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Supply chain design using a modified IWD 
algorithm

ABSTRACT: The Intelligent Water Drop (IWD) algorithm is inspired by the movement of real 
water drops in a river. A water drop could find an optimum path to a lake or sea by interacting 
with the conditions of its surroundings. In the process of reaching such destination, the 
water drops interact with the river bed while they move through it. Similarly, the supply chain 
problem can be modelled as a flow of supply, manufacturing, and delivery stages that must 
be completed to produce a finished product and then to deliver it to the end user. The problem 
is to select one option that carries out the stage, e.g. for a supply stage, many suppliers 
could supply the component represented by it. As each stage is characterised by its time 
and cost, multi--objective optimisation algorithm is used to minimise the time to market and 
production cost, simultaneously. Focusing on this analogy, this paper proposes an approach 
to the supply chain problem using a multi--objective extension to the intelligent water drops 
algorithm. Artificial water drops, flowing through the supply chain, will simultaneously 
minimise the production cost and the time to market of every product in a generic BOM by 
using the concept of Pareto optimality. A widely-used notebook supply chain in literature is 
solved. We provide some performance metrics of the solution and compare the Pareto set 
computed by the proposed algorithm with the one returned by exhaustive enumeration.

RESUMEN: El Algoritmo Inteligente de Agua está inspirado en el movimiento de las gotas 
de agua en un río. Una gota de agua puede encontrar una ruta óptima desde  un lago hacia 
el  mar interactuando con su entorno. En el proceso de llegar a tal destino, las gotas de 
agua interactúan con el lecho del río mientras se mueven a través de él. Del mismo modo, 
el problema de la cadena de suministro puede ser modelado como un flujo de etapas de 
suministro, fabricación y entrega para producir un artículo terminado y luego entregarlo al 
usuario final. El problema es seleccionar la opción que realizará la etapa, por ejemplo en una 
etapa de aprovisionamiento, muchos proveedores podrían suministrar el componente. Como 
cada etapa tiene asociado un costo y un tiempo, un algoritmo multi-objetivo es usado para 
minimizar el tiempo de entrega y el costo de producción, simultáneamente. Basados en esta 
analogía, este trabajo propone una aproximación al problema de la cadena de suministro 
utilizando una extensión multi-objetivo al algoritmo de gotas de agua. Las gotas de agua 
artificiales que fluyen a través de la cadena de suministro minimizarán simultáneamente 
el costo de producción y el tiempo de entrega de cada producto utilizando el concepto 
de optimización de Pareto. Se soluciona una cadena de suministro de computadoras 
ampliamente utilizada en la literatura. Así mismo, algunas métricas de desempeño son 
calculadas y se  compara el conjunto de Pareto calculado por el algoritmo propuesto con el 
obtenido por enumeración exhaustiva.
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1. Introduction
Increasing competition in today’s global market has forced 
enterprises to configure and evaluate their supply chain 
(SC). Generally speaking, a SC is a network whose vertices 
represent different stages that perform different tasks 
such as the procurement of components, the assembly 
of products, and the delivery of products to customers. 
Each stage in the SC network often has several options for 
accomplishing its task, e.g. one stage may have the task 
of acquiring a component and the options are represented 
by the different suppliers from which the component could 
be supplied; every option is differentiated by its time and 
cost. Deciding what option should be used at each stage in 
order to minimise the CoGS and products’ LT is known as 
SC design [1].

In recent years, many companies such as Dell Computers 
[2], Procter & Gamble [3], and Hewlett—Packard [4] have 
realised that to provide products with lower cost and 
shorter periods of time, they have to evaluate and design 
the structure of their SC continuously. According to [5], 
an optimum design decreases the cost by 10% and the 
service time is reduced by 40%. Despite these benefits, 
the SCD problem is not an easy task since there might be 
multiple suppliers that could supply each component, many 
manufacturing plants that could assemble each product, 
and many ways in which the product could be delivered to 
the customer.

Therefore, the problem is to determine: from which 
supplier should each component be obtained, where will 
each product be assembled, and which transport mode 
to use to deliver products to customers the complexity of 
the problem increases by the fact that the selected options 
that perform the stages must minimise the production cost 
(PC) and delivery time (DT), at the same time, for a family of 
products represented in a generic bill of materials.

