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ABSTRACT: Uruguay is a leader in the usage of renewable energies, getting 96% of its
electricity from an assorted assemble of such sources with an increasing percentage of
non-conventional energies, of wind powermostly. As clean and financially stable as they are,
non-conventional energies have weaknesses. Unlike thermic andmost hydro-sources, wind
and solar energies are not controllable,are intermittent and uncertain some hours ahead,
complicating the short-term operation and maintenance of electrical systems. This work
explores how to use smart-grids capabilities to adjust electricity demand as a hedge against
novel short-position risks in the Uruguayan electricity market coming from the volatility
of non-conventional renewables. This approach uses combinatorial optimization dispatch
models to quantitatively assess benefits resulting from having demand control. Results
show that for the Uruguayan context, the benefits are not only due to savings in production
costs (generation). Smart-grid optimal dispatch-schedules are also less stressing regarding
the operation of the grid itself.

RESUMEN: Uruguay es líder en el uso de energías renovables, atendiendo el 96% de su
demanda eléctrica con una mezcla de fuentes de este tipo, con crecimiento sostenido
de renovables no-convencionales, de energía eólica fundamentalmente. Aunque limpias
y ajenas a los vaivenes financieros, las no-convencionales presentan debilidades. A
diferencia de las térmicas e hidráulicas, las energías eólica y solar no son controlables, son
intermitentes e inciertas en las horas próximas, complicando la planificación, operación
y mantenimiento al corto-plazo del sistema eléctrico. Este trabajo explora cómo usar
las capacidades de los smart-grids para ajustar la demanda de electricidad, creando
una cobertura contra esas nuevas posiciones de riesgo al corto-plazo en el mercado
eléctrico uruguayo provenientes de la volatilidad de las renovables no-convencionales. La
aproximación usa modelos de optimización combinatoria del despacho para cuantificar
los beneficios resultantes del control de la demanda. Los resultados muestran que para
el contexto Uruguayo, los beneficios no sólo provienen de los ahorros en producción
(generación). La planificación óptima del despacho en smart-grids también resulta menos
estresante para la operación de la misma red.

1. Introduction

This paper is an expanded version of our previous work
[1]. The article expands the state-of-the art analysis to
emphasize the relevance of this approach when compared
with econometrics. Besides, models’ details are extended,
so is the analysis of the convenience of standard tools to
solve associated problems, both in terms of performance

and error bounds. We added a selected set of solutions
particulars, which provide insights of operational changes
smart-grids allow.

The absence of fossil energy sources, such as oil,
coal or gas, spurred decades ago Uruguayan authorities
to invest in hydroelectric dams as its main source of
electricity. Unlike fossil resources, the country accounted
important hydraulic assets. Hence, Uruguay historically
figured among top countries regarding the percentage
of electricity coming from renewable sources. The
national electric power matrix was complemented with
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conventional oil-fired thermal generation plants. Later on,
the interconnection with its border neighbors (Argentina
and Brazil) supplied an additional level of resilience and
robustness to the system. As demand grew, the frequency
at which thermal generation plants were used increased
as well, so did the energy costs. Similar conditions
were taking place in Argentina and Brazil, so importing
electricity was as expensive as importing oil to keep
thermal plants running. By 2007, the situation became
critical and the national authorities started a process
of diversification of the power sources, which aimed on
biomass and wind power at early stages.

Today, Uruguay is a world leader in the usage of
renewable energies, serving 96% of its own demand of
electricity from renewable sources (see [2]). Table 1
presents the main details regarding units of the
Uruguayan power plant by late 2017. The source is
ADME (Administración Del Mercado Eléctrico) and it is
available at http://adme.com.uy. The extremely low
dependence upon fossil energies isolates the Uruguayan
electricity market from commodities volatility. On the
other hand, and as it counts in Table 1, over one third of
the total energy consumed comes from wind-power, which
is itself highly volatile in the short-term.

Table 1 Details of units in the installed power plant by type of
energy source [source ADME:2017]

Energy by Number of Installed Power Relative Produced Energy Relative
Type of Source Units Plant (MW) Subtotal Total 2017 (GWh) Subtotal

Biomass 12 200 4.4% 900 7.1%
Wind-power 37 1.437 31.5% 4.400 34.9%
Solar 17 230 5% 200 1.6%

