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Single pixel compressive spectral polarization
imaging using amovablemicro-polarizer array
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único píxel y una matriz de micropolarizadores móvil
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ABSTRACT: The acquisition of spectral polarization images is amethod that obtains polarized,
spectral and spatial information of a scene. Traditional acquisition methods use dynamic
elements that capture all the information of a scene, by scanning the areas of interest, which
result in large amounts of data proportional to the desired image resolution. Hence, in this
work, the compression of spectral polarization images using a single pixel architecture,
that uses a micro-polarizer array aligned with a binary coded aperture is proposed. The
micro-polarizer is moved horizontally in each shot, so that diverse types of codifications
from the scene are obtained. The proposed architecture allows several compressive 2D
projections with spatial, spectral and polarization coding to be obtained. Stokes parameter
images at several wavelengths are reconstructed. This architecture reduces the total
number of measurements needed to obtain spectral polarization images compared to
traditional acquisition methods. The experiments validate the quality of the architecture
obtaining 43.19 dB, 37.49 dB and 30.41 dB of the peak signal-to-noise ratio for the first three
Stokes parameters respectively.

RESUMEN: La adquisición de imágenes espectro polarizadas es un método que obtiene
información espacial, espectral y de polarización de una escena. Los métodos tradicionales
de adquisición utilizan elementos dinámicos que capturan la totalidad de la información
de la escena, escaneando las áreas de interés. Esto resulta en grandes cantidades de
datos proporcionales a la resolución de imagen deseada. Por esta razón, en este trabajo se
propone la compresión de imágenes espectro polarizadas usando una arquitectura óptica
de único píxel, que usa un arreglo de micro-polarizadores alineados con una apertura
codificada binaria. El arreglo de micro-polarizadores es movido horizontalmente en cada
captura, permitiendo lograr diversos tipos de codificaciones de la escena. La arquitectura
propuesta permite obtener varias proyecciones 2-D comprimidas con codificación espacial,
espectral y de polarización, para luego reconstruir los Parámetros de Stokes a varias
longitudes de onda. Esta arquitectura reduce el numero total de medidas necesarias
para obtener la información espectral y de polarización de las imágenes comparadas con
las arquitecturas tradicionales. Los experimentos validad la calidad de la arquitectura
propuesta obteniendo 43.19 dB, 37.49 dB y 30.41 dB de la proporción máxima de señal a
ruido para los tres primeros de Stokes respectivamente.

1. Introduction

The acquisition of spectral images allows obtaining
information from different ranges of the electromagnetic

spectrum of a scene. The information can be represented
as a data cube composed of different images at a
specific wavelength, where each spectral band, provides
information about the physical properties and distributions
of materials in the scene [1]. On the other hand, one of the
physical quantities associated with nature is polarization
[2]. It measures information about the vector nature of the
optical field in the scene, which allows knowing properties
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of the object surface such as roughness, shape, shading
and orientation [3, 4].

Spectral polarization images arise from the union of these
two types of images, spectral and polarized, thus obtaining
more information of the scene. Therefore, they have been
used in diverse applications such as classification of
vegetation [3], identification of surfaces contaminated
with chemical agents [5], and biomedical diagnosis in
the analysis of skin [6]. The major difficulty with spectral
polarization images is their acquisition, because it needs
to sense the spatial, spectral and polarization information,
F ∈ RM×N×L×θ (see Figure 1). For instance, an image
withM = N = 256 , L = 14 and θ = 4 demands sensing
and storing more than 3 million voxels. Traditional
acquisition methods use a linear polarizer that is rotated
while sequential measurements are captured, spanning
the scene in each dimension [7] or by changing the set
of color filters [8]. The time required for these methods
depends directly on the speed of change of these optical
elements, therefore limiting their usage in dynamic
sensing while the noise increases due to the changing
mechanisms.

