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A model for solving vehicle scheduling
problems: a case study
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ABSTRACT: In this work we formulate a model to solve a type of vehicle scheduling problem,
derived from the operation of the mass transit system (MIO) in Cali city, Colombia. Four
companies operate the system with 3 types of buses and four depots. Two kinds of tasks
should be assigned to operators’ buses. A task is a sequence of consecutive travels of a
route between two stations: initial and final. Each task should start and should finish in a
depot, not necessarily the same. There are two main objectives defined by the operators.
One objective is to minimize the total deadhead kilometers between depots and stations
where tasks should start or end. The other objective is to minimize the maximum deviation
of kilometers (commercial and deadhead) assigned to the operators regarding the ideal
quantity of kilometers that they should have, according to the number of their buses in
the fleet. We have implemented the proposed model in AMPL using Gurobi solver and we
validate it using nine representative instances, generated with real data obtained from the
system operation. The results obtained, in all cases, improve the solutions proposed by
the company. Model variations are proposed to deal with new desirable constraints for the
company.

RESUMEN: En este trabajo se formula un modelo para resolver un tipo de problema de
programación de vehículos, derivado de la operación del sistema de transportemasivo (MIO)
en la ciudad de Cali, Colombia. Cuatro compañías operan el sistema con 3 tipos de buses
y cuatro patios. Dos tipos de tareas deben asignarse a los buses de los operadores. Una
tarea es una secuencia de viajes consecutivos de una ruta entre dos estaciones: inicial y
final. Cada tarea debe comenzar y debe terminar en un patio, no necesariamente el mismo.
Hay dos objetivos principales definidos por los operadores. Un objetivo es minimizar el
total de kilómetros en vacío entre patios y estaciones donde las tareas deben comenzar o
terminar. El otro objetivo es minimizar la desviación máxima de kilómetros (comercial y en
vacío) asignada a los operadores con respecto a la cantidad ideal de kilómetros que deberían
tener, según el número de sus buses en la flota. El modelo propuesto se implementa
con el software Gurobi, utilizando nueve instancias representativas generadas con datos
reales obtenidos de la operación del sistema. Todos los resultados obtenidos mejoran las
soluciones propuestas por la empresa. Se proponen variaciones delmodelo para considerar
nuevas restricciones deseables para la empresa.

1. Introduction

The vehicle scheduling problem (VSP) is an optimization
problem which is part of the operational planning of public
transportation systems. In the VSP, tasks are assigned to
buses to cover a given set of timetabled

trips, considering different practical requirements and
objectives. In this work, a real life vehicle scheduling
problem is considered, derived from the operation of the
mass transit system (MIO) in Cali city, Colombia. Some
real constraints on the operation of some Colombian
Bus Rapid Transit (BRT) systems, as well as the model
proposed, are not found in previous models and literature
reviewed. Before describing the problem, some definitions
related to the problem addressed are mentioned, as well
as the terminology used in the reviewed state of the art.
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Figure 1 Typology of buses: Articulate (Left), Standard (Middle),
Complementary (Right)

A trip is each one-way traversal of a route (line),
characterized by: start location and time, end location and
time. A task is a sequence of consecutive travels (trips) of
a route between two stations. A block is one continuous
chain of trips that start and end in depots. Two tasks T1
and T2 assigned to the same block are compatible if the
start time of the second task is greater or equal to the
time of completion of the first task plus the minimum
time necessary to arrive the vehicle to the station where
the second task begins. A deadhead trip is a trip without
passengers (from a depot to a station or from a station
to a depot). Two types of deadhead trips are named
pull-out trip and pull-in trip. A pull-out trip corresponds
to the movement of a bus from a depot to the start
location of a trip, while a pull-in trip corresponds to the
movement of a bus from an end location of a trip to a depot.

In the MIO system, four companies operate the system
with four depots and three types of buses: Complementary
(Compl), Articulated (Art) and Standard (Sta) (Figure 1).