Hydroelectric 4 1.534 33.7% 6.200 49.2%

Combined Cycle 1 550 12.1% 100 0.9%
Other Thermal Units 4 604 13.3% 800 6.3%

Managing the electric grid of a country is a challenging
task that must be carried out carefully and optimally. In
order to accomplish that, multiple problems are to be
solved, spanning different scales of time and components.
The main objects are: generating plants, the transmission
and distribution networks. Long-term planning usually
applies to assess the return of investments over those
objects along many years ahead. Medium-term planning
usually refers to the valuation of intangible resources,
such as the height of the lake in an electric dam accounted
as an economic asset. Short-term planning consists in
crafting optimal dispatch schedules some days ahead,
in order to efficiently coordinate the usage of available
resources. Beyond that time scale, there are almost
real-time models to keep the physical variables of the
system (e.g. frequency, active and reactive power) under
control. This work aims on the short-term power dispatch
of the grid, whose outcome sets the prices of energy in
the electricity market. Due to its short scale of time (a
few days ahead), such models can assume many sources

of uncertainty as deterministic. For instance, oil prices
can be considered as fixed along some days to follow, and
although sudden/unexpected rains could arise, they hardly
change the level of water reservoirs to a significant point.

The former premisses are actually quite realistic when
applied to conventional and some non-conventional
energy sources (e.g. biomass). Regarding wind and solar
power however, those hypotheses become erroneous. The
intrinsic stochastic nature of wind and solar power turns
out the short-term dispatch of the grid into a much harder
challenge, which is object of academic and industrial
interest (see [3] and [4]). In its economical dimension,
this volatility indicates that wind-energy constitutes a
risk position. Variable renewable energies (VRE) have a
negative impact in the operation costs of the system. The
standard approach on systems coming from conventional
sources (i.e. coal, atomic, etc.) consists in implementing
redispatch measures, which aim on maintaining the energy
balance of the overall system. Those situations where
production of energy exceeds demand (i.e. congestions)
are managed by ramping down portions of the controllable
plant before the congestion, and ramping up the plant
behind it. In fact, in most wholesale markets, managing
congestion is sold and accounted separately as ramping
services. Real-world examples (UK and Germany) of such
problems are described in [5].

Under steady conditions (energy prices, weather
conditions, date of a year) demand is highly predictable,
so given a particular date of the year and an accurate
weather forecast, the demand over the grid is among
those variables that could be considered as known.
This is due to low deviations associated with a large
number of users under a stationary behaviour. As a
consequence, legacy short-term optimal schedule models
are deterministic, or deal with narrow variance in the
variables. In addition, traditional instruments to modulate
demand with economic measures go by setting different
prices between hours on a day, intending to move a
fraction of energy consumption from the demand’s peak
hour towards demand valleys (night-valley filling). Such
instruments are based on the premisse that energy is
scarce, while the truth is that non-conventional energies,
especially wind-power, can either be lower or higher than
forecasted.

Smart-grid technologies are a cornerstone for
Smart-cities paradigm. Smart-grids allow coordinating
important portions of the demand, which could now be
headed in opposite direction to wind-power variations and
accounted as a hedge instruments against generation
risks (demand response). There are many ways to get
benefits from demand control. For instance, works [6],
[7] and [8] are inspired in a free-market environment,
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with a kind of underlying stock exchange where energy
offers are traded. Sometimes this is not possible due to
regulatory or scalability issues. Besides, wind and solar
power fluctuate so rapidly, that implementing classical
financial contracts (e.g. forwards or swaps) over a system
with high penetration of non-conventional (thus highly
volatile) results far from optimal.

Complementing previous references, [9] analyzes the
overall economical contribution for a wholesale market
of being able to control portions (around 10% in that
study) of the total demand. An Independent System
Operator is assumed, which aims on minimizing total cost
(maximizing social welfare). Two types of thermal storage
assimilable to deferrable demand are considered; they
are: Heating, Ventilation and Air Conditioning (HVAC) and
electric Water Heating (WH). Results are econometric and
derive from short-term economical simulations over New
York and New England regions (NYNE). The reference
installed plant is so that renewable sources (hydro mostly)
add up to less than 10%. Simulation instances extend
power capacity with wind-power by 14%, and concludes
that HVAC and WH deferrable demands allow saving
from 2% to 17%, depending on the season, which sets
requirements for Water Heating and Air Conditioning.
Main differences with the work here presented are: an
antagonistic composition of the installed plant (mostly
renewable vs non-renewable); a lesser seasonal behavior
in the Uruguayan case (power winter-to-fall gap in
Uruguay is 23%, while spring-to-summer in NYNE’s is
350%); the absence of ramping services in the Uruguayan
market.

Using batteries is another instrument to mitigate costs
from ramping services. In [10], the authors simulate
savings coming from having storage units in the Korean
system as it is expected to be by 2029. Currently, most
Korean electricity comes from coal and atomic sources.
Wind-power and photovoltaic combined are below the 4%
of the energy consumed. Government goal is to rise this
figure to 30% by 2029. The work concludes that batteries
allow cost savings bellow 1%, while combining wind-power
and photovoltaic in an appropriate balance saves almost
10% of costs.

