dictionary 
learning methods, it can be seen that the K-SVD algorithm 
performs relatively well, since its attained PSNR results 

are sandwiched between the behavior of the proposed 
algorithm using 2D and 3D patches. Remark that the use 
of 3D patches entails the best PSNR performance overall, 
confirming the assumptions that 3D patches represent 
better the correlations within high dimensional signals. In 
addition, Figure 4(a), 4(b) and 4(c) show that the compared 
algorithms seem to behave similarly no matter the number 
of slices of the multidimensional images being tested.

To evaluate the spatial quality of the reconstructed images 
based on the estimation of the training matrix, a comparison 
along the 2D spatial domain against the original test 
multidimensional images was made. Figures 5, 6 and 7 show 
zoomed versions of a single slice for each multidimensional 
test image, respectively, comparing the five methods listed 
in Figure 4, using different target sparsity levels. It can be 
confirmed from these figures that the proposed method 
using the 3D patches scheme performs best overall, for the 
three multidimensional images tested. Note however, that 
close results are attained by using the 2D patches scheme 
and the K-SVD algorithm.

(a) (b) (c)
Figure 4 Comparison between the proposed method, the DCT and identity analytical transforms, and 

the state of the art dictionary learning K-SVD algorithm for different sparsity levels, in terms of PSNR 
for the three multidimensional test databases

In Figure 8, a comparison of the footprints of 6 different 
slices along the third dimension of the three test databases 
is shown, in order to analyze the performance of the best 
analytical (DCT), the K-SVD and the best proposed method 

(using 3D patches). It can be observed from the figure 
that each algorithm performs consistently along the third 
dimension, with the K-SVD and the proposed method 
attaining the best quality.
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Figure 5 Comparison of the 15th slice of the HSI database for different sparsity levels

Figure 6  Comparison of the 20th slice of the MRI database for different sparsity levels
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Figure 7 Comparison of the 24th slice of the CAT datacube for different sparsity levels

    
Figure 8 Comparison of the best analytical method (DCT), the K-SVD method and the best proposed 

method (Prop. 3D), for a fixed sparsity level of 0.15 (15%). Different slices of the multidimensional 
images are shown to evaluate the quality along the third dimension

3.3. Experiment #3: Concentration of 
the non-zero coefficients (sparsity)

This experiment analyzes the concentration of the non-
zero values of the signals after being represented on the 

trained dictionaries. For each multidimensional sparse 
representation in each dictionary, a threshold is applied to 
remove the values close to zero, in order to observe the non-
zero coefficients with higher magnitudes; that is, the most 
representative coefficients. Table 2 shows a comparison of 
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the number of non-zero coefficients attained after applying 
a threshold to the normalized magnitudes lower than 0.03. 
It can be observed that the number of non-zero coefficients 
is lower for the learned dictionaries than that of the DCT, 
and between the learned dictionaries, the proposed method 
using 3D patches attain the sparsest representations. 

Figure 9 shows the count of the non-zero coefficients 
for the 4 used dictionaries after being applied to the 
three multidimensional databases. It can be observed 
from the figure that the analytical transform generates 
representations with more non-zero coefficients and with 
small magnitudes (near to zero) than the representations 
obtained through the use of the trained dictionary. This 
means that the representations obtained through the trained 

dictionaries are better for sparsifying multidimensional 
signals than the analytical transforms considered.

Table 2 Number of non-zero coefficients with 
normalized magnitude greater than 0.03, obtained 

by representation of the databases using the 4 
dictionaries

DCT K-SVD Prop. 2D Prop. 3D
HSI 63854 28540 31366 25549
MRI 107129 30957 31182 30523
CAT 315536 114402 105368 92711

DCT K-SVD Prop. 2D Prop. 3D

Prop. 2D Prop. 3D

Prop. 3DProp. 2D

DCT K-SVD

DCT K-SVD

Figure 9  Count of the sparse coefficients generated by the different methods for the three databases. 
(First row) HSI image. (Second row) MRI image. (Third row) CAT image

4.	 Conclusions
An algorithm for learning sparsifying transforms of 
multidimensional signals has been proposed in this 

manuscript. The proposed algorithm alternates between 
a sparse coding step solved by hard thresholding, and an 
updating dictionary step solved by a conjugate gradient 
method. Two variations of the algorithm using 2D and 3D 
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patches were shown to process the multidimensional 
signals adequately, in terms of quality of the reconstruction 
for different test databases. The proposed algorithm was 
compared against analytical transforms such as the DCT, 
and the state of the art K-SVD dictionary learning algorithm. 
The proposed algorithm using 3D patches showed to have 
in general a better performance for the representation of 
the multidimensional images tested in this paper, both 
in terms of PSNR of the reconstructions and in terms 
of concentration of the non-zero elements, that is, the 
proposed method entails better sparse representations. 
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