In this paper, the SC representation proposed by [6] is 
used. There are I stages (i=1,2,…,I ) and every stage has 
Ji possible options (j=1,2,…,Ji) that can perform it. Every 
option ji has a cost (cij) and time (tij) associated, and for any 
pair of options j and j’ that can perform the stage i their cost 
and time have the following relationship: cij > cij’ ∧  tij > tij’  or 
cij ≤ cij’ ∨  tij ≤ tij’.

The SCD problem, as stated in this paper, is a classical 
combinatorial optimisation problem in which the solution is 
not based on a sequence but on the selection of variables 
that ‘best’ perform the objective functions, i.e. the solution of 
this problem is to select the subset of options (or variables) 
which minimises the PC and DT. According to this, the 
number of solutions or possible SC designs is ∏I

i=1Ji.

The primary intent of this research is to develop an 
algorithm based on a new nature-inspired swarm-based 
meta--heuristic called Intelligent Water Drop (IWD) to solve 
the SCD problems as stated in this paper. In IWD, there are 
R rivers ( r =1,2,…,R ) , each one with Dr drops (d =1,2,…,Dr), 
and every drop designs an SC, thus a solution is sd=(LT, PC).

As our proposed algorithm minimises two objectives, we 
applied the Pareto optimality criterion to the solutions to 
determine which solutions are ‘better’ than others; thus, a set 
of non-dominated solutions are computed. A solution of this 
kind is one in which any improvement in one objective can only 
take place if at least one of the other objectives worsens.

Many techniques and approaches have been used to solve 
the SCD problem. These techniques include mathematical 
programming, metaheuristics, and agent technology. 
In relation to mathematical programming, the SCD 
problem as stated in this work has been studied in  [7] . 
Those approaches use standard operation of dynamic 
programming to solve a single-objective mixed-integer 
problem (MIP) that just minimises the PC given that an 
amount of safety stock is placed on the stages. In [8] the 
same problem is solved using genetic algorithms in order 
to reduce the computational time. In [9], the same MIP 
model is solved by means of a fuzzy model in which the 
cost and lead time for every stage have three values: the 
pessimistic, the expected, and the optimistic cost and lead 
time. A genetic algorithm is used to solve the fuzzy model. 

In [10], the SCD problem is formulated as a multi-
objective stochastic MIP model in which the uncertainty is 
represented by means of a demand forecast. This model 
is solved by ε-constraint method, and branch and bound 
techniques. Objectives are to maximise profit over the time 
horizon, maximise the demand satisfaction and minimise 
the financial risk.

A MIP model is develop in [11] to solve a three-echelon 
SC that comprises manufacturing plants, warehouses, 
and retailers. In this approach, the aim is to locate 
several warehouses in potential places to minimise the 
total transportation cost from manufacturing plants 
to warehouses and from warehouses to retailers. 
The model has manufacturing plants and warehouse 
capacity constraints. The quantity of products sent by the 
manufacturing plants to a particular warehouse must be 
the same quantity as that sent by the warehouse to all the 
retailers being served. The above model was extended 
in two ways [12]. First, not only the transportation cost 
is included but also the assembly and fixed costs of a 
warehouse and manufacturing plant. Second, not only the 
warehouses must be located but also the products must 
be allocated to manufacturing plants. In [13], the same 
three-echelon SC was studied but the production, material 
handling, and importing costs are included. In addition to 
the constraints of production and warehouse capacity and 
material balance, there are material flow constraints which 
guarantee that material only flows from a manufacturing 
plant to a warehouse if there is a link that joins them. In 
the above approach, the capacity of the facilities and the 
number of manufacturing plants and warehouses are fixed 
values. A MIP model in which the capacity and number of 
facilities are variables is stated in [14], thus the complexity 
of the problem is increased. This model minimises both 
the cost of transportation among plants, warehouses, 
and customers as well as the cost of operating the 
manufacturing plants and warehouses that were located. 
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The results of this model are the number of manufacturing 
plants and warehouses and their location as well as the 
capacity level of the facilities. The MIP model includes 
constraints of capacity and material balance.

The novelty in this work is to compare the performance of the 
proposed IWD algorithm with exhaustive enumeration for an 
instance size that the optimum Pareto set can be computed. 
Moreover, the model in this paper considers more than one 
option to perform a stage, contrary to what is done in the 
aforementioned proposal. In relation to the application of IWD 
to the SCD problem, there is no published attempt to solve the 
bi-objective SC configuration by means of IWD as shown in 
recent surveys specialised in SC design problem [15-17].

