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ABSTRACT: Zymomonas mobilis continuous fermentation bioprocess has the ability of
producing energy from glucose catabolism, which promises a relevant application for
biomass conversion into fuel, and therefore it represents an industrial scale production
alternative for our country. However, it has demonstrated high complexity regarding
the non-linear and non-Gaussian characteristics of its dynamics. Several works have
been dealing not only with the bioprocess modeling but also with controller design and
implementation. These works have developed state and parameter estimation strategies
based on particle filters and Gaussian methods, as well as closing the loop with nonlinear
controllers. Nevertheless, there is a need to improve previous parameter estimation results,
enabling future design of control strategies for industrial applications. We present a set
of heuristics algorithms for the non-linear system parameter estimation evaluated with
data from 150 hours of fermentation. Some algorithms such as local search methods,
simulated annealing, population heuristics, differential evolution, bacterial chemotaxis
and other techniques were tested for the bioprocess. Simulations of the microorganism
model and experimental verifications showed the good performance in parameter accuracy
and convergence speed of some of the heuristic methods proposed here. Moreover, the
reliability and acceptable computational costs of thesemethods demonstrate that they could
also be applied as parameter estimators for other bioprocesses of a similar complexity.

RESUMEN: El bioproceso de fermentación continua Zymomonas mobilis tiene la capacidad
de producir energía a partir del catabolismo de la glucosa, lo que promete una aplicación
relevante para la conversión de biomasa en combustible, y por ende representa una
alternativa de producción a escala industrial para nuestro país. Sin embargo, éste ha
demostrado una alta complejidad debido a algunas de las propiedades no lineales y no
gaussianas de su dinámica. Varios trabajos se han enfrentado no solo con modelar el
bioproceso, sino también con el diseño e implementación de controladores. Estos trabajos
han desarrollado estrategias de estimación de estados y parámetros basadas en filtros
de partículas y métodos gaussianos, así como cerrando el ciclo con controladores no
lineales. Aun así, es necesariomejorar los resultados previos de estimación de parámetros,
permitiendo el futuro diseño de estrategias de control para aplicaciones industriales.
Se presenta un conjunto de algoritmos heurísticos para la estimación de parámetros
de sistemas no lineales, evaluados con datos de 150 horas de fermentación. Algunos
algoritmos tales como métodos de búsqueda local, recocido simulado, heurísticos de
población, evolución diferencial, quimiotactismo bacteriano y otros más fueron probados
para el bioproceso. Las simulaciones del modelo del microorganismo y las verificaciones
experimentales mostraron el buen desempeño en la precisión de los parámetros y la
velocidad de convergencia de algunos de losmétodos heurísticos aquí propuestos. Además,
la precisión y los aceptables costos computacionales de estos métodos demuestran que
también podrían aplicarse como estimadores de parámetros para otros bioprocesos de una
complejidad similar.

1. Introduction

In system dynamics theory, it is common to study different
types of systems representing a real model, such as
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biological, financial, or human behavior. Thanks to the
different scientific sources of knowledge, it is possible to
have a good understanding of the physical properties of
the systems and their representation using differential
equations.

However, complete information about the system is not
always available. Typically, complex models (non-linear
models) have unknown dynamical parameters and since
they cannot be directly measured, they must be estimated.
Parameter estimation has been a challenging process for
different models, due to the following reasons: the large
amount of parameters, the technique used for optimizing
the objective function, and the selection of an accurate
estimation methodology. Some research projects have
addressed the estimation problem using methods that
are theoretically not exact but give good approximations.
These methods are the heuristic algorithms. Authors
in the following works [1–4] used heuristics techniques
for parameter estimation in dynamic systems when they
were facing a non-convex objective function, or a very
costly computational solution, due to the large amount of
variables.

All the theory is supported by a careful study of the linear
system representation. Nevertheless, the importance
of tackling models with non-linear representations is
well-known. Different phenomena in biology, engineering,
etc. are represented with one of the multiple general
linear models that have been proposed in literature. As
far as the biotechnological branch is concerned, there
are studies of different complex models represented by a
dynamic system such as the work by [5].

In the current work, we focus on the complex model
of the Zymomonas mobilis fermentation to produce ethanol
[6, 7] with the objective of estimating its set of parameters.

