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ABSTRACT: This paper presents a hybrid technique for solving the generation maintenance
scheduling coordinated with middle term hydrothermal dispatch based on the Chu-Beasley
genetic algorithm and linear programming. It takes into consideration the non-linearity
derived from the cost of the fuel for thermal power plants. The output of the genetic
algorithm is a proposal for the start week of the generationmaintenance plan thatminimises
the hydrothermal dispatch cost. This work has two main contributions: on one hand
proposing a solution that integrates hydrothermal dispatch and maintenance scheduling in
a single model, therefore a new mathematical model and, on the other hand the proposed
solution applies a specialised genetic algorithm that has not been applied before to solve
this problem. The test system to validate themethodology is composed of three hydro plants
and two thermal plants split into 22 generation units, considering three types of preventive
maintenance, in a planning term of one year (52 weeks). This methodology combines an
exact technique and a specialised genetic algorithm, which favours convergence.

RESUMEN: Este artículo presenta una técnica híbrida para resolver la programación del
mantenimiento de las unidades de generación coordinado con el despacho hidrotérmico
de mediano plazo. La solución se basa en el algoritmo genético de Chu-Beasley y en la
técnica de programación lineal. Tiene en cuenta no linealidades derivadas del costo de los
combustibles utilizados por las centrales térmicas. La salida del algoritmo genético es una
propuesta de la semana de inicio del plan de mantenimiento de cada unidad de generación
que minimiza el costo del despacho hidrotérmico. Las dos principales contribuciones de
este trabajo son que propone un modelo matemático que coordina dos problemas que
en la literatura se han resuelto de forma separada, y que aplica un algoritmo genético
especializado que aún no ha sido utilizado para resolver el problema coordinado. El
sistema de prueba para validar lametodología se compone de tres centrales hidroeléctricas
y dos centrales térmicas dividas en 22 unidades de generación, teniendo en cuenta el
mantenimiento preventivo, en un horizonte de planeamiento de un año (52 semanas). Esta
metodología combina una técnica exacta con un algoritmo genético especializado, lo que
favorece la convergencia.
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Nomenclature

The notation used throughout this paper is reproduced
below for quick reference.

Sets
ΩT ,ΩM Set of time periods and periods

for maintenance
ΩHP ,ΩTP Set of hydro plants and thermal plants
ΩHUM ,ΩTUM Set of hydro and thermal

generation units
ΩT ,ΩM Set of hydro and thermal

units in maintenance
ΩU Set of generation units
ΩD Set of maintenance duration lengths

Parameters
fp Final period of planning term
cT Quadratic coefficient of cost function
aT Free term of cost function
cr Penalty cost for non-supplied electricity
csj Cost of water spillage at period j
dj Load demand at period j
ai,j Water inflow of hydro plant i at period j
vi,0 Volume of hydroplant i at period 0
vfi Final reservoir storage of hydro plant i
gti Maximum limit of power at thermal plant i
ghi Maximum limit power of hydro plant i
gui Maximum power generation of unit i
ui Maximum limit of water discharge

at hydro plant i
ui Minimum limit of water discharge

at hydro plant i
vi Maximum limit of volume at hydro plant i
vi Minimum limit of volume in hydro plant i
ftoi Water discharge constant of hydro plant i
mi,j,l Slope of thermal plant i at period j for segment l
L Number of segments for linearization
∆

i,j,l
Upper bound of the l − th segment associated
with thermal generation i at period j

vi,0 Initial volume of hydroplant i
ci Minimum operating cost at generation i
s Maximum water spillage among initial population
ci Maximum operating cost at generation i
s Minimum water spillage among initial population
Dl Maintenance duration type l
npop Population size
nmut Mutation rate
ntor Number of tournaments
ncan Number of candidates to tournament
gen Number of generations
γ Infeasibility equalisation factor
α Rationing weighting factor
β Spillage weighting factor
I Normalised infeasibility

Binary variables
Yi,j Represents thermal unit i being maintained

at period j
Wi,j Represents unit i of hydro-plant k being

maintained at period j
Zi,j Represents the complement of Yi,j

Continuous variables
grj Fictitious generator at period j
wj Water spillage of hydro plant i at period j
ghi,j Hydro generation of plant i at period j
gti,j Thermal generation of planti at period j
gui,j Power generation of unit i at period j
vi,j Volume of the hydro plant i at period j
ui,j Water discharge of hydro plant i at period j
∆i,j,l Value of the l-th segment associated

with the thermal generation i at period j
ri,j Rationing of spring i , at generation j
si,j Water spillage of spring i , at generation j
ffit Fitness function of the genetic algorithm
ci,j Operating cost of spring i , at generation j