2. Problem formulation
2.1.  Intelligent Water Drop 
algorithm and Pareto criterion

The IWD metaheuristic is a novel swarm-based algorithm 
which imitates the natural process that takes place between 
the water drops and the river bed. This metaheuristic was 
first proposed to solve the Travelling Salesman Problem 
with results that showed the algorithm converges fast to 
optimal solutions and finds goods and promising solutions 
[18]. Then, the multiple knapsack problem and the n-queens 
problem were solved with comparable results than those 
computed with other metaheuristics. Recently, IWD has 
been used to solve some problems in engineering, such 
as the trajectory planning in aerial vehicles [19], irrigation 
systems design  [20], and economic load dispatching [21].

The basic idea embedded in IWD is that water drops follow 
an ideal straight line from their origin to their destination 
(that is usually a lake, a sea, or a bigger river) because 
of the gravitational force. This is not possible since there 
are obstacles and barriers that force drops to look for 
an unblocked path. An important barrier in a path is the 
amount of soil in it, hence the drops look for paths that have 
neither obstacles nor soil. 

Every water drop reaches its destination because of two 
properties: the amount of soil it carries and the velocity that 
allows drops to carry more soil from the bed of the river. 
Therefore, three important rules are: a) the faster the speed 
of the water drop, the larger the amount of soil it carries, b) 
the velocity of the water drop increases on paths with less 
soil, and c) when a drop selects a path, it is selected based 
on the amount of soil in the path.

In this way, the first water drops “clean” the river of soil, 
allowing subsequent water drops to travel faster in the river. 
Notice that water drops and paths both have soil. In artificial 
water drops d, the problem is represented by a network 
G={V,E} in which the following steps take place: a) while d 
is in a vertex of V, it selects the following vertex to go based 
on the probabilistic decision rule that is a function of the soil 
over the path that links the two vertices, b) the velocity of 
d is updated once it has moved forward, and c) the amount 

of the soil over the link is modified. When d has reached its 
destination, it has generated a sequence of vertices in V. The 
sequence generated by d is compared with the best-so-far 
sequence to determine if there is an improvement in the 
objective function. After that, a global soil update process is 
carried out, thus an amount of soil in the path that represents 
the best-so-far sequence is removed.

As our proposed algorithm minimises two objectives, LT 
and PC, the concept of Pareto Optimality Criterion is applied 
to determine which solutions are better than others; thus, 
a set of non-dominated solutions is computed. A solution of 
this kind is one in which any improvement in one objective 
can only take place if at least one of the other objectives 
worsens. Hence, a solution s={s1,…,sk} (in our case s1 = 
PC and s2 = PC) dominates another solution s’={s’1,…,s’k} 
represented by  s≼s’, if and only if ∀ l ∈{1, …, k}, sl ≤ s'l ∧ 
∃ l ∈ {1,…,k}:sl <s'l. The non-dominated solutions form the 
solution set represented by SS≔{s∈Ω|¬∃s'∈Ω s'≼s} where Ω 
is the feasible space.

2.2. Mathematical representation 
of formulation

The mathematical representation used in this paper 
is modified from [22]. Hence, we modelled the SC as a 
graph G={V,E} where the set of vertices represents the 
supply, manufacturing, and delivery stages (i), thus  
V = {1,2, …, i, …, I}. The set of edges represent the 
relationships between two stages. These relationships could 
be: a supply and a manufacturing stage, two manufacturing 
stages, or a manufacturing and a delivery stage, thus  
E={(1,2), (1,i), …, (i,i’)}. The subset of delivering stages 
is defined as D ⊆ V. This is important since the products’ 
demand is generated in those stages, μi given that I ∈ D.

Every stage i has different options j which can perform the 
stage, j∈ i. To select an option to perform a stage, a binary 
variable is used. This variable is defined as follows: yij = 1, if 
the option j performs stage i. Otherwise, yij = 0. Hence, the 
PC is defined by Eq. (1) which computes the total cost of 
all the products that are delivered to customers during the 
company’s interval time of interest ξ.

   (1)

μi is the demand at stage i, defined as μi=∑i':(i',i) μi', and Ci is the 
cost of the selected option at stage i see Eq. (2).

   (2)

Formally, the SCD problem is formulated as a bi-objective 
mixed-integer programming model. The two objectives to 
minimise are Eqs (1) and (2), subject to Eqs (3) to (7).