The chosen use-case is a topic with a special role
nowadays, since world energy consumption has been
increasing during recent years due to mass production
generated by the growing technologies in production
processes and the consumption demands of a growing
human population. The limited reserves of fossil fuels
have increased awareness about the significance of
finding substitutes for the traditional non-renewable
energy source. Therefore, biotechnology has made
significant advances aimed to fermentation technology
of ethanol. An advantageous ethanol producer is the
mentioned Zymomonas mobilis, since its yields are the
highest reported in literature. This bacterium has an
ethanol yield close to the stoichionetrical value of 0.51
g ethanol/g glucose [8]. Another benefit of using it
for ethanol production is its high tolerance to elevated
temperatures enabling to reduce costs of cooling during

fermentation and to increase productivity [9].

Unfortunately, Zymomonas mobilis exhibits a non-linear
and oscillatory behavior, besides, some states and
parameters of the fermentation process are not possible to
measure. The unknown states are biomass concentration
and the inhibition effect. It has been demonstrated that
the inhibition effect against substrate is more due to
ethanol concentration than to substrate concentration,
thus, productivity of Zymomonas mobilis fermentation
yields depends on the feeding strategy [9]. Therefore,
in order to measure the rate of ethanol production, it is
crucial to measure intermediate variables to describe the
inhibition effect as well as other important parameters.
Hence, in this work we are interested in demonstrating
that, applying and improving different heuristic methods
found in previous works, it is possible to estimate the set
of parameters for the fermentation process as well as for
other complex bioprocesses with a good performance.
This would allow a better representation of the models
of different bioprocesses which would contribute to the
industrial area. So far, one of the best heuristic algorithms
for this problem is the Particle Swarm as shown by [2].

In order to hit the target in this work, we may use
the result of previous research projects to create an initial
solution for all the algorithms. Previous works which have
worked with the full non linear systems [5–7, 10] were
necessary for this aim. Furthermore, we implemented
each algorithm in the Python computing language, and
then we carried out a performance analysis by matching
both the computational time and the value of the objective
function. This work is organized as follows: the following
section will describe briefly the nonlinear nature of the
system under study and some elements that we are
going to use. Further, section 3 summarizes the heuristic
methods to be implemented. Section 4 is dedicated to
analyze the results of the previous section and finally,
section 5 contains our concluding remarks.

2. Non-Linear System Description

The non-linear space system is presented in great detail
in [5, 6, 10].

When simulating the non-linear system, it is possible
to observe the open loop behavior in each state. The initial
conditions considered in this model for our research are
the following:

• Biomass: 1.5 g/L (first state) (X)

• Substrate: 57 g/L (second state) (S)

• Product: 57 g/L (third state) (P)

• Ethanol: 0 g/L (fourth state) (W)
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• Inhibition effect: 0 g/L (fifth state) (Z)

It is known in the open loop behavior of Zymmomonas
mobilis model that the biomass, substrate and product
states keep the oscillatory behavior during the entire
experiment. Real data also exhibits the same behavior
based on the model presented by [2, 6].

In equation 1, the state space representation of the
Zymmomonas mobilis system is presented:
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where D = Ds +Dr, Dr= 0 and R is the biomass recycle
rate.

The real experimental results of the system of Zymomonas
mobilis that we study are analyzed in the work of [6, 9, 10].

Figure 1 presents the real values for the 5 states (X,
S, P, W, Z) during a 110 hour simulation of the Zymomonas
mobilis system:

As we can see from figure 1, the two observed states (S
and P) have very similar scales of magnitude and have
a related behavior. We consider these states to be the
most important states and therefore we focus on analyzing
their behavior in this figure. During the simulation, they
oscillate through certain periods of time and the relation
between them seems to be inverse: when one of them
increases the other seems to decrease and vice-versa.
The other states present very small scales of magnitude
when compared to S and P , yet we can still see an
oscillatory behavior in stateX from this plot. The behavior
of these real values of the states is shown better in the

Figure 1 Real experimental results

plots presented in the experimental results section.

For each of the parameters that we needed to estimate,
we defined arbitrarily a minimum and maximum possible
values to limit the solution space, based on the scales
of their values in the real model (it is clear that the real
value of each parameter is therefore contained within
this interval, that is between the minimum and maximum
possible). It is important to mention that all of these
parameters are continuous. Predefining these searching
ranges for the parameters allows a fair comparison
between the results obtained by the different heuristic
methods, as seen in the literature [11].

The initial solution that we would use for many of the
heuristic methods consisted in selecting the middle point
of this interval (which is the same as the median between
its maximum and minimum possible value). Table 1
presents the search ranges for each of the parameters of
the model, along with the real value.