Each depot is administered by an operator and some of
their locations are distributed in the city very distant from
each other (Figure 2). Then, the kilometers of a pull-in
trip or pull-out trip can vary substantially, according to the
depot assigned to these types of trips. Two kinds of tasks
should be assigned to operators’ buses: complete tasks
(CT) or tasks in block (BT).

The planning period of each complete task is all day
and a bus should service only one of these tasks; in
the other case, a bus can serve one task (less frequent
occurrence) or a block consisting of two tasks, which need
to be compatible. All buses need to start and finish each
task in a depot, not necessarily the same. Then, a CT
is a sequence of the type: a pull-out trip, a task, and a
pull-in trip. A BT is a sequence of the type: a pull-out
trip, a task, two others deadhead trips (a pull-in trip and a
pull-out trip, considering the same depot) a second task

Figure 2 Geographic distribution of the four depots in Cali city,
obtained with Google Maps

Figure 3 Two tasks in a block (Left) and a complete task (Right)

compatible with the first task and a pull-in trip (Figure 3).

Each type of vehicle can be assigned to both tasks.
Two types of travel distances (in kilometers) are
considered: commercial distances, associated to trips
with passengers, and deadhead distances, associated
to deadhead trips. The total commercial and deadhead
distances should be distributed between the companies,
according with the number of their buses assigned to
the tasks. There are capacity constraints of depots, as
well as a minimum number of parking spaces for buses
of each operator in its own depot. The operators do not
share buses. Each type of bus should be considered
as a heterogeneous fleet, since only some of them are
equipped with ramps to serve disabled people and some
tasks, complete or not, require a bus to serve disabled
people (called, to differentiate them from the rest, special
buses).

Two main objectives are defined by the operators. One
objective is to minimize the total deadhead kilometers.
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The other objective is to minimize the maximum deviation
from the ideal amount of kilometers, both commercial
and deadhead, determined using the share percentage
of the operator’s buses in the system’s operation. The
planning period is taken as a working day. The problem
should be solved for each type of vehicle, but for each one
of them differences should be considered, because by
regulations of the mayor’s office, some tasks at certain
times must be assigned to special buses, named in
this context special tasks. Then, a multi-vehicle-type
model needs to be considered. Although there are routes
with more demand than others, this is not taken into
account in the model for the assignment of routes to the
operators, as this aspect does not influence the profits they
receive. In Section 3 it is explained why we do not include
theminimization of the amount of used buses in themodel.

We propose a mixed integer linear programming (MILP)
formulation for this problem derived from the operation
of the mass transit system in Cali city, Colombia. Nine
representative instances were generated using real data
obtained of the system operation. This paper is organized
as follows. Section 2 presents the related work. Section
3 presents the proposed mathematical programming
formulation. Section 4 reports numerical results obtained
by running the proposed model on different representative
instances, using real data of the operation of MIO system.
Section 5 presents some variations to the proposed model.
Finally, Section 6 concludes and gives some further
research directions.

The main contribution of this paper is a model for a
real VSP with some characteristics not considered in
the literature, according to the review done. We used a
realistic scenario for which improved solutions were found
by applying the proposed model.

2. Related work

The vehicle scheduling problem (VSP) arises in public
transport bus companies. In the VSP, tasks are assigned
to buses to cover a given set of timetabled trips. There
are some surveys of VSP, on the basis of a general
problem definition [1–4] A recent review of the literature
on Transit Network Planning problems [5] includes the
VSP, particularly the Multi-Depot VSP (MDVSP). Different
approaches to model the VSP, solution methods and
extensions for a better representation of real public transit
systems, have been developed. Some of the extensions of
the basic VSP consider MDVSP, heterogeneous fleet, and
time constraints.