The SC is designed when Eqs (3), (4), and (6) are solved, i.e. 
when the values of all the binary variables are known  yij as 
well as when the time (Ti) and cost (Ci)$ of the stages are 
set. Eq. (5) computes the lead time for all the stages and 
Eq. (7) is to make sure yij can only take the values of 0 or 1.
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   (3)

   (4)

   (5)

   (6)

   (7)

2.3. Proposed IWD algorithm 

As said before, a solution or SC configuration generated 
by the water drop d is presented by sd = (LT, PC) and the 
solution set contains all the non-dominated solutions SS = 
{s1,…, sd,…}. Therefore, sd = (LT, PC) dominates s’d = (LT’, PC’), 
if (LT ≤ LT’) ∧ (PC ≤ PC’) and (LT < LT’) ∨ (PC < PC’). To add 

a solution to the SS, the last condition must be proved for 
every solution generated by each water drop.

Once, every drop d∈r (r =1,..,R) has computed a sd (d=1,…
,Dr), the concept of Pareto Criterion is applied to all the 
solutions. Therefore, every river r computes a solution set 
SSr and the last one is returned as the problem solution set, 
i.e. SSR=SS.

The soil is represented by φij, i.e. φij is the quantity of soil 
deposited in option j that can perform the stage i, φd is the 
quantity of soil carried by water drop d, and vd is its velocity. 
The proposed algorithm is divided into two parts (see Figure 
1). In the first one, each single drop d configures the SC 
visiting all the stages. While a water drop is at stage i, the 
drop computes the probability pij which is a function of the 
soil at every option. As shown in Eq. (8), when the minimum 
amount of soil in all the options is less than or equals to zero, 
the minimum amount is subtracted from the value of φij  to 
select the option with the least possible amount of soil.

Figure 1  Proposed IWD-based algorithm to solve the SCD problem
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(8)

θ is a very small constant to avoid divisions by zero. As a 
rule, the higher the value of pij, the higher the probability 
of selecting option j to perform i. Once an option has been 
selected, the velocity of the water drop is updated by  
Eq. (9) and the increments of the amount of soil are 
computed using Eq. (10) (a, b, and c are constants). The 
local update process (in which the soil is modified at the 
stage and at the water drop) is carried out by Eq. (11), where 
rn ∈(0,1) is the local updating parameter.

   (9)

  (10)

  (11)

Notice that the time τij spent in option j at stage i is a 
function of the two objectives to minimize. At the end of this 
first part, the SC is configured and the second part of the 
algorithm is run.

In the second part, the amount of Cost of Goods Sold is 
computed using Eq. (1) as well as the lead time using Eq. (2).

When all the drops have built a solution, the Pareto 
optimality criterion is applied to all the solutions and the 
non-dominated ones are added to the solution set. Finally, 
the soil in every stage that belongs to a solution in the 
Pareto set is updated per Eq. (12), where ρw is the global 
updating parameter used to ‘delete’ a fraction of the soil 
over the selected options j.

      (12)

3. Experimentation
A notebook supply chain example is adapted from [22]. 
The example involves a supply chain producing two types 
of products, namely Grey Notebook and Blue Notebook. 
The former satisfies both US and export demand while 
the latter is only sold to the US market. The two products 
require similar components and sub-assemblies until 
a point of differentiation where either the Grey or Blue 
cover is included. The tree structure, in Figure 2, shows 
the components and operations that are required to 
manufacture the products and deliver them to markets. 
For each product, four types of components are required to 
produce a circuit board assembly, which is then assembled 
with an LCD display, a metal housing, a battery, and various 
other components to produce a notebook subassembly. The 
notebook subassembly is then integrated with either the 
Grey or the Blue cover to make up the final products.

Figure 2 Notebook SC structure 



14

L. A. Moncayo-Martínez; Revista Facultad de Ingeniería, No. 84, pp. 9-16, 2017

According to Figure 2, the size of the set of vertices is 17, 
thus V={1,2,…,17} and the set of edges is: E ={(1,5), (2,5), 
(3,5), (4,5), (5,10),$ $ (6,10), (7,10), (8,10), (9,10),(11,13), 
(10,13), (10,14), (12,14), (13,15), (13,16), (14,17)}.  The subset 
of delivering stages is D={15, 16, 17}. There are ten supplying 
stages (i=1, 2, 3, 4, 6, 7, 8, 9, 11, 12) and five manufacturing 
stages (i= 5, 10, 13, 15).