3. Heuristic Methods

As it was mentioned before, many heuristic techniques
were implemented in order to determine which of them
provide the best result for the parameter estimation in
this model. The following section describes each of the
heuristic methods that were implemented.

3.1 Iterated Local Search

A local search technique was proposed for this problem.
The local search for a particular set of parameters
consists of making small variations in just one of these
parameters. These variations are either small increments
or decrements in its value, while keeping the rest of the
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Table 1 Searching ranges for each of the parameters

Range of search

Min Max Real
Pob 10 100 50
Pma 100 500 217
Pmb 50 200 108
Ks 0 3 0.5
Ki 30 300 200
Si 10 100 80

Pme 10 200 127
Kmp 0 2 0.5
Sin 10 400 200
Ds 0 0.3 0.067
α 0.5 25 10
β 0 0.1 0.0430457
δ 0.0001 0.01 0.001
λ 1 10 2.41458
A 0.2 3 1
B 5 50 17.262

Qpmax 1 10 3.82888
Yps 0.1 1 0.514353

parameters constant. Then, we continue increasing or
decreasing the value of this parameter in small rates
until the solution does not improve anymore. Once this
is achieved, we continue from the best found solution by
further varying a second parameter, while keeping the
first one and the rest of the parameters now constant. So
we again change up and down the value of this second
parameter by small steps, until the found solution does
not improve any more in terms of the objective function.
We repeat this process for all of the remained parameters,
and even cycling it, by starting again varying the first
parameter but in a completely different (and better)
solution, until we find that the solution does not improve
anymore no matter which parameter is varied (local
optimum).

The local search method was used in a more efficient and
general algorithm known as iterated local search [12]. In
this method, an initial solution is chosen and local search
is used to find the local optimum, but when this happens,
the local optimum is perturbed to find a new solution. The
perturbation in this case consists of varying each of the
parameters of the local optimum in a certain percentage
(either increasing or decreasing it; the percentage of
variation is different for each of the parameters of the
solution). After this, a completely new solution is obtained,
and when we apply the local search technique to this
solution it would probably find a completely different local
optimum, whichmay be even better than the one previously
found. We repeat this same process of perturbing again the
best found solution and then applying local search many

times. This process allows us to explore deeply the solution
space to obtain even better solutions than with a simple
local search method. Figure 2 presents the structure of
the Iterated Local Search algorithm.

Figure 2 Iterated local search (minimization)

3.2 Genetic Algorithm

A genetic algorithm [13] is an heuristic method that
belongs to those called population heuristics. In this kind
of techniques, a population of solutions is used to produce
and obtain new solutions that may provide a better
objective function value for the problem. In a genetic
algorithm, first an initial set of solutions is created, and
this will represent the first generation of the algorithm.
In this case, that first set of solutions is constructed in a
completely random way. The next step is evaluating the
objective function for each of these solutions (the best
one of them is stored), and then using a selection criteria
to choose which are the solutions (”parents”) that will be
used to create new solutions (”offspring”). Usually, good
solutions are selected more frequently than bad solutions.

For this algorithm, the selection criteria is the roulette, in
which a probability of being chosen is assigned to each
solution, where better solutions have higher probabilities
of being selected. The next step is using the parents
population to create new solutions: this is done by using a
crossover method, which combines characteristics of the
parent solutions to produce new solutions. For this case,
an uniformcrossoverwas selected, where the value of each
parameter of the solution is given randomly by one of two
parents used with a 50/50 chance. After all the offspring
has been generated, some of them (in this case 5%) are
mutated, to be able to explore even more the solution
space. The objective function value is calculated for all of
them, and the solution with best objective function is saved
if it is better than the one found before. The population
of offspring then becomes the parent population for the
next generation, and the process is repeated for many
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generations, which allows a deep exploration of the space
of solutions to search for a very good solution in terms
of the objective function. This algorithm at the end of its
generations includes a local search method to improve the
objective function in a local area. Figure 3 presents the
structure of the Genetic algorithm.

Figure 3 Genetic Algorithm (minimization)

Figure 4 VND (minimization)

3.3 Variable Neighborhood Descent

The variable neighborhood descent algorithm [14] is
found on the set of local search algorithms: it starts
with an initial solution and creates a neighborhood for
it. Then, among all possible solutions contained in the
neighborhood, it finds the first solution that has a better
objective function value than the initial one, and this one
is saved as the best solution. Then, for the new current
best solution, a new neighborhood is generated and the
previous process is followed iteratively until the stop
criteria is reached.