In MDVSP [6–19] vehicles are housed at the different
depots, but each block of trips starts and ends at the same
depot [10]. MDVSP are NP-hard [6]. Approaches to solve

the problem based on a VSPwith a single depot are in [7, 8].
Mixed Integer Programming Problem formulations can be
done based on trips [5, 11–13] or less frequent, in blocks
[8, 14]. The MDVSP has been tackled in the literature by
means of different approaches and formulations. Some
representatives are: (a) a multi-commodity approach
[6, 19], (b) a set-partitioning problem formulation using
a column generation approach [15], and (c) a dynamic
formulation [16]. One objective function proposed aims
to minimize total deadhead kilometers, but if the fixed
cost is adequately large, then aim of minimizing number
of vehicles is prioritized [18]. A model and algorithm
for the large-scale MDVSP was proposed [19] with
departure-duration constraints based on the time-space
network; the authors consider the practical factor that
crews usually redefine shifts in the depot. There are
different time constraints considered. For example, the
total time a vehicle can be away from its depot is limited
to a pre-specified time, taking into account real world
operational constraints such as fuel consumption [9].
By including time windows in a VSP, it is allowed to
shift scheduled trips within defined interval, in order to
introduce flexibility in the departure times of trips [20].
Capacity constraints of depots are also considered [17].

Some papers about VSP include implementation of
models and algorithms to real different VSP problems.
A new approach for vehicle and crew scheduling, where
the change of a vehicle of a driver is forbidden, is
based on a maximum covering problem formulation and
implemented with data of companies of Fortaleza, in Brazil
[21]. In [11] is proposed a time window implementation
to the multi-depot vehicle scheduling problem using
a time-space network, testing the model on real-life
timetables of some public transport companies of
Germany. Based on this approach, a methodology was
developed to implement time windows to the vehicle-type
scheduling problem, and considering heterogeneous fleet
[20]; the methodology was validated using real instances
from a Brazilian city and large random instances. A
comparative analysis of three vehicle scheduling models is
made [10], including a multiple depot and two single depot
vehicle scheduling models. This analysis is performed
by solving the blocking problem for the operation of the
Mass Transit Administration in Baltimore city, Maryland.
Results obtained from the three models are compared
with each other and the original schedule. The authors
conclude that, under certain conditions, a single depot
vehicle scheduling model performs better. Two types of
disruptions arising in the MDVSP were considered: the
delays and the extra trips [22]; these disruptions may or
may not occur during operations, and they are indirectly
incorporated into the planned schedule by anticipating
their likely occurrence times. The objective functions
more frequently used in a MDVSP are to minimize the total
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number of vehicles used, the total deadhead time (cost)
of the operation, the operation time of the vehicles and a
combination of some previous objectives. A simple model
is proposed to assign 32 services to two operators of
mass transit system (Megabús) in Pereira city, Colombia,
through Goal Programming [23]; the objectives are: to
minimize deadline kilometers, vehicle operating times,
and discontinuous service. In the above paper, percentage
of commercial kilometers assigned to operators is
mentioned to be taken into account in constraints, but they
do not appear explicitly in the proposed model, neither the
other constraints. Simpler models of this case study, with
capacity restrictions of depots discriminated by operator
and minimizing deadline kilometers or net income, were
presented in [24].

3. Proposed mathematical
formulation

The following considerations are made:

As a result of a previous study of the data, regarding
possible tasks to perform in blocks and their start and end
times, two well-defined clusters of BT were obtained. The
first (respectively second) cluster includes BT which can
be assigned only as the first (respectively second) task in
a block.

The previous pre-processing of tasks determines the
number of total buses available in the model, so the total
number of buses required is not minimized.

Each depot is represented by three dummy depots:
an initial depot, a medium depot and a final depot. Then,
each bus assigned to a block is associated with an
initial depot, a medium depot and a final depot. These
depotsmay be different or not, considering the real depots.