1. Introduction

The power Generation Maintenance Scheduling (GMS)
problem or outage planning is a combinatorial complex
problem. The integer feature of the variables representing
either stopping or not a generation unit for preventive
maintenance produces a huge number of solutions
that makes it difficult to solve for large electrical
systems. Meanwhile, hydrothermal dispatch is a nonlinear
continuous problem that involves additional complexity
due to the dynamic, stochastic and nonlinear features. In
consequence, the target problem addressed here can be
typified as mixed integer nonlinear programming (MINLP)
problem.

In the last decades, a considerable amount of papers
addressing the GMS has been published. We focus on
those works that have applied metaheuristic techniques
based on either pure genetic algorithms or combinations
of them with other metaheuristics. In the first place,
we list some relevant works that offer solutions for
GMS based solely on GA [1–7], or improved versions
of them [8, 9]. Secondly, we pay special attention to
those named hybrid algorithms, understanding by that,
combinations of techniques to solve the problem under
scope. In 1999, Burk and Smith presented a hybrid
evolutionary solution termed mimetic algorithm that
add local search operators to the conventional genetic
algorithm [10]. Solutions that involve Simulated Annealing
combined with genetic algorithms have been studied in the
previous decade [11–13]. Hybrids of genetic algorithms
and Particle Swarm were also presented [14, 15]. Other
solution approach to the problem was the combination

19



M.V. Ramírez-Martínez et al., Revista Facultad de Ingeniería, No. 85, pp. 18-32, 2017

of Genetic Algorithm (GA) and fuzzy theory [16, 17]. A
maintenance scheduling study applying GA and Monte
Carlo Simulation was also reported in [18] while more
recently, the problem was tackled by using a hybrid
solution named as Scatter-genetic algorithm [19]. The
weakness of the literature reviewed is that all solutions
for maintenance scheduling do not take into consideration
hydrothermal dispatch. Especially when global warming
can affect dramatically the conditions of water resources,
the scheduling of the preventive power generation should
be seen as an integrated problem jointly with hydrothermal
dispatch (HTD) in order to prevent situations of power
rationing.

Despite genetic algorithms applied to GMS have already
been published and available in the literature asmentioned
above, the Chu-Beasley GA has not been applied to solve
the GMS and much less to solve it in coordination with
hydrothermal dispatch. Another contribution of this
paper is testing the ability of a genetic algorithm initially
designed to solve the General Assignment Problem (GAP),
a well-known problem from the Operation Research
field, in solving the GMS coordinated with HTD. Since
the genetic algorithm of Chu and Beasley had been
successfully applied in the past to solve the static and
multistage transmission network expansion planning [20]
we decided to find out if applicable to our target problem.
For that some adaptations to the original Chu-Beasley GA
were necessary. They will be described in section 4. The
main contribution of this paper is proposing an integrated
solution to the GMS coordinated with HTD solved by a
hybrid technique based on an adapted version of the
Chu-Beasley GA.

In an electrical scheme such the one assumed here,
the ISO (Integrated System Operator) makes the final
decision of when the preventive maintenance has to be
done so that the general operating cost of the system
and therefore, the hydrothermal dispatch, is affected as
little as possible. It is known that the HTD problem is very
complex itself (nonlinear, dynamic and stochastic) but that
complexity can be lowered throughout relaxedmodels [21].

This paper presents a hybrid solution for the
generation maintenance scheduling problem based on
a metaheuristic that combines a heuristic (a specialised
genetic algorithm based on the Chu-Beasley genetic
algorithm [22]) and a mathematical programming model
(linear programming) as a local search method. Our
algorithm is a hybrid technique because it combines
a heuristics and an exact technique. It takes into
consideration hydrothermal dispatch and the non-linearity
derived from the cost of the fuel for thermal power plants.
In specialised literature, the fuel cost is often modelled
as a quadratic variable [23, 24]. The duration of four

different types of maintenance is fixed and therefore a
parameter of the problem, which is a realistic situation as
referred in various works [19, 25]. To make our approach
closer to a real application, some of the generation units
are considered not to have maintenance within the year
(52 weeks), in that case the duration of the maintenance
for that specific unit is zero. We should remark that the
maintenance cost is not part of the objective function in
the proposed solution. That implies we are looking for
the maintenance schedule that minimizes the operating
cost of the hydrothermal dispatch. In this approach, the
cost associated with the maintenance task is borne by the
companies that own the power plants.