This method, as well as the other methods based on local
search, has a good performance when trying to find an
optimal solution for a problem, since its convergence time
is not too high. Furthermore, depending on the initial

solution that is given to this algorithm, it is possible to
reach different local optima in which the solution would no
longer improve anymore. Moreover, this method is easy to
implement because of its structure. Figure 4 presents the
structure of the VariableNeighborhoodDescent Algorithm.

3.4 Random Search

Random search algorithms have proved to be efficient for
parameter estimation problems in the literature [15]. This
version of the random search algorithm is not as random
as the name implies: the algorithm does a kind of local
search but with a random factor. It starts from an initial
solution and within each iteration it modifies only one of
the parameters of the solution. If this alteration improves
the objective function, then the best solution is updated.
Then it goes further by modifying the next component of
the solution in the next iteration, and it repeats the process
for all the components of the solution.

The random side of this algorithm is related to the solution
modification: when the parameter of the solution is
changed, it will take a random value between the search
range of values for that component or parameter. Figure 5
presents the structure of the random search algorithm.

Figure 5 Random Search (minimization)

3.5 Simulated Annealing

The simulated annealing algorithm was used the first time
on combinatorial optimization by [16]. This algorithm is
one of the first methods with a probabilistic acceptance
criteria: a solution is replaced with an specific probability.
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Some of the parameters of this technique are the value of
temperature (T), the ratio the temperature decreases (r),
final temperature (Tf) and the number of solutions to look
for on the neighborhood. In the current work, we proposed
as empirical values T = 100, Tf = 0.1, L = 200,r = 0.7.

The advantage of this algorithm, is that it uses the
techniques of a local search method (trying to improve its
solution in each iteration looking for a feasible solution in
a neighborhood) but instead of analyzing the performance
of each solution, it calculates the likelihood of acceptance
of each solution. This criterion does not allow the method
to consider bad solutions in its search range.

Furthermore, after each iteration the acceptance criterion
becomes more exigent when calculating the likelihood to
accept one solution that can be considered as a good
solution. Figure 6 presents the structure of the Simulated
Annealing algorithm.

Figure 6 Simulated Annealing (minimization)

3.6 Differential Evolution

The differential evolution version that has been
implemented was taken from [17]. According to this
method we must consider the following parameters:
F =mutation ratio, F ∈ (0, 2), Cr =crossover ratio,
Cr ∈ (0, 1), kmax =number of search iterations or

maximum execution time.

In this algorithm, the first step is to initialize the population
S: a random initial population is generated, conformed by
p = 40 individuals. Then, in the second step, it evaluates
the fitness function or cost function for all the individuals
in the population in order to find the best solution and save
it as sopt, it also saves its fitness value as bestf .

In the third step, an individual test Xd is chosen and
other three individuals are randomly selected from the
population: (X1,X2 and X3), in such a way that they
are different among them and also different from the
individual Xd. In the next step, a mutation is calculated
for the individuals already selected: Vd=X1+F*(X2 −X3).
After this, it comes the crossover operation between Xd

and Vd in order to obtain Ud.

Finally, the algorithm evaluates the fitness function or cost
function again, this time for Ud (the resulting individual
from mutation and crossover operation), and it compares
its cost function value with sopt fitness value. If Ud fitness
value is better than the one of sopt, then sopt = Ud is made.
However, if the cost function does not improve, the best
known solution sopt remains the same. A new individual
testXd is chosen and the process is then repeated through
many iterations until the maximum number of search
iterations of kmax is reached.

If the reader is interested in understanding the exact
process and formulas used to perform the mutation and
crossover operations, he can use as a reference the work
presented in [17]. Figure 7 presents the structure of the
differential evolution algorithm.

Figure 7 Differential Evolution (minimization)
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3.7 Bacterial Chemotaxis

The bacterial chemotaxis algorithm [18–20] makes a
random walk and moves towards the gradient of sugar
concentration. It also has aΣ parameter which weighs the
movement amplitude. This heuristic technique is applied
by executing the following steps:

1. Generate an initial solution as a vector of initial
parameters. (At the start, this initial solution is
labeled as the best found solution). The current best
objective function (the objective function of this initial
solution) is also calculated and stored.

2. Create a summation vector which will then be
added to the current best solution (initially this one
is the initial solution). The summation vector is
created by considering the maximum and minimum
values for each parameter, and it will represent a
positive or negative value for each of the parameters
that will be added to the best known solution (this
summation value is calculated randomly for each of
the parameters). This summation vector is the one
that allows us to produce a random walk when adding
it to the best found solution and therefore explores
the solution space.