A weighted sum approach for this multiobjective problem
is used. The first two objectives minimize the maximum
deviation of kilometers (commercial and deadhead)
assigned to the operators in relation to the ideal they
should have according to the percentage of their buses in
the fleet. The range of maximum deviation in commercial
kilometers and deadhead kilometers are generally very
different. These objectives produce min-max functions
which need to be linearized. The third objective minimizes
the total deadhead distance of the operation.

3.1 Notation and Modelling

i: Tasks

k: Buses

j, r: Locations of depots, start points or final points of
tasks

c: Operators

Sets

TP1: BT in the first cluster

TP2: BT in the second cluster

TP= TP1 ∪ TP2

CT : Complete tasks

PI: Initial Depots

PM : Middle Depots

PF : Final Depots

L: Locations of (TP ∪ PM)

B: Available buses

C: Operators

B(c) ⊆ B: Buses of operator ∈ C.

Parameters:

PPc: Share percentage of the operator c according to
their available buses (|B (c) |/|B|), 0 < PPc <
1

KCOi: Commercial kilometers of task i.

KV Ari: Deadhead kilometers between a depot r and the
initial or end station of a task i.

BEk: 1 if the bus k is a special bus, 0 otherwise.

TEi: 1 if the task i requires a special bus, 0 otherwise.

ESPc: Number of special buses of operator c.

CAPr: capacity of depot r (number of buses).

PBc: Minimum number of buses of operator c that
start or end tasks in its depot.

Ti: Departure time of task i.

tjr: Average travel time from location j to r.

M : Upper bound, to condition values of variables in
some constraints.

Decision variables:

x1irk: 1 if the task i ∈ TP1 is assigned to bus k ∈ B
starting at depot r ∈ PI or ending at depot r ∈
PM ∪ PF , 0 otherwise.
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x2irk: 1 if the task i ∈ TP2 is assigned to bus k ∈ B
starting at depot r ∈ PI∪PM or ending at depot
r ∈ PF , 0 otherwise.

xcirk: 1 if i ∈ CT is assigned to bus k ∈ B, starting
at depot r ∈ PI , or ending at depot r ∈ PF , 0
otherwise

srk: Time in which bus k ∈ B arrives to r ∈ L. (L is
defined as Locations of (TP ∪ PM )).

KCc: Commercial kilometers assigned to c ∈ C

KVc: Deadhead kilometers assigned to c ∈ C

desvkmc, desvkmv: Maximum deviation of commercial
kilometers (desvkmc) and deadhead kilometers
(desvkmv) which were assigned to operators in
relation to the ideal quantity they should have.

α1, α2, α3: Weighting factors

3.2 Mathematical programming
formulation

The mathematical model proposed is given in (1)-(33)

min z = α1desvkmc+ α2desvkmv + α3

∑
c∈C

KVc (1)

subject to:∑
k∈B

∑
r∈PI

x1irk = 1 ∀i ∈ TP1 (2)

∑
k∈B

∑
r∈PM ∪PF

x1irk = 1 ∀i ∈ TP1 (3)

∑
k∈B

∑
r∈PF

x2irk = 1 ∀i ∈ TP2 (4)

∑
k∈B

∑
r∈PI∪PM

x2irk = 1 ∀i ∈ TP2 (5)

∑
i∈TP1

∑
r∈PI

x1irk =
∑

i∈TP1

∑
r∈PM∪PF

x1irk ∀k ∈ B

(6)

∑
i∈TP2

∑
r∈PI∪PM

x2irk =
∑

i∈TP2

∑
r∈PF

x2irk ∀k ∈ B (7)

∑
i∈TP1

x1irk =
∑

i∈TP2

x2irk ∀r ∈ PM, ∀k ∈ B (8)

∑
i∈CT

∑
r∈PI

xcirk =
∑
i∈CT

∑
r∈PF

xcirk ∀k ∈ B (9)