It must be obvious to the reader that in order to make
the Chu-Beasley GA suitable for the actual problem, a
particular codification of the problem should be carried
on as well as a redefinition of the objective function and
constraints. Such a codification and adaptation of the
model are also contributions of this work. The output of
the genetic algorithm is a proposal for the start week of
the GMS for each generation unit of the hydrothermal
system. Based on that proposal, the generation capacity
available of the plants is determined and the plant
generation limits adjusted. With the new generation
boundaries, the hydrothermal dispatch problem is solved
by the linear programming method. This represents
a local solution of the whole problem. The iterative
process of the genetic mechanisms leads to good quality
sub-optimal solutions and eventually to the optimal
solution. The non-linearity associated to the fuel cost
is linearized by means of a piecewise linearizationmethod.

The model was implemented using the programming
language C++ and the commercial solver CPLEX. This
combined solution takes advantage of the efficiency of the
CPLEX solver and the genetic algorithm simultaneously,
which favours convergence.

2. Mathematical modelling

The mathematical model is a MINLP (Mixed Integer
Non Linear Programming) type. It searches for the
optimal maintenance scheduling that minimises the cost
function, which comprises three terms: operating cost
of thermal generation, rationing cost and spillage cost,
Eq. (1). Consequently, the model has not maintenance
cost associated (this cost is hold by the GENCOs) and
optimises the energy resources available. This model is
a new proposal built by the authors, inspired by previous
works on HTD [21, 26, 27] and GMS referenced in section
2.
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Min
∑

i∈ΩTU

∑
j∈ΩT

(cTi,j(gti,j)
2
+ aTi,j)Yi,j +

∑
j∈ΩT

crj .grj +
∑

i∈ΩHP

∑
j∈ΩT

cv.vvi,j (1)

s.t.∑
i∈ΩTU

W k
i,j = 1 ∀k ∈ ΩHP ,∀j ∈ ΩT (2)

∑
i∈ΩTU

Zk
i,j = 1 ∀k ∈ ΩTP ,∀j ∈ ΩT (3)

∑
i∈ΩHU

∑
k∈ΩHP

W k
i,j +

∑
i∈ΩHU

∑
k∈ΩHP

Zk
i,j ≤ 3 ∀j ∈ ΩT (4)

W k
i,j = W k

i,j+1 ∀i ∈ ΩU ,∀j ∈ ΩT ,∀k ∈ ΩHP (5)

Zk
i,j = Zk

i,j+1 ∀i ∈ ΩU ,∀j ∈ ΩT ,∀k ∈ ΩTP (6)

∑
i∈ΩT

W k
i,j = T −Dl ∀i ∈ ΩU ,∀k ∈ ΩHP ,∀l ∈ ΩD (7)

∑
i∈ΩT

Zk
i,j = T −Dl ∀i ∈ ΩU ,∀k ∈ ΩTP ,∀l ∈ ΩD (8)

∑
i∈ΩHU

ghi,j +
∑

i∈ΩTU

gti,j + grj = dj ∀j ∈ ΩT (9)

vi,j = vi,j−1 + ai,j − ui,j − vvi,j ∀i ∈ ΩHU ,∀j ∈ ΩT (10)

ghi ≤ ghi,j ≤ ghi ∀i ∈ ΩHU ,∀j ∈ ΩT (11)

gti ≤ gti,j ≤ gti ∀i ∈ ΩTU ,∀j ∈ ΩT (12)

ghi = ftoi.uj ∀i ∈ ΩHU ,∀j ∈ ΩT (13)

ui ≤ ui,j ≤ ui ∀i ∈ ΩHP ,∀j ∈ ΩT (14)

vi ≤ vi,j ≤ vi ∀i ∈ ΩHP ,∀j ∈ ΩT (15)

vi,fp = vfi ∀i ∈ ΩHP (16)