The data used to run the algorithm is provided in Table 1. 
Accordingly, the problem has 24,576 possible solutions. To 
test the proposed algorithm, we created three instances. 
The first one is the one described above, hence instance 
1 has the three Notebooks and three delivering stages. 
The second instance includes only the Grey Assembly and 
two delivering stages and the instance 3 includes the Blue 
Assembly and one delivering stage.

Table 1 Data for the Notebook SC
Stage (i) Option 

(j)
Time 
(tij)

Cost 
(cij)

1. Part w/8 Week LT

1 40 130
2 20 133.25
3 10 134.91
4 0 136.59

2. Part w/4 Week LT
1 20 200
2 10 202.5
3 0 205.03

3. Part w/2 Week LT
1 10 155
2 0 156.93

4. Parts on Consignment 1 0 200

5. Circuit Board Assembly
1 20 120
2 5 150

6. LCD Display
1 60 300
2 5 150

7. Miscellaneous Components 1 30 200

8. Metal Housing
1 70 225
2 30 240

9. Battery
1 60 40
2 20 45

10. Notebook assembly
1 5 120
2 2 132

11. Gray Cover
1 40 5
2 15 5.5

12. Blue Cover
1 40 5
2 15 5.5

13.  Gray Assembly 1 1 30
14. Blue Assembly 1 1 30

15. USD - GN
1 5 12
2 1 20

16. EXD - GN
1 15 15
2 2 30

17. USD - BN
1 5 12
2 1 20

The proposed algorithm was tested creating one thousand 
drops (D = 1’000) and run twice. In run one, we used thirty 
rivers (R=30) and in the second run ten rivers (R=10) were 
created. In every run, the initial soil at all the options is 
10’000 and the initial velocity at every drop is 200. The other 
parameters are set as follows: a = c = 1, b=0.001, and rn, rw 
= 0.01.

4. Results
As the proposed algorithm is based on a new metaheuristic, 
we compared the results returned by it to the optimum 
Pareto set computed by exhaustive enumeration. In Figure 
3(a), the whole solution space, for instance 1, is shown. 
Notice that the PC ranges from 1.73 x 106 to 7.41 x 106 but 
most of the solutions are between 1.73 x 106 and 2 x 106.  
Therefore, the solutions with PC within this range are 
plotted in Figure 3(b). The aim of the first experiment was 
to define the number of rivers with which the algorithm 
returns the closest solution set to the optimum Pareto set. 
We proved graphically and analytically that the algorithm 
seems to return a similar solution set to the optimal 
one when the number of rivers is increased. In order to 
analytically prove that, we computed some performance 
metrics used in multi-objective optimisation. These metrics 
measure: a) the ability of the algorithm to converge to the 
optimum Pareto set, e.g. Goal Difference (GD), and b) the 
uniformity or diversity of the solutions in terms of dispersion 
and extension, e.g. Spacing (S). There is a third kind of 
metrics that combine convergence and diversity measures, 
e.g. Hypervolumen (H) and H Ratio (HR). The reader is 
encouraged to review  [23] for an extensive explanation of 
these metrics.

In Table 2, the value of each metric for every instance is 
summarised. The GD computes the average distance 
between two solution sets, that generally one of them is 
the optimum Pareto set. The smaller the value of GD, the 
closer the solution set to the optimum one. For instance 
1, the GD=194,145 when 30 rivers are created (R=30), 
but when R=10 the GD=223,994. Therefore, it seems that 
the algorithm converges to the optimal Pareto set when 
$R=30$. As shown in Figure 3(c), 82% of the solutions 
computed when R=30 have lower PC than those computed 
when R=10, thus we can conclude that when R=30 the 
proposed algorithm returns a solution set similar to the 
optimum one.