On the other hand, compressive sensing devices used
in spectral polarization imaging obtain compressed
projections of a scene, where the number of samples
is smaller than the total amount of scene voxels,
which enable faster acquisitions. For instance, recent
works have shown good results with as few as 20% of
compressed measurements [9–11] which would reduce
by 80% the acquisition time of traditional methods. The
techniques of compressive sensing imaging (CSI) are
able to reconstruct the image from an underdetermined
system of linear equation that describes the measurement
acquisition process [12, 13], by choosing an appropriate
representation basis where the image presents sparse
behavior [14].

A single-pixel polarimetric imaging spectrometer was
proposed recently, enabling the acquisition of spatial,
spectral, and polarization information about the scene
from compressive measurements [10]. This architecture
utilizes a Digital Micromirror Device (DMD) as a spatial
light modulator. The spectral polarization analysis
is achieved by combining a rotating polarizer with
the spectrometer. However, compression occurs in
the spatial domain, while spectral and polarization
dimensions are preserved. Consequently, hundreds of
sequential measurements are needed to obtain a good
construction.

Another compressive spectral polarization imaging
technique that uses a pixelized polarizer and colored
patterned detector (CSPI) was proposed in [9], this

Figure 1 4-D representation of a spectral polarization images

architecture employs a pixelized polarizer and colored
patterned detector that enables compressive sensing over
spatial, spectral, and polarization domains. However,
this architecture only allows four different acquisitions
of the scene and its associated cost increases as either
more filters are added to the detector or the sensor
resolution increases. This limits the use of this system.
Therefore, achieving a high quality reconstruction with a
low-resolution camera is desired.

For this reason, this paper proposes an alternative to
reduce the acquisition cost of the spectral polarization
images, since it uses a single pixel as the detector.
In addition, this architecture can capture multiple
shots, using a movable pixelized polarizer and the
binary coded aperture. In this way, obtaining spectral
and polarization information of the scene from few
compressed spatial-spectral and polarization information
measurements.

2. Spectral Polarization Images

Spectral polarization images can be modeled as a 4D
structure, shown in Figure 1, where each 3D image
represents the scene at one of the four polarization angles
(0◦, 45◦, 90◦, 135◦). This representation does not modify
the spatial structure of the scene. One of the most
common ways to represent polarization is by means of the
Stokes parameters S. These are four vectors that describe
partial or total polarization of light based on intensity
measurements [15]. Stokes vectors are defined in terms
of optical intensity as follows: S0 is the total intensity of
a scene, S1 is the difference between the intensity along
the x (0◦) axis, and the one oriented parallel to the y (90◦)
axis, S2 is the difference between the linear +45◦ and
−45◦ polarization and S3 is the difference between the
intensity transmitted by a right circular polarizer and a
left circular polarizer [16]. In the majority of applications,
the S3 component is not used; additionally, sensing S3

requires an additional quarter-wave plate [17], which is
not considered in this work. For this reason, it is typical
to work with only the first three Stokes vectors, which
have a linear relationship with the measurements of the
traditional detectors. These are given in Equations 1,2 and
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3 as follows

S0 = I0 + I90 = I45 + I135 (1)

S1 = I0 − I90 (2)

S2 = I45 − I135 (3)

where Iθ is the polarization intensity at the angle θ, S0

is the total radiation of a beam, and S1 and S2 are the
radiation difference of the linearly polarized beam, these
parameters are visualized in Figure 2.

Figure 2 Visual representation of the Stokes parameters in
black and white images. a) S0 , b) S1 and c) S2 at a wavelength

of 530 nm

The angle of polarization (AoP ) ), which is defined by
Equation. 4, specifies the orientation of the beam
oscillation [9], which in terms of the Stokes parameters can
be represented by

AoP =
1

2
arctan

(
S2

S1

)
. (4)

As we can see, the angle depends only on the parameters
S1 and S2.

3. Sampling Process

To capture spectral polarization images in a compressed
manner, we propose the optical architecture shown in
Figure 3. There, the scene is encoded in polarization
and in spectrum by the pixelated polarizer and the coded
aperture. Then the coded scene passes through the
condenser lens, which concentrates the light to a point,
creating a mixed pixel, which contains all the encoded
information. This point is integrated by the spectrometer
that divides the information into spectral ranges.