Y k
i,j ,W

k
i,j , Z

k
i,j binary (17)

ghi,j , gti,j , ai,j , ui,j , vi,j , vvi,j ∈ R+ (18)
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We insist in this section that this model coordinates in
a single model two problems (HTD and GMS) that are
normally treated in literature as separate problems.
Eqs. (2-8) bear the integer part of the problem, those
are constraints related to the GMS part, while Eqs.
(9-16) embody the continuous part, so the HTD. This
model considers nonlinear operating costs for thermal
generation. It is subjected to constraints related to:
the manpower availability to carry out the maintenance
task specifying that no two units can be simultaneously
maintained by the same crew at the same power plant,
represented in Eqs. (2) and (3); also, that no more
than three units can be simultaneously maintained by
different crews (crew constraints), Eq. (4); completion of
maintenance operation guarantees that the maintenance
for each unit must occupy the required time duration
without interruption (maintenance completion constraint)
[28] represented by Eqs. (5-8); additionally, the HTD
constraints: energy balance, Eq. (9), water balance
(10), maximum thermal and hydro generation (11) and
(12), productivity of the hydroplants (13) maximum and
minimum limits of water discharge for the hydro plants
(14) maximum and minimum volume limits for the water
reservoirs (15) and minimum energy storage (16); finally,
the variables are defined by constraints (17) and (18).

The solution is divided in two stages: First, the genetic
algorithm that solves the maintenance scheduling and,
second, the linear programming optimisation part that
solves the HTD problem.

In order to keep the HTD model linear, two strategies
are deployed: a) The quadratic cost function is linearized
throughout a piecewise linearization technique. Equation
(19) represents a variable change with the purpose of
linearization, that is, we are renaming a squared variable
by a new linear variable. b) Instead of considering the
binary variables that represent the units maintenance
outages Yk,i,j, Wk,i,j and Zk,i,j , this work subtracts the
power capacity of the unit to be maintained from the total
capacity of its respective power plant. The idea is to find
out how the shortfall in capacity is to be taken up by the
remaining units.

(gti,j)
2
= gtsqri,j ∀i ∈ ΩHP ,∀j ∈ ΩT

(19)

Following this, (1) becomes linear, (20) in the new model.
Eqs. (2) - (8) are removed from the model. additionally,
the HTD constraints: energy balance, Eq. (21), water
balance (22), maximum thermal and hydro generation
(23) and (24), maximum unit generation (25), productivity
of the hydroplants (26), maximum and minimum limits
of water discharge for the hydro plants (27) maximum
and minimum volume limits for the water reservoirs
(28) and minimum energy storage (29); (31) defines the
linearization variables; finally, the variables are defined by
constraints (32).The new linearized model resembles as
follows:

Min
∑

i∈ΩTU

∑
j∈ΩT

(cTi,j .gt
sqrt
i,j + aTi,j) +

∑
j∈ΩT

crj .grj +
∑

i∈ΩHP

∑
j∈ΩT

cv.vvi,j (20)

∑
i∈ΩHU

ghi,j +
∑

i∈ΩTU

gti,j + grj = dj ∀j ∈ ΩT (21)

vi,j = vi,j−1 + ai,j − ui,j − vvi,j ∀i ∈ ΩHU ,∀j ∈ ΩT (22)

ghi ≤ ghi,j ≤ ghi ∀i ∈ ΩHU ,∀j ∈ ΩT (23)

gti ≤ gti,j ≤ gti ∀i ∈ ΩTU ,∀j ∈ ΩT (24)

gui ≤ gui,j ≤ gui ∀i ∈ ΩHU ,∀j ∈ ΩT (25)

ghi = ftoi.uj ∀i ∈ ΩHU ,∀j ∈ ΩT (26)

ui ≤ ui,j ≤ ui ∀i ∈ ΩHP ,∀j ∈ ΩT (27)

vi ≤ vi,j ≤ vi ∀i ∈ ΩHP ,∀j ∈ ΩT (28)
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vi,fp = vfi ∀i ∈ ΩHP (29)

Falta ecuacin 30 (30)

gtsqri,j = mi,j,l.∆i,j,l ∀i ∈ ΩTP ,∀j ∈ ΩT , l = 1...L (31)

ghi,j , gti,j , gt
sqr
i,j , ai,j , ui,j , vi,j , vvi,j ∈ R+ (32)

where :

0 ≤ ∆i,j,l ≤ gti/L ∀i ∈ ΩTP ,∀j ∈ ΩT , l = 1...L

mi,j,l = (2l − 1)∆i,j,l ∀i ∈ ΩTP ,∀j ∈ ΩT , l = 1...L

3. Solution Technique

As a previous step for implementing the algorithm, a
linearization technique is accomplished. The energy
cost is a quadratic function of the thermal power; hence,
the variable to be linearized is the thermal power. The
quadratic original function is discretised (by dividing the
function into L segments) by means of an approximation
of secant segment lines. In every time period (52), and
for each thermal plant, a linearization has to be done;
therefore, the constants of the quadratic function for
each thermal plant at each period cT i, j and aT i, j are
parameters of the system.