The summation vector is generated with the following
formula: for each parameter i of the best known
solution, we generate a random number from a
certain probability distribution (this is one of the
execution parameters of the algorithm). This value
can be either positive or negative. Then, we multiply
this randomly generated number by the amplitude of
the interval of possible values for parameter i (the
amplitude is the difference between the maximum
and minimum values of i). Finally, we multiply the
obtained result by a factor Σ which determines how
big are the steps that we may use in each iteration
(the selection of the parameterΣ is also an execution
parameter).

Therefore, each value of the summation vector is
the result of multiplying a random number by the
amplitude of the interval of each parameter and then
multiplying this result by the Σ factor.

The next formula shows its estimation:

Si = r ∗ Ai ∗ Σ, where Si is the value for position in
i of the summation vector, r is a randomly generated
number,Ai stands for the amplitude of the parameter
that is estimated in the position i of the vector and Σ
is the multiplying factor.

For example: if we have a parameter i whose possible
values vary between 1 and 3 (that is, with an amplitude
of 2), and we use a uniform distribution between -0.1

and 0.1 and aΣ factor of 0.05, in order to calculate the
value of the summation vector for this parameter we
apply the formula as follows:

Si = Uniform(−0.1, 0.1) ∗ 2 ∗ 0.05
It is important to note that, in the calculation of the
summation vector for each parameter, the probability
distribution used and the Σ factor are the same, but
the randomly generated number and the amplitude of
the interval vary, thuswe obtain a different summation
value for each parameter.

3. A new solution is calculated by adding the parameters
of the best known solution and the parameters of
the current summation vector. This new solution is
called the testing solution. We compute the objective
function value for this testing solution.

4. If the value of the objective function for the testing
solution is better than the one of the best known
answer, we change the parameters of the best known
vector with the parameters from the testing solution.
Otherwise, we just discard the testing solution.

5. The iteration from steps 2 through 4 is performed
many times, thus creating each time new testing
solutions and comparing themagainst the best known
vector of parameters. This process is repeated for a
certain amount of time in order to explore the solution
space and evaluate many different solutions, allowing
us to obtain a very good answer with this method.

Figure 8 presents the structure of the Bacterial
Chemotaxis algorithm.

Figure 8 Bacterial Chemotaxis (minimization)

In this study, we consider three different versions of the
bacterial chemotaxis algorithm, in which we vary both the
distribution of the random factor and the value of the Σ
component. Table 2 shows the characteristics for each
version of the bacterial chemotaxis algorithm.
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Table 2 Characteristics of each version of the bacterial
chemotaxis algorithm

Random Factor Σ
Bacterial Chemotaxis 1 Normal(0,1) 0.03
Bacterial Chemotaxis 2 Normal(0,1) 0.1
Bacterial Chemotaxis 3 Uniform(-0.1,0.1) 0.7

4. Experiments Results and Analysis

In this section we present the performance and analysis
of the heuristics introduced previously. All the heuristics
were designed to optimize the value of a common
objective function, which measures the distance between
the estimated states and the real states, taken from
the work [5]. Therefore, the smaller the objective
function, the closer we are to estimating correctly the
system of Zymomonas mobilis. Hence, we evaluated the
performance of the algorithms in terms of the objective
function.

To test the performance of the heuristic methods, two
computers were used. For the 3 hours run, we used a
computer with Windows 10 64 bits, 8 GB RAM, Intel core
i5 processor and 2.2 GHz. For the 5 minutes run, we used
a computer with Windows 10 64 bits, 4 GB RAM, Intel core
i5 processor and 1.8 GHz.

4.1 Analysis of the results in terms of
objective function

The objective function selected was the mean squared
error (MSE). In tables 3 and 4, it can be seen the results
from each algorithm regarding the objective function.