In Figure 3(d), the solution sets computed by rivers r=10, 
r=20, and r=30 are plotted for instance 1 (remember that 
r =1,…,R). The objective of this is to show how every river 
computes a solution set closer to the optimum one, thus 
we computed the GD for every river, i.e. GD10=2,256,227, 
GD20=214,085, and GD30=194,145. According to the GD 
metric, we can conclude that the algorithm tends to 
converge to the optimum Pareto set.
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Figure 3  Results of the experimental application

Table 2 Metrics of the proposed algorithm
Metrics

CPU converge diversity Hybrid
Instance R No Solutions Time (sec) GD S H(x106) HR

1 30 24,576 23,570 194,145 287,774 443.4 0.9383
10 9,380 223,994 391,759 429.2 0.9083

2 30 6,144 15,900 73,892 250,730 205.1 0.9869
10 4,190 112,023 330,954 204.6 0.984

3 30 3,072 10,670 18,491 111,082 96.3 0.9867
10 3,570 21,564 111,791 96.1 0.9853

 The metric S that measures the diversity of the solution 
set states that the smaller the S, the more evenly apart (or 
spaced) the solutions.  This metric is important since we 
are interested in finding solution sets uniformly distributed 
over the solution space, i.e. S measures the dispersion 
and extension of the solution sets. As seen in Table 2, the 
S=287,774 when R=30 and S=223,994 when R=10, thus 
the solution set computed when R=30 is more uniformly 
distributed over the solution space as shown graphically in 
Figure 3(c). 

The hybrid metrics called Hypervolume (H) and H Ratio (HR) 
are related to the coverage area of a solution set in relation 
to the solution space, i.e. H and HR add the rectangle areas 
bounded by a reference point. For instance 1, the reference 

point is LT = 91 and  CoGS=187,039,500, hence the value 
of H is greater when R=30, i.e. about 94% of the area is 
covered by the solution set when R=30. On the other hand, 
when R=10 just 9% of the area is covered.  According to the 
values of GD, S, H, and HR in instance 1, we concluded that 
the best solution set computed by our proposed algorithm 
is when thirty rivers are created.

A similar analysis can be carried out in instances 2 and 3. 
As shown in Table 2, the values of the metrics when R=30 
outperform the values of the same metrics when R=10 but 
in the H and HR in which their values are similar. It means 
that in instances 1 and 2 the area, covered by either of the 
solution sets, covers about 98% of the solution space area.
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In relation to the CPU time, the maximum CPU time is about 
23 seconds that are spent by our algorithm when R=30 and 
instance 1 was solved. Notice that instance 1 is the one with 
the largest solution space, thus we can conclude that the 
larger the instance and the larger the number of rivers, the 
longer the CPU time as shown in Table 2. We used a Lenovo 
ThinkPad T520 computer with an Intel Core i5 processor at 
2.50GHz and 4Gb in RAM memory.

5. Conclusions
In this paper, we applied a new metaheuristic to the SC 
configuration problem. To the best of our knowledge, there 
are no published attempts to solve the SC configuration 
problem using this metaheuristic. The aim of this piece of 
research is to test the Intelligent Water Drop metaheuristic 
and to prove graphically and analytically the performance 
of the proposed IWD-based algorithm by using convergence 
and diversity metrics.

We proved that our algorithm returns a solution set similar 
to the optimum Pareto set when the number of rivers is 
set to 30 instead of 10 for the proposed Notebook SC used 
as experimental application. We were able to compute 
the solution space for the bigger instance (the one which 
contains the Blue and Gray Notebook) and we concluded 
that the algorithm converges to the optimum Pareto set 
according to the Goal Difference Metric and the returned 
solution set is evenly spaced. The hyper volume ratio or 
percentage of the area covered by the returned solution set 
is at least 91%. Hence, the proposed algorithm returns a 
solution set similar to the optimum one.

6. Acknowledgment
“Financial support from the Asociación Mexicana de 
Cultura, A.C. is gratefully acknowledged”. The National 
Council of Science and Technology (CONACyT) from México.

7. References
1. S. C. Graves and S. P. Willems, Optimizing the Supply 

Chain Configuration for New Products, 2001. [Online]. 
Available: http://web.mit.edu/sgraves/www/papers/
Supply%20Chain%20Configuration%20June%202004.
pdf. Accessed on: Jul. 25, 2017.

2. J. Magretta, “The power of virtual integration: an 
interview with Dell Computer’s Michael Dell,” Harvard 
Bus. Riview, vol. 76, no. 2, pp. 73–84, 1998.

3. K. Cottrill, “Reforging the supply chain,” J. Bus. 
Strategy, vol. 18, no. 6, pp. 35–39, 1997.

4. H. L. Lee and C. Billington, “Material Management in 
Decentralized Supply Chains,” Oper. Res., vol. 41, no. 5, 
pp. 835–847, 1993.