The solution technique named matheuristic is a heuristic
that uses a mathematical programming model as a
local search method. For our matheuristic, the heuristic
technique is a specialised genetic algorithm inspired
by Chu and Beasley’s work published in 1996, and the
mathematical model is the linear programming. A set
of heuristics, based on criteria particular to the HTD
problem, conform the initial population of the GA. The
linear programming of the model makes a local search of
the DHT part of the solution. The final result of the GA is
the maintenance scheduling for the generation units. At
the end of the evolution process, the GA obtains a solution
that fulfils the stop criterion (iteration number). It is well
known that non-exact techniques do not guaranty the
optimal solution but a good quality solution that eventually
might be the global optimum. The current solution is built
on C language. CPLEX solver is invoked for the linear
part of the solution, the DHT.

Figure 1 presents one iteration of the genetic algorithm
step by step. It begins with generating the initial
population. In this algorithm, diversity is a major issue;
each individual is different that all individuals of the current
population. The selection process is the mechanism
to choose the individual that replaces another; in this

case that mechanism is the tournament. The remaining
steps are crossover mechanism, mutation, verification of
feasibility and diversity. Finally, depending on certain
criteria, the replacement step can take place or not. Every
component of the GA will be detailed in section 6.

4. Test system

The hydrothermal system under study is a test system
integrated by five elements: three hydraulic and two
thermal power plants. The hydro plants H1, H2 and H3
get water inflows from rivers RA, RB and RC, respectively.
The analysis time term of the HTD is a year divided
in 52 weeks, which in literature is often referred as
middle term hydrothermal dispatch or scheduling. The
transmission line effect is neglected (so called single
node analysis). Table 1 contains values of water discharge
factor, maximum water discharge rate, maximum volume,
initial volume and final volume of hydroplants.

Maximum generation of plants H1, H2, H3, T1 and T2 in
[MW ] is presented in Table 2.

The cost of thermal plants is based on a quadratic function
that depends on the thermal generation in time. For each
thermal generator and each time, the coefficients that
accompany these functions are known; these values are
based on stock market prices of fuels. Values of maximum
power capacity for each generation plant are summarised
in Table 2.

An individual within our genetic algorithm is amaintenance
scheduling for generating power units. It is, therefore,
a matrix whose dimensions are given by the number of
generating units and the number of time periods. In this
case, each individual is a matrix of size 22x52. Figure 2
illustrates the Basic Maintenance Plan. In this work, this
plan is assumed as the proposal made by the generation
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Figure 1 Flow diagram for Chu-Beasley based genetic algorithm

Table 1 Parameters of hydroplants

ftoi ui vi vi0 vfi[
MW
m3/s

] [
m3/s

] [
Hm3

] [
Hm3

] [
Hm3

]
H1 0.621 869.565 850.52 425 450
H2 0.925 308.108 695.7 348 150
H3 10 115 760.9 400 100
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Table 2 Maximum power capacity of generation plants inMW

H1 H2 H3 T1 T2
540 85 1150 431 770

companies. This figure is also useful to show how each
power plant is divided in units. For instance, hydropower
plant H1 habilitates 3 unit of 180MW each. The first
column identifies thermal and hydraulic power plants,
the second one, each of the machines (or generation
units) of their plants, the third, numbers the machines
throughout the system (22 in total), the fourth indicates
themaximum capacity of eachmachine or generating unit.

5. Feasibility

5.0.1 Controlled feasibility:

this term is understood as the feasibility that is guaranteed
by the following three restrictions:

• Overlaps between maintenance of units of the same
plant are not allowed. This restriction has to do
with the fact that no place for more than one unit in
maintenance is available at power plants due to the
size of such equipment.

• Only up to three overlaps between units of different
plants. In general, number of specialized crews for
maintenance work is limited.

• No maintenance truncated allowed. It is assumed
that non interruptions will take place, once the
maintenance starts.

5.0.2 Non-controlled feasibility

this term has to do with that infeasibility that the algorithm
does not intervene or control, at the beginning of the
evolution process individuals that present such an
infeasibility might enter the population, but the evolution
process will remove gradually in the search for the
best solution, rationing and spillage free. In this work,
non-controlled feasibility is composed by two factors:
rationing and water spillage. In these cases, the evolution
process of the genetic algorithm will be in charge of
eliminating the infeasible solutions.