Table 3 Objective function 5 minutes execution

Algorithm O.F
Initial Solution 7850.915461
Genetic Algorithm 1829.786183
Differential Evolution 665.4730094
Simulated Annealing 172.694345
Variable Neighborhood Descent 645.2517657
Iterated local Search 1041.545468
Random Search 160.7023981
Bacterial Chemotaxis 1 843.023117
Bacterial Chemotaxis 2 95.11375934
Bacterial Chemotaxis 3 105.2470943

4.2 Experimental Results From the Model for
Each Set of Estimated Parameters

Here, we present the results obtained by simulating
the model for a time of 110 hours with the parameters

Table 4 Objective function 3 hours execution

Algorithm O.F
Initial Solution 7850.915461
Genetic Algorithm 1501.77
Differential Evolution 7.252417
Simulated Annealing 3.599581877
Variable Neighborhood Descent 201.6556817
Iterated local Search 67.71
Random Search 17.79618
Bacterial Chemotaxis 1 294.538803
Bacterial Chemotaxis 2 13.99
Bacterial Chemotaxis 3 0.723565

estimated by each algorithm. These parameters were
estimated in two scenarios: after 5 (five) minutes and 3
(three) hours of execution.

We show results for the four selected algorithms which
had the best performance (based on tables 3 and 4)
in terms of the objective function: Simulated Annealing,
Differential Evolution, RandomSearch and the best version
of bacterial chemotaxis, version 3. The performance of
each of the algorithms is also showed in a more visual
way: presenting the real behavior for each state of the
model in figures 9 to 18.

Other heuristic methods (genetic algorithm, variable
neighborhood descent, iterated local search and the
other version of bacterial chemotaxis) did not give as
good results as those obtained by the four algorithms
mentioned before. Thus, their results are not plotted.
Analysis for the model response with different sets of
parameters estimated is also carried out.

We have multiple versions of the chemotaxis algorithm:
for the 5 minutes execution, versions 2 and 3 are the ones
that provide results that are closer to the real model,
specially for substrate and product. Version 1 does not
provide very good results in comparison to the other 2
versions. Versions 2 and 3 provide decent results for such
a short time.

Then, looking at local search algorithms, they give a
decent performance in terms of objective function. There
were not as good results as those obtained by the bacterial
chemotaxis. For the 5 minutes execution, variable
neighborhood descent and random search algorithms
performed similarly, being able to obtain more or less
acceptable solutions but not as good as with the bacterial
chemotaxis algorithm.

Random search proves to be the best algorithm among
the three local search based methods after 5 minutes
of execution. Meanwhile, Iterated local search is the
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method which gives a lower performance in comparison to
those obtained with the other two methods based on local
search. In addition, after 3 hours of execution, we noticed
a change in comparison to the 5 minutes execution: now
the iterated local search algorithm provided almost as
good result as the random search, while the variable
neighborhood descent did not perform well.

Furthermore, results obtained for 5 minutes execution
using the genetic algorithm were bad, while the simulated
annealing and differential evolution algorithms provided
acceptable results, but again not as good as the ones
obtained by bacterial chemotaxis. The same behavior was
observed after increasing the execution time up to 3 hours.

Figures 9 to 18 show the results for the states obtained
by the simulation with the parameters estimated by
the selected four algorithms. For the simulation, we
labeled for each time step (hour) the value of each state
(concentration, measured in g/L).

Figures 9 and 10 show the comparison of the results
obtained by the best four heuristic methods in the biomass
state. It is possible to see that simulated annealing and
version 3 of bacterial chemotaxis provide good results for
the 3 hours run. Also, a pattern in this state regarding
the behavior of the estimated values is observed, since a
lower run time gave us solutions below the real data, but
increasing the run time gave us behaviors above the real
data.

Figure 9 Biomass output for 3 hours execution

Then, figures 11 to 12 show the comparison of the
results obtained by the four algorithms in the substrate
concentration state, where it can be seen that the
random search algorithm and the last version of the
chemotaxis algorithm provided a really good approach

Figure 10 Biomass output for 5 minutes execution

whereas Simulated annealing and differential evolution
lost accuracy when trying to represent this state with a low
execution time. Moreover, a really good estimation was
obtained after 3 hours of execution, since those algorithms
fit very well the model behavior as it is seen in figure 10.

Figure 11 Substrate output for 3 hours execution

Figures 13 to 14 allow comparing the results obtained by
the four algorithms in the product concentration state.
The outputs for this state have a similar behavior to the
previous state, where the randomsearch algorithmand the
last version of the chemotaxis algorithm provided a really
good approach independent of the execution time. But
again, the Simulated annealing and differential evolution
lost accuracy when the execution time was very low.
In figures 15 to 16 the results obtained by the four
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Figure 12 Substrate output for 5 minutes execution

algorithms in the ethanol concentration state are also
compared. It can be seen the big difference of the
estimated state against the real, since none of the
estimations gave a really good representation with
the execution time. However, the random search
algorithm and Simulated annealing algorithm provided a
representation that was close to the real values after 3
hours of execution.