5. T. P. Harrison, “Global supply chain design,” Inf. Syst. 
Front., vol. 3, no. 4, pp. 413–416, 2001.

6. S. C. Graves and S. P. Willems, “Optimizing the supply 
chain configuration for new products,” Manage. Sci., 
vol. 51, no. 8, pp. 1165–1180, 2005.

7. S. C. Graves and S. P. Willems, “Supply chain design: 
safety stock placement and supply chain configuration,” 
in Supply Chain Management: Design, Coordination and 
Operation, 1st ed., A. G. de Kok and S. C. Graves (eds). 
Amsterdam, Holland: Elsevier, 2003, pp. 95–132.

8. G. Q. Huang, X. Y. Zhang, and L. Liang, “Towards 
integrated optimal configuration of platform products, 
manufacturing processes, and supply chains,” J. Oper. 
Manag., vol. 23, no. 3–4, pp. 267–290, 2005.

9. J. Wang and Y. Shu, “A possibilistic decision model for 
new product supply chain design,” Eur. J. Oper. Res., 
vol. 177, no. 2, pp. 1044–1061, 2007.

10. G. Guillen, F. D. Mele, M. Bagajewicz, A. Espuña, and 
L. Puigjaner, “Multiobjective supply chain design under 
uncertainty,” Chem. Eng. Sci., vol. 60, no. 6, pp. 1535–
1553, 2005.

11. A. Muriel and D. Simchi, “Supply chain design and 
planning - Applications of optimization techniques 
for strategic and tactical models,” in Supply Chain 
Management: Design, Coordination and Operation, 1st 
ed., A. G. de Kok and S. C. Graves (eds). City, country: 
Elsevier, 2003, pp. 15–93.

12. P. Kouvelis, M. J. Rosenblatt, and C. L. Munson, “A 
mathematical programming model for global plant 
location problems: Analysis and insights,” IIE Trans., 
vol. 36, no. 2, pp. 127–144, 2004.

13. P. Tsiakis and L. G. Papageorgiou, “Optimal production 
allocation and distribution supply chain networks,” Int. 
J. Prod. Econ., vol. 111, no. 2, pp. 468–483, 2008.

14. A. Amiri, “Designing a distribution network in a supply 
chain system: Formulation and efficient solution 
procedure,” Eur. J. Oper. Res., vol. 171, no. 2, pp. 567–
576, 2006.

15. C. Chandra, M. Everson, and J. Grabis, “Evaluation of 
enterprise-level benefits of manufacturing flexibility,” 
Omega, vol. 33, no. 1, pp. 17–31, 2005.

16. T. van der Vaart and D. P. van Donk, “A critical review 
of survey-based research in supply chain integration,” 
Int. J. Prod. Econ., vol. 111, no. 1, pp. 42–55, 2008.

17. J. P. C. Kleijnen, “Supply chain simulation tools and 
techniques: A survey,” Int. J. Simul. Process Model., vol. 
1, no. 1–2, pp. 82–89, 2005.

18. H. Shah, “Problem solving by intelligent water drops,” 
in IEEE Congress on Evolutionary Computation (CEC), 
Singapore, Singapore, 2007, pp. 3226–3231.

19. H. Duan, S. Liu, and J. Wu, “Novel intelligent water 
drops optimization approach to single UCAV smooth 
trajectory planning,” Aerosp. Sci. Technol., vol. 13, no. 
8, pp. 442–449, 2009.

20. Y. Hendrawan and H. Murase, “Neural-Intelligent 
Water Drops algorithm to select relevant textural 
features for developing precision irrigation system 
using machine vision,” Comput. Electron. Agric., vol. 77, 
no. 2, pp. 214–228, 2011.

21. S. R. Rayapudi, “An Intelligent Water Drop Algorithm 
for Solving Economic Load Dispatch Problem,” Int. J. 
Electr. Electron. Eng., vol. 5, no. 10, pp. 1373–1379, 2011.

22. E. Lesnaia, I. Vasilescu, and S. Graves, The Complexity 
of Safety Stock Placement in General-Network Supply 
Chains, 2005. [Online]. Available: http://web.mit.edu/
sgraves/www/papers/Lesnaia%20SMA%2005.pdf. 
Accessed on: Jul. 25, 2017.