6. Coding of the Genetic Algorithm

When coding, a maintenance plan (chromosome) is fully
identified by two vectors: The first vector containing the
week in which the maintenance of each unit starts, that is
of size 22 and variable; and the second vector containing
the maintenance’s duration of each unit that is fixed. This
is shown in Figure 3.

6.1 Initial population

The initial population consists of three types of individuals
so called: heuristic, hybrid and random. The heuristic
individuals are selected from 12 heuristics criteria built on
in previous work [27] and [29,30]. The hybrid individuals
combine heuristics criteria and randomness; finally, some
of the individuals are totally random.

6.2 Diversity

In our solution, an individual is a vector containing the
initial week of maintenance of each power unit. Two
individuals comply diversity if by comparing one by one the
positions of the vectors, they differ at least in one of them.
Figure 4 illustrates the diversity test of two individuals.
The first individual (Ind. 1) differs of the second individual
(Ind. 2) at the position corresponding to unit 4. The
maintenance of this unit starts at week 20 and 21 for Ind.
1 and Ind. 2, respectively. The grade of diversity in this
case is 1. The highest diversity grade is 20 because two
units (11 and 14) have no maintenance scheduled during
the planning period.

A particular characteristic of the Chu-Beasley genetic
algorithm is that guaranties diversity among all the
individuals. That means, an individual who aspires to join
the population must be different to each and every one of
the individuals in that generation.

6.3 Fitness function

The quality of an individual is assessed by the fitness
function, defined by (33). The algorithm seeks for the
maintenance schedule with cheapest cost.

ffit = cop + γI (33)

where :
ffit: is the fitness function.
ci,j : is the operating cost of thermal plants.
I: is the normalized infeasibility.
γ: is a factor calculated based on the cost of the initial
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Figure 2 Basic maintenance plan

W
e

e
k
s
 

Plant  
H1 H2 H3 T1 T2 

M1 M2 M3 M1 M2 M3 M1 M2 M3 M4 M5 M6 M7 M8 M1 M2 M3 M4 M1 M2 M3 M4 

Unit 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

MW 180 180 180 95 95 95 150 150 150 140 140 140 140 140 110 110 110 101 193 193 193 193 

1                                             

2                                             

3                                             

4                                             

5                                             

6                                             

7                                             

8                                             

9                                             

10                                             

11                                             

12                                             

13                                             

14                                             

15                                             

16                                             

17                                             

18                                             

19                                             

20                                             

21                                             

22                                             

23                                             

24                                             

25                                             

26                                             

27                                             

28                                             

29                                             

30                                             

31                                             

32                                             

33                                             

34                                             

35                                             

36                                             

37                                             

38                                             

39                                             

40                                             

41                                             

42                                             

43                                             

44                                             

45                                             

46                                             

47                                             

48                                             

49                                             

50                                             

51                                             

52                                             

 

26



M.V. Ramírez-Martínez et al., Revista Facultad de Ingeniería, No. 85, pp. 18-32, 2017

Figure 3 Vectors of individual identification: chromosome and duration

Figure 4 Test of diversity for two individuals

population. It makes that infeasible and low operation cost
individuals have the same chance to replace an individual
of the population than one feasible but of the high cost. It
is calculated by (34).

γ =
cop − cop

I − I
(34)

The numerator in (34) represents the difference
between the maximum and the minimum operating
cost. Meanwhile, the denominator is computed as the
difference between the extreme values (maximum and
minimum) of the normalized infeasibility. All values
are related to the initial population. The normalized
infeasibility is calculated by (35).

I = α(r/r) + β(s/s) (35)

s: water spillage of the individual assessed.
r: rationing of the individual assessed.
s: maximum spillage among initial population.
r: maximum rationing among initial population.

α and β are values chosen according to criteria of a
decision maker, regardless the specific weight he or
she assigns to rationing and spillage. In this case, the
decision maker considers that avoiding power cut-offs is
five times more important than avoiding water spillage.
In consequence, the methodology is flexible enough to
support changes in the values of alpha and beta, since
they can be modified according to the system needs.