Figures 17 to 18 compare the results obtained by the
four algorithms in the inhibition effect state. Once again, it
was not possible to get a more accurate representation for
the state with low time execution for the algorithms, but
increasing the time up to 3 hours allowed the Simulated
Annealing algorithm to get a closer representation of the
real behavior.

Another way to analyze the algorithms performance is
calculating their estimation error. For this aim, we
took into account the real value of the parameters (Table
1) and calculated the relative percent error for the
list of parameters. In this task, we noticed that the
estimation skills of the heuristics vary depending on the
parameter, which might be due to the different ranges of
the parameters. In figure 19 we showed the percentual
estimation error of six of our parameters in order to see
the general performance of the algorithms in this model.
As it can be seen, the chemotaxis 3 was the algorithm with
the lowest estimation error in this group of parameters;
it was even the heuristic with the closest estimations to
the real values in the simulation of the states. However,
for some parameters, the chemotaxis 3 did not have the
best estimation, as it can be seen for the parameter ”Pob”.
Differential evolution had the lowest error for estimating
the ”Pob” parameter. In general, the heuristic estimation

Figure 13 Product output for 3 hours execution

errors are under the 50% , which is acceptable considering
the good results of the simulations with the parameters
estimated.

4.3 Analysis of the Results of the Model
with Parameters Estimated with each
algorithm

One of the important things to analyze is that although
many of the estimated parameters were able to obtain
good results for the states S and P, the same sets of
parameters many times did not provide good results for
the other three states X, W and Z. This happens because
the selected objective function was the mean squared
error and the scales of the variables were very different
(P ans S had values near 50, while the remaining three
variables had values that were very low (usually lower
than 1 for W and Z and lower than 1 for X). Therefore, when
trying to minimize the cost function, the algorithms always
gave way more importance to minimizing the errors of
P and S, even if it meant generating bigger errors in the
other three states. This may be explained due to the big
difference in scales: an error of the same percentage
in variables S and P would lead to a much higher cost
value than an error in the same percentage for the other
three variables. While trying to minimize the error, the
algorithms prioritized the correct estimation of S and P.
Although this could have been avoided by normalizing all
of the state variables, this was not done because in the
literature for this model the two outputs are almost always
P and S, and therefore we considered that the algorithms
should prioritize estimating these two states in the best
possible way.
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Figure 14 Product output for 5 minutes execution

Now, it is time to focus on the accuracy of each of
the algorithms:

As far as the genetic algorithm is concerned, it takes
a random population of possible solutions (including the
initial solution) and the crossover process is done without
a good criterion (each parameter is given randomly either
by the mother or the father, but they do not cross to create
new non existing parameters). This creates solutions that
do not fit to the real system.

Differential Evolution is an algorithm similar to the
genetic. It performs the process with a high computational
cost, as mutation and crossover. So, for short time runs,
as 5 minutes, the algorithm is not very accurate, but when
the period of run increases, it has time to perform many
iterations, so it can go over almost the whole solution
space and therefore, the solution improves considerably.

Although the Iterated local search algorithm is able to
provide good solutions, a high computational cost is
required by it, because it has to consider all possible
parameters variations in each iteration. In general, local
search algorithms tend to consume high computational
resources since they have to explore the local area for
each of the parameters of the solution.

Variable Neighborhood Descent algorithm (VND) can
provide good solutions, but just as in the local search
algorithm, a high computational cost is required. This is
because this method consists in finding neighbors of the
solution using random values for each parameter, which
leads to a higher computational time required. By using
this technique, it is possible to explore broadly the solution

Figure 15 Ethanol output for 3 hours execution

space, but without a good criteria for determining the
neighborhood, the convergence of the algorithm is very
slow.

Random search as it was explained above, is not as
random as its name implies, it does make an intelligent
solution search. The reason why its results overcome
the Iterated Local search and the VND, is because this
method has a low computational cost: it is very easy for
the machine to generate neighbors of the solution on
each iteration, since it only has to modify one parameter
of the solution each time (this modification is random).
As we could see on the results for 5 minutes and three
hours, the accuracy improves as time increases. Since
this method is very susceptible to generate very bad
neighbors, due to its random factor, so for a short run,
say 5 minutes, the algorithm does not have enough time
to generate many neighbors and the initial solution will
not improve subsequently. However, when the algorithm
runs for longer periods it has time to make a considerably
amount of iterations that allow improving the solution
considerably, overcoming other methods that may
generate better neighbors but with higher computational
cost.