In the sampling scheme, the scene is represented by
f(x, y, λ, θ), where x and y represent the two spatial
dimensions, λ is the spectral wavelength, and θ represents
the angle of linear polarization. By considering the
possibility of applying multiple measurements, the scene
passes through a polarization filter array u(k)(x, y, θ)|k =
1, . . . ,K, that allows or not the pass of a certain
polarization angle per pixel, with K possible patterns.
Then it encounters a coded aperture c(k)(x, y)|k =

Figure 3 Scheme of the proposed single pixel camera for
spectral polarization data acquisition

1, . . . ,K, which applies spatial modulations to the scene.
Ideally, u and c are binary functions, the blocks blocking or
not the passing of voxels in the 4D data cube. In this way,
the spatial, spectral and polarization modulated scene is
obtained as in Equation. 5

f
(k)
1 (x, y, λ, θ) = u(k)(x, y, θ)c(k)(x, y)f(x, y, λ, θ). (5)

Let u
(k)
(i,j,r), c

(k)
(i,j) and f(i,j,l,r) be the discretized

polarization filter array, the discretized coded aperture
and the discretized data respectively defined in Equation.
6,7 and 8 as

u(k)(x, y, θ) =
∑
i,j,r

u
(k)
(i,j,r)rect(x, y)δ(θ) (6)

c(k)(x, y) =
∑
i,j

c
(k)
(i,j)rect(x, y) (7)

f(x, y, λ, θ) =
∑
i,j,r

f(i,j,r)(λ)rect(x, y)δ(θ) (8)

where

rect(x, y) =

1
(i− (1/2))∆ ≤ x < (i+ (1/2))∆

(j − (1/2))∆ ≤ y < (j + (1/2))∆

0 otherwise

δ(θ) =

{
1 (r − 1)∆θ ≤ θ < (r + 1)∆θ

0 otherwise

are the 2D and 1D sampling functions respectively, ∆
is the sample pixel size which is assumed equal for the
micro-polarizer array, the coded aperture and the images
and∆θ is the sample angle. The discrete form describing
the modulation of the scene given in Equation. 5 is
expressed in (9) as:

f
(k)
1 (x, y, λ, θ) =

∑
i,j,r

u
(k)
(i,j,r)c

(k)
(i,j)f(i,j,r)(λ)×

rect(x, y)δ(θ)

, (9)

and the continuous model for the spectral density through
the coded aperture, the polarization filter array and the
optics before it impinges the sensor array is given by
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Equation.10

f
(k)
2 (λ) =

∫∫∫
f
(k)
1 (x, y, λ, θ)dxdydθ

=
∑
i,j,r

u
(k)
(i,j,r)c

(k)
(i,j,)f(i,j,r)(λ).

(10)

In the proposed sensing model, the scene is viewed as four
linear polarization intensity cubes indexed by r = 1, 2, 3
and 4 indicating cubes with four polarization angles and
∆θ = 45. Also, the spectral range of the instrument
is partitioned into a finite number of subintervals or
channels. The discretization of the spectral axis is given
as λ(l) for l = 1, ..., L where L is the number of spectral
bands. The range of the channel l is [λ(l), λ(l+1)] where
λ(l) is the solution of the Equation. 11

S(λ(l+1))− S(λ(l)) = ∆, l = 1, ..., L (11)

where this pixel is taken by the spectrometer to obtain
measurements by spectral bands in (12) as

y
(k)
(l) =

∫
f
(k)
2 (λ)δ(λ)dλ+ ω

(k)
(l) , (12)

where

δ(λ) =

{
1 (l − (1/2))∆λ(l) ≤ θ < (l + (1/2))∆λ(l)