6.4 Selection

The selection mechanism of an individual to enter the
population in the Chu-Beasley GA is the tournament.
The tournament is to randomly choose between ncan,
number of candidates. The individual with better fitness
value, i.e., less value, will be the parent 1. In a second
tournament, the parent 2 is chosen. Figure 5 shows the
mechanism for selecting parents for a particular case in
which ncan = 2. However, the number of participants in
each tournament can be generally greater than 2; in fact,
it is an input parameter that can be varied. At this point,
one HTD subproblem must be solved associated to the
specific maintenance plan and the cost is calculated by
solving an LP problem through CPLEX.

During the first generation’s tournament, the program
randomly selected four individuals or candidates of the
initial population. The elements chosen were 65, 68, 14
and 5. So the first tournament held between individuals
65 and 68 individuals, the number 65 emerged victorious,
having a value of less fitness function, 1,216,715.375. The
individual 65 is constituted in the parent 1. Meanwhile,
from the second tournament, parent 2 happens to be the
individual 5, since its fitness function value is less than
that of the individual 14, with a value of 1,214,037.152.

6.5 Crossover

Crossover is a genetic operator that combines two
chromosomes or parents in order to get a new individual
called spring. This work considers the one-point
crossover mechanism, that is, a value between 1 and
21, the number of units, is randomly chosen (in the
example 19). The selected value is the crossover point.
The spring will take from parent 1, the chromosome
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Figure 5 Selection mechanism

k=2

Candidato 1 65

Torneo 1 65 Padre 1

Candidato 2 68

Candidato 3 14

Torneo 2 5 Padre 2

Candidato 4 5

  Función de adaptación

Candidato 1:  1.216.715,375

Candidato 2:  1.218.602,625

Candidato 3:  1.235.351,320

Candidato 4:  1.214.037,152

65

Tournament 1 65 Parent 1

68

14

Tournament 2 5 Parent 2

5

       Fitness function

Candidate 1:  1.216e6 MU

Candidate 2:  1.218e6 MU

Candidate 3:  1.235e6 MU

Candidate 4:  1.214e6 MU

fragment between position 1 and the crossover point (19),
and from parent 2, the positions fragment between the
recombination point plus one (20) and 22. This mechanism
is illustrated in Figure 6.

6.6 Mutation

The spring is altered by the mutation mechanism. Within
this work, mutation consists of randomly chose a number
of units to displace its starting week of maintenance, in d
positions. The decision about if the displacement is either
to the right or to the left is again random. Figure 7 shows
the mechanism. As observed, six generating units were
chosen to be varied by the mutation: 2, 7, 10, 12, 13 and
22, highlighted by the red arrows. The mutant is a new
individual resultant from the mutation.

After all the genetic mechanisms take place, the resultant
individual could present infeasibilities of the controlled
type discussed in section 6.1. In such a case, the
individual must be repaired, which means that goes
through a process that makes it feasible. That is done
by incrementing a position of the starting week of
maintenance of the unit that generates the infeasibility
and cyclically repeating this step until the infeasibility has
disappeared.

The next step is to decidewhether or not the feasible spring
replaces an individual of the population. The algorithm
will take into account various criteria such as diversity,
infeasibility and cost to make the final decision. The
process is better understood in Figure 2.

7. Results

Computational results show that the Base Plan presents
no water spillage along the planning term, but rationing
(non served power demand) of 549.812 MW at the first
period. The cost for this plan is 1,485,910.00 MU. Table 3
contains the parameters of the genetic algorithm for the
best solution found by our GA algorithm: nind represents
size of the population; nmut is the mutation rate; ntor
is the number of tournaments and ncan represents the
number of candidates to be parents participating in the
tournament. The crossover mechanism selected for the
solution is 1-point typed.

The best solution obtained by our GA-based matheuristics
has a cost of 1,201,965.50 MU. This is a better solution
compared to the Base Plan since the cost is 19.11%
lower (a reduction of 283, 944.5MU ). Besides, the Best
Solution presents no rationing at all. The algorithm
reaches a population entirely feasible within 52 iterations
(generations) and meets the best solution within 639
generations. A remarkable result is the fact that after
the generation 852, the 80 individuals of the population
are equal in cost. Due to the diversity characteristic of
this particular GA, this means that in fact we have 80
alternative best solutions, judging only from the cost
point of view. To decide between so many ’best solutions’
a marginal fitness index is calculated. This is done by
comparing each position of the base plan with each
position of the individual to be evaluated and finding the
difference between the two values. The 22 marginal values
obtained are added to get the global fitness index.
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Figure 6 Crossover mechanism

Unit 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Parent 1 29 0 49 42 4 11 6 24 26 29 0 17 33 0 46 18 37 5 39 13 17 24

Parent 2 5 14 2 48 7 32 0 24 11 48 0 14 8 0 40 44 46 36 34 26 18 29

Crossover point

Spring 29 0 49 42 4 11 6 24 26 29 0 17 33 0 46 18 37 5 39 26 18 29

Figure 7 Mutation mechanism.