Simulated annealing algorithm is a searching method
similar to the common local search, but this algorithm
has an acceptance criteria in each iteration for a possible
solution. This criteria allows the algorithm to look for good
solutions in the space of solutions quickly and therefore
it has a good performance for short and long times of
execution.

Bacterial chemotaxis algorithm is a method based on
a simple technique (disturbing each parameter of the
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Figure 16 Ethanol output for 5 minutes execution

solution in each iteration), and with this methodology
we can explore the space of solutions. This technique
has a very good performance for both long and short
times (this heuristic allows us to evaluate many different
solutions very quickly, therefore allowing us to find very
good solutions in a short time).

When comparing the three different versions of the
bacterial chemotaxis algorithm, we noticed that choosing
a correct value for Σ is a key factor in the algorithm
efficiency. We found out that for short execution times
(5 minutes) a medium value of Σ provided the best
results. This is because for such a short time just a few
solutions can be evaluated, and a value of 0.1 provides the
correct equilibrium between exploration (search in the
global space) and exploitation (search in the local space).
Different results are seen in the 3 hour time lapse: in
this case, there is a lot of time to exhaustively search the
solution space, and therefore in this case we should use
a higher value of Σ of 0.7 to obtain the best results (this
value of 0.7 allows us to search a wider area of the space
of solutions).

To summarize, we have seen that population heuristics can
provide acceptable results only if the crossover combined
parameters from both parents, like in Differential
Evolution (genetic algorithm did not provide good results).
However, differential evolution converges slowly and
provided very good results in 3 hours execution, but in 5
minutes execution its results were not that good.

On the other hand, all of the local search algorithms
required a very high computational time to be able to
obtain pretty good results, and therefore did not perform
very well in the 5 minutes execution. However, in the 3

Figure 17 Inhibition effect output for 3 hours execution

Figure 18 Inhibition effect output for 5 minutes execution

hours execution, results for Simulated Annealing, Random
Search and Iterated Local Search algorithms were very
good (variable neighborhood descent did not have good
results).

Therefore, the algorithms that provided a better
performance regarding their objective function, their
efficiency and how well they fit the real system, were the
bacterial chemotaxis algorithms. This is because of the
criteria that these algorithms must follow, when looking
for solutions: their criteria allow them to explore quickly a
large number of solutions, and thus they can improve the
quality of the best found solution very frequently. Bacterial
chemotaxis has a great advantage against all other
algorithms in the short execution time of 5 minutes, and
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Figure 19 Estimation Error in selected parameters

a slight advantage over other techniques like local search
based and differential evolution in the 3 hours execution
(we should also note that in this 3 hours execution, results
obtained with the parameters estimated by version 3 of the
bacterial chemotaxis were very good and almost identical
to the real model).

5. Conclusions

• For bacterial chemotaxis it is better to choose a big
value for Σ when the run time is long, but it is
better to choose a medium value when the run time
is shorter. This is because Σ determines the size
of the steps, and when the time is longer we are
more capable of exploring larger areas in the solution
space. Therefore the steps made by the solution
vector can be greater.

• Heuristic techniques based on local search are good
algorithms for estimating parameters for this model
in long running times, but not equally good for
shorter periods of time. This is because performing
a local search has a high computational cost and
in short periods of time these techniques are not
able to explore many different solutions. However,
performing local search is a good way to improve the
solution quality in a local area in larger periods of
time. Simulated annealing is also based on searching
the solution space and it also required long periods of
time to obtain very good results.

• Differential evolution is much better than the genetic
algorithm since it combines the parent parameters
to create new parents, while the genetic algorithm
only chooses each parameter randomly from one of
the parents (does not create new parameters in the
crossover).

• Among all the designed and compared algorithms,

bacterial chemotaxis proved to be the best for both
short and long periods of time: in the 5 minutes
execution, versions 2 and 3 had very decent results
and were able to represent the real model way better
than any of the other algorithms, while in the 3 hours
execution, version 3 of this algorithm was the best of
all and was able to obtain results that were almost
identical to those represented by the real model.

• A careful selection of the best heuristic technique for
a particular parameter estimation problem proved to
be very important to be able to obtain the best values
for the parameters to simulate the behavior of the
system.

• Some of the tested heuristic techniques were able
to provide very good estimations for the Zymomonas
mobilismodel, which is a very complex non-Gaussian
system. Therefore, estimating the parameters for the
model by using heuristic methods seems to be a good
approach for solving this problem.
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