0 otherwise
,

ω
(k)
(l) is additive noise in the sensor and ∆λ(l) = λ(l+1) −

λ(l), l = 1, ..., L is the range of the spectral band l. Finally,
in Equation. 13 and 14 the discrete model to obtain the
measurements is given as

y
(k)
(l) =

4∑
r=1

 N∑
i,j=1

u
(k)
(i,j,r)c

(k)
(i,j)f(i,j,r,l)

+ ω
(k)
(l) , (13)

with

f(i,j,r,l) =

∫
f(i,j,r)(λ)δ(λ)dλ (14)

is the discretized data and N is the spatial resolution.
By converting from row-column subscripts into linear
indexing as n = N(i − 1) + j, for i, j = 1, ..., N , the
Equation. 13 becomes (15) as

y
(k)
(l) =

4∑
r=1

 N2∑
n=1

u
(k)
(n,r)c

(k)
(n)f(n,r,l)

+ ω
(k)
(l) , (15)

and the matrix form is expressed in Equation.16 as

y(l) =[H(1), . . . ,H(4)]

f(1,l)...
f(4,l)

+ ω(l)

=Hf(l) + ω(l)

, (16)

where f(r,l) = [f(1,r,l), . . . , f(N2,r,l)] is the vectorization
of the spectral polarization imaging in the angle r and
band l, y(l) = [y(1,l), . . . , y(K,l)] are the compressive

measurements in the band l and H(r) ∈ RK×N2

is the
sampling matrix which is determined by the polarized and
coded aperture in Equation.17 as

H(r) =


u
(1)
(1,r)c

(1)
(1) . . . u

(1)
(N2,r)c

(1)
(N2)

...
. . .

...
u
(K)
(1,r)c

(K)
(1) . . . u

(K)
(N2,r)c

(K)
(N2)

 . (17)

Because all spectral bands are encoded with the same
coded aperture pattern, in Equation. 18 the problem can
be seen in a vector way as

ŷ = [Ĥ(1), Ĥ(2), Ĥ(3), Ĥ(4)][f
T
(1), f

T
(2), f

T
(3), f

T
(4)]

T = Ĥf + ω
(18)

where ŷ ∈ RK×L are the compressive measurements
obtained by the spectrometer in K shots, Ĥ(r) = I(L) ⊗
H(r), where I(L) is an identity matrix of size L, ⊗ denoted
the Kronecker product, and f(r) are the vector images at
the angle r.

3.1 Measurement hardware strategy

The vector form of the coded aperture is given by c(i) =
[c(1), c(2), ..., c(N2)]

T for k = 0, 1, ...,K. Expressing the
set of coded apertures and considering K total shots in
Equation.19 we have

C = [c(1), c(2), ..., c(K)]
T , (19)

whereC ∈ {0, 1}K×N2

represents the binary value (white
translucent or block). Designing an array of polarizers that
changes at each acquisition is expensive [9], this paper
proposes designing one with dimensionsN×(N+K−1),
such that for each capture, the array of polarizers is moved
horizontally in a pixel. Mathematically,U can been seen as
a 3D array of binary elements that represent the pixelated
polarizer, (see Figures 4(a) and 4(b)) in which an angle r
is represented as ũ(r) = [ũ(r,1), ũ(r,2), ..., ũ(r,S)]

T where
u(r) ∈ {0, 1}S and S = N×(N+K−1) for r = 1, 2, 3, 4.
Then, in Equation.20 for each shot we have

ũ(r,k) = [ũ(r,(k−1)N+1), ũ(r,(k−1)N+2), ..., ũ((r,(k−1)N+N2)]
T ,
(20)

for k = 0, 1, ...,K which represents the horizontal
movement of a pixel for the angle r, this can be seen
in Figure 4(c) for the first vector of ũ1,1. The binary
matrix is expressed in Equation.21, which represents all
the acquisitions

U(r) = [ũ(r,1), ũ(r,2), ..., ũ(c,K)]
T (21)

whereU(r) ∈ {0, 1}K×N2

for r = 1, ..., 4.
The sampling matrix Ĥ(r) which is determined using
Equation.22, represents the sampling, modulation and the
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Figure 4 Representation of the pixelated polarizer a) visual
representation b) binary representation c) vectorization of the

first angle and first shot of the binary representation

Figure 5 Illustrative example of the sensing matrix Ĥ for
N = 4,M = 4, L = 3. White points have the values of 1 and

black points are 0

different captures of the spectral polarization images. The
information that thismatrix has is shown in a specific order
as:

Ĥ(r) =


C ◦U(r) 0 · · · 0

0 C ◦U(r) · · · 0
...

...
. . .