Figure 8 Mutation mechanism.

Table 3 Parameters of the genetic algorithm

nind nmut ntor ncan α β γ gen
80 0.0022 2 2 1 5 9,914.705 1,000

The final best solution is that with smallest global fitness
index. Figure 8 shows both Base Plan and Best Solution
maintenance schedule vectors. So the reader can compare
how shifted the final solution is from the GENCOs proposal.
The measure of such shift is the marginal index in the third
row of the figure. The remaining 79 discarded solutions
have a global fitness index higher than 290.

An important matter in hydrothermal systems analysis is
the behaviour of reservoirs of hydroplants due to the cost
has tight relationship with the water reserve. The higher
the water storage the lower the future cost of energy.
Their volume at each period of time of the hydroplants

H1, H2 and H3 is summarised in Figure 9. It allows us
to compare the reservoirs for a plan with optimisation
and the best solution at each period. We can derive that
the major impact of reserve is due to rivers that feed
hydroplants H1 and H2, which have greater water inflow,
and therefore more capacity of storing. Also, that a wiser
(optimised) management of the resources has impact on
the cost of operation of the system.

Figure 10 depicts the participation of each generation
plant at each time period in the dispatch.

Figure 11 shows the performance of the algorithm with
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Figure 9 Reservoirs’ behaviour for the Base Plan (left) and the Best Solution (right)
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Figure 10 Power generation output for the best solution

variations in the mutation rate.

The best performance of our algorithm is reached
when two parents participate in the tournament. A
higher number of parents (3 or 4) increases the cost
of the solution. When setting the population size at 60
individuals, the algorithm gets trapped in the same value
(a local optimum) from the first generation. The best
maintenance scheduling (cheapest solution) shows up
when population size equals 80 individuals. See figure
12. When executing the algorithm with only random initial
population the number of iterations to reach the best
solution increases 33%. This indicates the benefit of using
heuristics in the initial population.

The algorithm was executed 10 times. The results are
summarised in Table 4. The best solution was reached
four times, and the other six solutions have an average
variation of 1.35% from the best solution.

Machine Specifications: The tests were performed in a
machine Intel (R) Core (TM) i7 -4770 3.40 GHz processor,
16 GB RAM, Windows 7 64-bit operating system. No
parallel processing was carried out. Average run time
of the algorithm is 16810174 ms (4.67 hours) for 1,000
iterations. This means that each iteration takes about
16.81 seconds. The computational complexity of the
algorithm is O(n2

1 ∗ n2). For this specific machine, the
time constant for the algorithm mc is calculated as the
quotient between an iteration time and the complexity
(39). The value mc is important to assure fair comparison
between two algorithms that solve the same problem
regardless the machine.

where:
n1 = 22(numberofgenerationunits)
n2 = 52(numberoftimeperiods)
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Figure 11 Best solution’s performance for variation of mutation rate

Table 4 Performance of the algorithm

Solution Iteration Variation%
1,201,965.50 639 0
1,202,063.75 809 0.82
1,202,121.00 254 1.29
1,202,121.00 198 129
1,201,965.50 825 0
1,202,121.00 482 1.29
1,201,965.50 455 0
1,202,220.13 799 2.12
1,202,121.00 370 1.29
1,201,965.50 704 0

8. Conclusion

We have presented a new mathematical model and
a new methodology for solving the power generation
maintenance problem coordinated with hydrothermal
dispatch. We proved that the Chu-Beasley based GA is
suitable for solving this problem. Computational results
show that our algorithm is able to generate solutions
that reduce the cost compared with the proposed by the
generators (without optimisation criteria) down to 19.11%,
in reasonable time.

The non-linearity of the thermal operating cost in
the hydrothermal dispatch are faced by a piecewise
linearization technique that achieve results within
reasonable computing time. With the linearization
technique the model can be adjusted to more complex
non-linearity different to quadratic.
A test system built within this research is publicly available
for further interested research workers.

Figure 12 Best solution’s performance for variation of
population size
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