23. E. G. Talbi, Metaheuristics: From design to 
implementation, 1st ed. New Jersey, USA: Wiley, 2009.

http://web.mit.edu/sgraves/www/papers/Supply%20Chain%20Configuration%20June%202004.pdf
http://web.mit.edu/sgraves/www/papers/Supply%20Chain%20Configuration%20June%202004.pdf
http://web.mit.edu/sgraves/www/papers/Supply%20Chain%20Configuration%20June%202004.pdf

	_GoBack
	_Hlk488052815
	Mendeley_Bookmark_qmPCzeFYQw
	Mendeley_Bookmark_nyMunQoId9
	Mendeley_Bookmark_EZTuKQlj7b
	Mendeley_Bookmark_tiIp9HmA0P
	Mendeley_Bookmark_YSQRl8iszE
	Mendeley_Bookmark_LTtcGnyXHg
	Mendeley_Bookmark_iMoEsfnv5N
	Mendeley_Bookmark_v2dO3CbK0O
	Mendeley_Bookmark_ATO297uLt4
	Mendeley_Bookmark_k3KMKDIJER
	Mendeley_Bookmark_4oOCJnaV20
	Mendeley_Bookmark_6ny3g59doK
	Mendeley_Bookmark_k44676qTAo
	Mendeley_Bookmark_N6t0qhFfve
	Mendeley_Bookmark_9C7BhVgJ63
	Mendeley_Bookmark_xuHwHK7Jfo
	Mendeley_Bookmark_3k5krbsRox
	Mendeley_Bookmark_UswUNxeoIp
	Mendeley_Bookmark_WzcYQFB1m5
	Mendeley_Bookmark_92FPEkQCBH
	Mendeley_Bookmark_18Qb9i4itT
	Mendeley_Bookmark_60AUntlBVi
	_GoBack
	_GoBack
	_GoBack
	_Hlk490222725
	_GoBack
	_GoBack
	MTBlankEqn
	MTBlankEqn
	_Ref427586711
	_Ref427528518
	_Ref427529148
	_7._References
	EDITORIAL
	Supply chain design using a modified IWD algorithm
	Luis Antonio Moncayo-Martínez

	Accelerating the computation of the volume of tissue activated during deep brain stimulation using Gaussian processes
	Iván De La Pava Panche1, Viviana Gómez-Orozco1*, Mauricio Alexander Álvarez-López2, Óscar Alberto Henao-Gallo1, Genaro Daza-Santacoloma3, Álvaro Ángel Orozco-Gutiérrez1

	Biocompatibility of bismuth silicate coatings deposited on 316L stainless steel by sol-gel process
	Jorge Hernando Bautista-Ruiz1, 2*, Jhon Jairo Olaya-Flórez1, Willian Arnulfo Aperador-Chaparro3

	Influence of the molecular weight of polymer, solvents and operational condition in the electrospinning of polycaprolactone
	Gabriel Jaime Colmenares-Roldán1,2*, Yeixon Quintero-Martínez1, Liliana María Agudelo-Gómez1, 2, Luis Fernando Rodríguez-Vinasco1, Lina Marcela Hoyos-Palacio1, 2

	Reduction of amine and biological antioxidants on NOx emissions powered by mango seed biodiesel
	Velmurugan Kolanjiappan

	Effect of surface hardness and roughness produced by turning on the torsion mechanical properties of annealed AISI 1020 steel
	Omar José Zurita-Hurtado*, Verónica Carmen Di Graci-Tiralongo, María Cristina Capace-Aguirre

	Identification of the characteristics incident to the detection of non-technical losses for two Colombian energy companies
	Carmen Cecilia Sánchez-Zuleta, Juan Pablo Fernández-Gutiérrez, Carlos César Piedrahita-Escobar

	Information quality and quantity-based model to represent the appropriateness of software requirements elicitation techniques
	Omar José Zurita Hurtado*, Verónica Carmen Di Graci Tiralongo, María Cristina Capace Aguirre

	Approaching the concepts of ecosystems resilience and stability through spatiotemporal system dynamics and agent-based modelling
	Sebastián Peña-Alzate1, Julio Eduardo Cañón Barriña2*

	Oxidative dehydrogenation of propane with cobalt, tungsten and molybdenum based materials
	Maurin Salamanca Guzmán1, 2*, Yordy Enrique Licea Fonseca3, Adriana Echavarría Isaza1, Arnaldo Faro4, Luz Amparo Palacio Santos5