∑
i∈TP1

∑
r∈PI

x1irk +
∑

i∈TP2

∑
r∈PI

x2irk

+
∑
i∈CT

∑
r∈PI

xcirk ≤ 1 ∀k ∈ B
(10)

tri∗ x1irk ≤ sik ∀i ∈ TP1,∀k ∈ B, ∀r ∈ PI (11)

sik ≤ Ti ∀i ∈ TP1,∀k ∈ B (12)

sik + Ti + tir −M∗ (1− x1irk) ∗ ≤ srk

∀i ∈ TP1, ∀k ∈ B, ∀r ∈ PM
(13)

srk + tri −M∗ (1− x2irk) ∗ ≤ sik

∀i ∈ TP2,∀k ∈ B, ∀r ∈ PM
(14)

∑
k∈B

∑
r∈PI

xcirk = 1 ∀i ∈ CT (15)

∑
r∈PI

xcirk =
∑

r∈PF

xcirk ∀i ∈ CT, ∀k ∈ B (16)

∑
k∈B(c)


∑

i∈TP1

∑
j∈PI

KCOi ∗ x1ijk

+
∑

i∈TP2

∑
j∈PM

KCOi ∗ x2ijk

+

∑
k∈B(c)

∑
r∈PI

∑
i∈CT

KCOi ∗ xcijk = KCc ∀c ∈ C

(17)

∑
k∈B(c)





∑
r∈PI

∑
i∈TP1

KV Ari ∗ x1irk

+
∑

r∈PM

∑
i∈TP1

KV Ari ∗ x1irk

+
∑

r∈PM

∑
i∈TP2

KV Ari ∗ x2irk

+
∑

r∈PF

∑
i∈TP2

KV Ari ∗ x2irk




+

∑
k∈B(c)

 ∑
r∈PI

∑
i∈CT

KV Ari ∗ xcirk

+
∑

r∈PF

∑
i∈CT

KV Ari ∗ xcirk


= KVc ∀c ∈ C

(18)

∑
i∈TP1

∑
k∈B

x1irk +
∑

i∈TP2

∑
k∈B

x2irk

+
∑
i∈CT

∑
k∈B

xcirk ≤ CAPr ∀r ∈ PI ∪ PF
(19)

∑
i∈TP1

∑
k∈B(r)

x1irk +
∑

i∈TP2

∑
k∈B(r)

x2irk

+
∑
i∈CT

∑
k∈B(r)

xcirk ≥ PBr ∀r ∈ PI ∪ PF
(20)
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∑
r∈PI

∑
k∈B(c)

 ∑
iTP1

TEi∗x1irk +
∑

iTP2

TEi∗x2irk
+

∑
iCT

TEi∗xcirk


≤ ESPc ∀c ∈ C

(21)

∑
j∈PI

[TEi∗x1ijk] ≤ BEk ∀i ∈ TP1, ∀k ∈ B (22)

∑
j∈PI

[TEi∗x2ijk] ≤ BEk ∀i ∈ TP2, ∀k ∈ B (23)

∑
j∈PI

[TEi∗xcijk] ≤ BEk ∀i ∈ CT, ∀k ∈ B (24)

KCc − PPc∗
∑
g∈C

KCg ≤ desvkmc ∀c ∈ C (25)

PPc∗
∑
g∈C

KCg −KCc ≤ desvkmc ∀c ∈ C (26)

KVc − PPc∗
∑
g∈C

KVg ≤ desvkmv ∀c ∈ C (27)

PPc∗
∑
g∈C

KVg −KVc ≤ desvkmv ∀c ∈ C (28)

x1irk ∈ {0, 1} ∀i ∈ TP1, ∀r ∈ PI ∪PM, ∀k ∈ B (29)

x2irk ∈ {0, 1} ∀i ∈ TP2, ∀r ∈ PM ∪ PF, ∀k ∈ B
(30)

xirk ∈ {0, 1} ∀i ∈ CT, ∀r ∈ PI ∪ PF, ∀k ∈ B (31)

srk ∈ Z+ ∀r ∈ L,∀k ∈ B (32)

KCc,KVc ≥ 0,∀c ∈ C; desvkmc, desvkmv ≥ 0
(33)

In (1),α1, α2 andα3 include the weight given by the DM and
the normalization schema in the weighted sum approach
adopted.