...
0 0 · · · C ◦U(r)

 ,

(22)
where C ◦ U(r) is the Hadamard product between the
matrices C and U(r). A graphical representation of the
sampling matrix is shown in Figure 5, For this example, an
image with 4 × 4 pixels of spatial resolution, 3 spectral
bands, 4 polarization angles and 50% of compression is
used. The compression rate is calculated as γ = S

4MN .
The white points represent the unblocking pixel (1), while
the entries (0) are represented in black.

The relationship between the intensity of the light passing
through a θ◦ linear polarizer Iθ and the Stokes parameters

S0 to S2, of the original light, is linear and given by the
following Equation. 23

Iθ =
1

2
S0 +

1

2
cos(2θ)S1 +

1

2
sin(2θ)S2. (23)

Therefore, the vectorized linear polarization cubes f have
a linear transformation with the three first three Stokes
parameter cubes s, as shown in Equation.24

f = Es, (24)

where E = [E
T
1 ,E

T
2 ,E

T
3 ,E

T
4 ]

T and Er ∈ RMNL×3MNL

consist of three diagonal block matrices expressed in
Equation.25 as:

Ec =

[
diag

(
1

2

)
, diag

(
1

2
cos 2θ(r)

)
, diag

(
1

2
sin 2θ(r)

)]
,

(25)
for the four values of θ(r) with r = 1, .., 4. Thus, the
sensing process referent to the Stokes parameter can be
expressed, as in Equation.26

ŷ = ĤEs = Gs+ ω (26)

where G represents the sensing process from the tree
Stokes parameter cubes directly to the measurements.
Due to matrix Ĥ having inputs 1 and 0, andE entries given
in Equation. 25, the values of G are given from the set
{− 1

2 , 0,
1
2 , 1,

3
2 , 2}. In order to see the sensing matrix G

an image of 4 × 4 pixels of spatial resolution, 3 spectral
bands, 4 polarization angles and 50% of compression is
used. The new compression rate with respect to Stokes
parameters is calculated as γ = S

3MN , where 3 are
representing the three first Stokes parameters. The blue
points represent− 1

2 , black represents 0, green represents
1
2 , white represents 1, red represents 3

2 and finally yellow
represents 2. In Figure 6 the sensing matrix can be seen,
that represents the first parameter where its minimum
value is 0 and its maximum value is 2, and for the other
two parameters the values are − 1

2 , 0,
1
2 , due to the values

taken by the product between Ĥ and E.

To exploit the sparsity of the data cube, each Stokes
parameter is represented by a three dimensional
Kronecker basisΨ = Ψ1 ⊗Ψ2 ⊗Ψ3, whereΨ1 ⊗Ψ2 is
the 2D-Wavelet basis that provides the basis in the spatial
domain and Ψ3 is the discrete Cosine basis that is the
basis in the spectral domain. In this case s = ΨΘ, thus
the sensing process can be expressed in Equation.27 as

ŷ = Gs+ ω = GΨΘ+ ω = AΘ+ ω, (27)

where A is the composite sensing matrix that modules
the system. The signal recovery is obtained by solving the
inverse problem of the under determined linear system in
(27). This consists in recoveringΘ such that the l1−l2 cost
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Figure 6 Illustrative example ofG, which is composed of the
three sensing matrices corresponding to the first three Stokes
parameters forN = 4,M = 4, L = 3. Blue points represent
− 1

2
, black points are 0, green represents 1

2
, white points have

the values of 1, red represents 3
2
and yellow points are 2

function is minimized [14, 18]. The optimization problem is
given Equation.28 as

Θ = arg minΘ∥ŷ −AΘ∥22 + λ∥Θ∥1, (28)

where λ is a regularization parameter. The Gradient
Projection for Sparse Reconstruction (GPSR) algorithm
[19] is used to solve Equation. 28 in this work.