Constraints (2) to (5) ensure that to each task belonging
to a block, a bus is assigned, and starts and ends exactly

in a depot. Constraints (6) ensure that each bus assigned
to a task on TP1 starts in a PI depot and ends in a PI or
PM depot. Similarly, in constraints (7), each bus assigned
to a task in TP2 starts in a PI or PM depot and ends in a
PF depot. Constraints (8) ensure that any bus that arrives
at a PM depot when finishes a task of type TP1, leaves
this depot to start a task of type TP2. Constraints (9)
ensure that each bus assigned to a task in CT begins in
a depot (PI) and finishes in a depot (PF). In (10) each bus
at most does a task of type TP1, TP2 or CT starting in a PI
depot. Constraints (11) to (14) guarantee that two tasks
assigned to the same block are compatible. Constraints
(15) guarantee that each task in CT is done by a bus that
starts in a PI depot. In constraints (16), it is ensured that
each task in CT that starts in a PI depot, ends in a PF
depot. In constraints (17) and (18) variables KCc and KVc

represent the total commercial and deadhead kilometers,
respectively, assigned to each operator c. They are really
redundant, but make the model easier to understand.
Constraints (19) ensure capacity constraints for each initial
and final depot, while constraints (20) ensure minimum
number of buses of each operator starting or ending
tasks in its own depot. As each depot is administered by
an operator, in constraints (20) B(r) means the set of
buses in B(c), where c is the operator who administers
the depot r. Constraints (21) ensure that no more special
buses of each operator are used to do tasks requiring this
type of buses, than the maximum available. Constraints
(22) to (24) guarantee that a task that requires a special
bus, is performed by a bus with these characteristics. (34)
and (35) are the first two terms of the objective function,
according to the operators’ objectives:

min

max
c∈C


∣∣∣∣∣∣KCc − PPc ∗

∑
g∈C

KCg

∣∣∣∣∣∣

 (34)

min

max
c∈C


∣∣∣∣∣∣KVc − PPc ∗

∑
g∈C

KVg

∣∣∣∣∣∣

 (35)

In order to obtain a linear model, the objectives given
in (34) and (35) are obtained introducing the variables
desvkmc, desvkmv and constraints (25) to (28). Constraints
(29) to (33) are domain constraints. In a weighted sum
approach, the weighting factors are generally composed by
two factors: the weight given by the Decision Makers (DM)
and a normalization factor. There are different possible
normalization schemas, some of them are ineffective and
not practical [25]. In this paper, the normalization and the
weighting in the weighted sum approach are justified and
contextualized to the case study presented, in Section 4.

In the literature reviewed, some requirements and
objectives derived from the MIO operation in relation
with buses, operators and depots are not considered: (a)
special buses and special tasks as referred to in Section
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Figure 4 Minimum percentage of parking spaces for buses of
each operator in its own depot

1, (b) capacity restrictions of depots discriminated by
operator and (c) the total assignment of buses to tasks per
operator must be near to an ideal amount that depends
on the operator’s share. The last two mentioned aspects
not found in the literature have an important impact both
on the values of the objective functions in the optimal
solutions and in the execution times. It is shown in Section
4.

4. Validation of the proposed model

All tests were performed on an Intel Core i5-3210M
2.50GHz and 4 GB RAM. GUROBI was used for computing
the solutions. Nine representative instances were
generated from real data obtained from the operation of
MIO System, and derived for the three types of buses, and
three types of days: Working Day, any day between Monday
and Friday (WD); Saturday (Sa) and Sunday (Su). Table 1
identifies each instance with the type of bus and type of
day. In these types of days, the number of tasks and buses
varies, in correspondence with the existent demand.