4. Design of the sampling matrix
based on Hadamard matrices

Recent work has shown that designing sampling matrices
significantly improves the quality of the reconstruction [20–
22]. In this section, the Hadamard matrix is used to design
the sensing matrix since its rows are mutually orthogonal;
this property is desired in compressive sensing [12, 23].
This property allows a fast reconstruction approach, due
to the transpose normally used in the GPSR algorithm
is reduced to only one matrix product [18, 24]. Thus,
Equation.29 is

C̄ ◦ Ū(r) = P1MhP2 (29)

where Mh ∈ {−1, 1}N2×N2

is a Hadamard matrix, P1 ∈
{0, 1}K×N2

is an incomplete permutation matrix that only
has a one-valued entry on each row andP2 ∈ {0, 1}N2×N2

is a permutation matrix which operates over the columns

ofMh [25]. Therefore, the sensingmatrix is nowexpressed
in Equation.30 as

H̄c =


C̄ ◦ Ū(r) 0 · · · 0

0 C̄ ◦ Ū(r) · · · 0
...

...
. . .

...
0 0 · · · C̄ ◦ Ū(r)

 (30)

In order to apply this codification the entries of H̄ should
be {−1, 1} instead of {0, 1}. For this, the measurements
y0 = Df are firstly taken, where D is a sensing matrix
with C(i,j) = 1 and U(r,i,j) = 1,∀i,j,r, letting all
the information of the scene pass in an acquisition. The
codified measures obtained with {−1, 1} for each shot are
calculated using Equation.31 as

ȳ = 2y − yo = (2H−D)f = H̄f , (31)

where H̄ represent a shot of the sensing matrix expressed
in (30). The problem with noise is expressed in Equation.32
as

y = (2H+ ω1)f − (Df + ω2)

= (2H−D)f + 2ω1 + ω2

= H̄f + ω̄

(32)

where ω̄ is the noise present in the process. The sensing
and reconstruction referring to the parameters of stokes
are followed from Equation. 26 replacing Ĥ by H̄.

5. Simulations and Results

To evaluate performance and study the proposed
compressive sensing system, simulations were performed
with a 4D test data array, which contains four cubes of
polarization intensities that were acquired by switching
fourteen bandpass filters combined with four azimuth
angles (0◦, 45◦, 90◦ and 135◦) of a linear polarizer
(LPVISB100-MP2). Each cube with polarization intensity
contains fourteen (L = 14) spectral bands ranging from
(500 nm to 620 nm), with spatial resolution of 256 by
256. The scene was illuminated with unpolarized light. In
Figure 7 the scene shows the four polarization angles in
four different spectral bands.

The linear polarization information is obtained by Eqs.
1, 2 y 3. Figure 8 shows the Stokes parameters for
four different wavelength. The second and third Stokes
parameters represent the linear polarization state. In the
4D array of data, a toy and a bulb can be seen, each with
different textures and shapes. With this four-dimensional
data cube, simulations can be performed using Equation.
15 without additional noise.

The proposed architecture was compared with CSPI [9],
this was used with random inputs for the micropolarizer
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Figure 7 4-D representation of a spectral polarization images in
four spectral channels

and the colored filter array. The GPSR algorithm
was used to reconstruct the Stokes parameters from
compressed measurements for both architectures. The
peak signal-to-noise ratio (PSNR) is used to measure the
quality of the reconstructed Stokes parameters.

The compression level of CSPI is given as γ = SNm

PMNL ,
where P = 3 is the number of Stokes parameters used,
S is the number of shots and Nm = (M + L − 1)N
is the number of measurements in a single acquisition.
It should be clarified that, for this architecture only 4
shots can be made, because the prism is rotated only in 4
angles, so for a single shot its compression level is 2.5%
and the maximum compression level for this architecture
would be 10% for these images. On the other hand, the
compression level of the proposed architecture is given as
γ = S

PMN . In our architecture, the number of different
captures depends on the size of the micro-polarizer and
because there is a coded aperture that may vary with each
shot, the number of encodings other than the scene for a
single movement of the micro-polarizer is given by

(
MN
MNτ

)
where τ =

∑
m,n t(m,n)/MN is the quantity of energy

that passes through an object known as transmittance,
allowing multiple acquisitions.

Figure 9 shows the average PSNR of 20 iterations for
different levels of compression from 5% to 10% with step
of 2,5 and from 10% to 50% with step of 5, for 3 stokes
parameters reconstructed. It can be seen that, for 2.5%
to 10% levels of compression the proposed architecture
outperforms CSPI in the parameters S1 and S2. In a
particular case, for 2.5% the proposed method overcomes

500 nm 500 nm 500 nm

530 nm 530 nm 530 nm

580 nm 580 nm 580 nm

620 nm 620 nm 620 nm

S0

S0

S0

S0

S1

S1

S1

S1

S2

S2

S 2

S2

Figure 8 Stokes parameter S0, S1 and S2 for each data cube is
shown in four of 14 bands of polarization: 500, 530, 580 and 620

nm

up 4.5 dB and 5.3 dB for S1 and S2 respectively, for the
parameter S0 both methods have a similar quality. The
dotted line represents the maximum PSNR achieved by
CSPI because taking more snapshots is not possible.

To visualize the reconstruction quality, the reconstructed
Stokes images plane in four spectral channels for 10%
of compression are displayed in Figure 10 for both
architectures. The reconstruction shows significant image
quality compared to CSPI.

In order to verify the spectral accuracy of the proposed
architecture, three spectral points of the original data cube
are compared with the reconstructed signatures. In Figure
11 the results are presented. In general, the results show
that the proposed architecture presents better spectral
performance than CSPI.
Finally, to visualize the reconstruction quality with more
level of compression Figure 12 shows reconstructed Stokes
parameters for each data cube in four of 14 bands of
polarization: 500, 530, 580 and 620 nm. It can be seen
that with 30% of compression the reconstruction has good
image quality.

6. Conclusion

The mathematical and matrix model for the single-pixel
architecture for the compressive acquisition of spectral
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Figure 9 Mean PSNR of 20 iteration for different levels of
compression from 5% to 10% with step of 2,5 and from 10% to
50% with step of 5, for a) the first b) the second and c) the third

parameter reconstructed

polarization images was developed. The architecture
presented makes use of a micro-polarizer that allows or
denies the propagation of the polarization angles of the
image, a coded aperture that allows the spectral and
spatial coding, the collimator modulates the information
to a pixel and this is classified in spectral bands using the
spectrometer. The coding of the scene produced by the
micro-polarizer and the coded aperture was analyzed for
different levels of compression, the results show a gain of
up to 3dB for 10% compression in the parameters S1 and
S2 compared to CSPI architecture, also, 30% compression
exhibited stable quality for the studied image. Future work
includes the implementation of the proposed architecture
to validate the obtained results in a real scenario.

Figure 10 Reconstructed Stokes parameter S0, S1 and S2

using the proposed and CSPI architecture. The parameter S0 is
displayed in the band 530 nm, S1 in the band 600 nm and S2 in

540 nm

Figure 11 a) RGB image of the sample and spectral signatures
obtained in the reconstructions with the proposed and CSPI

architectures, in the points of the image b) P1 (x = 94, y = 175) in
the parameter S0 c) P2 (x = 48 , y = 175) in parameter S1 and d)

P3(x = 137, y = 177) in parameter S2
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Figure 12 Reconstructed Stokes parameter S0, S1 and S2 for
each data cube is shown in four of 14 bands of polarization: 500,

530, 580 and 620 nm
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