The operation of the system is considered in a
representative month of the year and the data for
each instance include: Minimum percentage of parking
spaces for buses of each operator in its own depot (Figure
4).

Buses per operator (Figure 5 Left, in percentage), also
divided into special buses or not. Figure 5 (Right) shows
total number of buses and special buses.

Complete tasks and tasks in blocks (Figure 6). Tasks
are also divided into special and not special tasks.

The normalization approach used is a variation of the
method described in [25] using the ideal solution (zideal)
and Nadir (znadir). Given the above values, each function
f(x) is represented on a scale between zero and one,

using the function (36)

f ′ (x) =
(
f (x)− znadir

)
/
(
zideal − znadir

)
(36)

In our model the znadir value for each function fi is
the objective value offered by the current solution. The
weighting factors in the objective function, taking into
account the system managers, are: w1 = w2 = 1,
w3 = 0.5, because the profit per commercial kilometers
made by each operator is more important than the cost of
deadhead kilometers assigned to each one.

In all instances, the obtained solutions outperform
the current solutions, taking into account the three
objective functions. Figure 7 shows the percentage
improvement of the solutions obtained with the application
of the model.

The solutions are influenced by several factors: number
of tasks to be assigned to buses, percentage of tasks in
blocks in relation to complete tasks, number of tasks that
must be taken into account for special buses, percentage
of buses per operator and the minimum percentage
of parking spaces for his buses in its own depot. The
largest, and more difficult instance to solve, corresponds
to working day and standard buses. The execution time
(in minutes) ranged from 2 to 455. The execution times (in
minutes) range from 2 to 455 and they are shown in Table
??. Its growth is not linear in function of the quantities of
the different types of data (buses, tasks, etc.). Instance 8
was the easiest to solve. This instance does not consider
special tasks, the proportion of BT tasks is less than CT
tasks and it has the lowest total number of tasks to assign.
Conversely, instance 3 was the most difficult, where the
quantity of all types of data is the highest.

Two main aspects that make the solution of the problem
most complex are: to consider the imbalance in the
share of deadhead and commercial kilometers traveled by
each one of the system operators and the constraint of a
minimum number of buses of each operator starting or
ending tasks in its own depot. To reflect the influence they
have on the solution of the problem, and that differentiates
this case study from other MDVSP seen in the literature,
one of the instances was selected, considering the
following objective functions:

O.F. 1: to minimize number of buses

O.F. 2: to minimize KV (total deadhead kilometers)

O.F. 3: to minimize desvkmc

O.F. 4: to minimize desvkmv

O.F. 5: to minimize the number of buses and deadhead
kilometers (with the same normalization
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Table 1 Characteristics of used instances and running times (minutes)

Instance 1 2 3 4 5 6 7 8 9
Bus type Comp Art Sta Comp Art Sta Comp Art Sta
Day type WD WD WD Sa Sa Sa Su Su Su
Time 74 85 455 54 48 223 30 2 139

Figure 5 For instance, percentage of buses per operator (Left), Total and Special buses (Right)

Figure 6 Total tasks, complete tasks and tasks in blocks of each
instance

Figure 7 For each instance, percentage improvement for the
three objective functions

approach proposed and equal weight for both
functions)

O.F. 6: to minimize α1 desvkmc + α2KV

The first objective function is added since it is a usual
objective for problems of type MDVSP. In our model, it is
equivalent to maximizing the total number of blocks made
where each block consists of two tasks, and the total of
blocks is equal to the sum of the variables x1irk, for i in
TP1, r in PM , k in B. With each of the functions, two
runs were made, one considering the restrictions (20) and
the other eliminating them.

The obtained results are reflected in Table 2. The
time is given in minutes. The number of buses used is
not reflected in the table; with the objective functions 1
and 5 are equal and 5% less than with the other functions.
As seen in Table 2, all results are deteriorated when the
restrictions (20) are imposed. The execution times are
significantly increased when the function to optimize
consider the variables desvkmv and/or desvkmc. These
conclusions are valid in the runs made with all the
instances.

The results show the convenience of the development
of heuristics in the solution of large problems when
considering the first two objective functions of our model
and the constraints (20).

5. Extensions to the proposed model

Some variations were developed to the proposed model.
One of themwas the addition of a new constraint, desirable
(not mandatory) for the company: each route should be
operated by the same operator. The model was modified
in the following form:
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Table 2 Optimal values for an instance, with different functions, with and without restriction (20)

Objective Without considering restrictions (20) Considering restrictions (20)
functions KMV desvkmc desvkmv Time KMV desvkmc desvkmv Time

1 6474.5 602.2 186.2 6 6778.7 1169.0 466.3 7
2 3669.9 412.5 178.4 4 4006.8 1944.1 187.1 7
3 6796.4 12.0 100.2 54 7515.3 18.9 124.9 232
4 3708.8 561.8 7.5 48 3975.2 596.3 9.3 207
5 3705.8 1528.4 187.9 6 4011.8 2114.7 190.3 7
6 3709.8 15.4 104.4 35 3790.3 17.1 124.2 139

New parameters:

M1: Upper bound (may be number total of tasks).

New sets:

R: Routes

LTP1(l) Tasks in TP1 of route l ∈ R,LTP1 (l) ⊂ TP1

LTP2(l) Tasks in TP2 of route l ∈ R,LTP2 (l) ⊂ TP2

LTC(l) Tasks in TC of route l ∈ R,LTC (l) ⊂ TC

New variables:

ulc: Number of tasks of route l assigned to some bus
of operator c ∈ C.

ylc: 1 if at least a task of route l is assigned to some
bus of operator c ∈ C.

New constraints (37)-(42):∑
k∈B(c)

∑
i∈LTP1(l)

∑
j∈PI

x1ijk

+
∑

i∈LTP2(l)

∑
j∈PM

x2ijk

+
∑

i∈LTC(l)

∑
j∈PI

xcijk

= ulc∀cC, ∀lR

(37)

∑
c∈C

ylc = 1 ∀l ∈ R (38)

ulc ≤ M1ylc ∀l ∈ R, ∀c ∈ C (39)

ulc ≥ ylc ∀l ∈ R, ∀c ∈ C (40)

ulc ∈ Z+ ∀l ∈ R, ∀c ∈ C (41)

ylc ∈ {0, 1} ∀l ∈ R, ∀c ∈ C (42)

Experimental results, with this new situation and the same
instances described, show that there are not feasible
solutions, due to the problem data. This result justifies
incorporating this type of constraints as soft-constraints.

6. Conclusions and continuity
proposals of this work

In this study, a new mathematical model is proposed to
solve a multi-vehicle scheduling problem, derived from
the operation of the mass transport system in the city
of Cali, Colombia, which presents some characteristics
not contemplated in the MDVSP type problems studied in
literature and that make their solution more complex. The
model was successfully solved, with nine representative
instances generated with real data obtained from the
operation of the system. However, only reasonable
calculation times were obtained for the smallest instances
in terms of all their parameters (tasks, buses, special
tasks, tasks in blocks).

For future work, we identify the following four research
lines: (a) proposing other methods to solve this
multiobjective optimization problem, without considering
the weighted sum approach; (b) adding other soft
constraints suggested by operators, for example, to
maximize the number of routes that a single operator
must operate; (c) considering blocks with more than
two tasks, and (d) proposing some heuristics in order to
reduce the computational times, because the size of the
problems may be increased in the near future and also it
could be necessary to solve the problems with very short
computational times; in certain situations, very efficient
and fast heuristics will be necessary, as when a planned
solution should be reoptimized in an operational context.
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