Against novel uncertainty in generation, smart-grids
capabilities to manage demand and storage as a mean
to improve dispatch efficiency show promising results
and constitute an area of intensive research (see [11–13]
and [14]). This document explores the benefits of using
smart-grid technologies and residential energy storage,
to coordinate part of demands with the uncertain offer
of energy in the system. The application case is based
on the particulars of the Uruguayan market, where
only large-scale energy consumers are allowed to use

the electricity market, while residential users only can
get electricity from the state-owned company. In this
wholesale electricity market, the price is not set by pairing
bids and demands. Instead, production parameters of
generators (e.g. minimum and maximum power, fixed
and variable costs) are public, and up from them, the
authorities that operate the system dictate when and how
much energy is going to be produced by each unit. This is
why ramping services are not (explicitly) accounted in the
Uruguayan market.

Production decisions are driven by a short-term reference
optimization model, whose objective function aims on
minimizing the total cost of generation. Such premisses
are ideal for the approach presented in this work, which
is stated from a short-term point of view optimization.
Problem instances are based on real data of the Uruguayan
market, chosen to be representative of different scenarios.
It is worth mentioning that these results show how the
existence of smart-grid technologies allows improving the
efficiency of the system, not the return of the investments
necessary to achieve such smart-grid grade.

The remaining of this document is organized as follows:
Section 2 shows the short-term volatility of wind power and
briefs about some techniques used to master it; Section 3
describes the main characteristics of the optimization
models used to estimate the benefits of counting with
smart-grid technologies; Section 4 presents the set of test
scenarios used as instances of the previous models and
numerical results; while Section 5 summarizes the main
conclusions of this work and lines of future work.

2. Wind power uncertainty

This section shows how variable wind-power is, when
described as a stochastic process, and it briefly presents
some of the techniques used to likely fence its realizations.
The historical of wind-power data in Uruguay has a few
years, and along this period the installed power plant
was firmly growing, so instead of expressing power in
terms of MW we use the Plant Load Factor (PLF), which
corresponds to the actual power generated at each time,
divided by the sum of the installed power capacity of each
wind turbine in the system at each moment. So, 0 ≤ PLF
≤ 1 for each hour. Hence, information is normalized,
and we can disregard of changes in the installed capacity
during the period of analysis.

Figure 1 shows the daily cumulated PLF (the sum of
hourly PLFs, which then ranges from 0 to 24) along two
consecutive years of summer days. We have selected days
of one season to avoid deviations coming from seasonal
behaviour. The figure shows how after a week or two,
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Figure 1 Time window average for daily wind energy on
summer days over two years

the process goes inside the 10% error band, respect to the
average value for that season.

Therefore, wind-power is fairly regular when used in
medium-term planning. For shorter periods of time, the
situation is quite the opposite. The leftmost of Figure 2
sketches the distribution of daily cumulated PLFs, while
the rightmost part plots 120 actual daily realizations
of the process (blue curves) along one year (i.e. 30%),
and the average PLF at each hour (black asterisks).
Realizations were chosen by being those that are farthest
from the average. We will not go further in the direction
of standalone classical statistical descriptive, since it is
seldom used.
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Figure 2 Histogram of daily wind energy samples [leftmost],
and 30% most atypical realizations for Uruguayan wind-power

over a year [rightmost]

Complementarily, there are approaches for short-term
wind power forecasting based on numerical simulations
of atmosphere’s wind flows. For a couple of days
ahead period, or even larger time windows, numerical
simulations are usually more accurate than purely
statistical models. Figure 3 presents 72hs ahead forecasts
(blue curves) and actual power series (red curve) for two
samples within the actual data-set. These and other
historical series are available at: http://www.ute.com.
uy/SgePublico/ConsPrevGeneracioEolica.aspx.

Although in order to follow the process whereabouts
at early stages, numerical simulations perform better
than purely statistical methods, they are far from being
trustworthy in what respects to the construction of likely
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Figure 3 Examples of 72hs forecasts (blue) and the actual
power registered (red)

scenarios at larger periods. The plot over the rightmost
of Figure 3 is an example where the difference of energy
between a forecast and the actual processes (i.e. the grey
area), accounts 57% of the average PLF for the period.

Among other points, this work benchmarks the
performance of deterministic vs stochastic optimization
models over the same test scenarios. As we see later
on, the additional accuracy of stochastic version improves
the figures for assessing potential savings coming from
using smart-grids. Therefore, reliable energy-bands were
used to fence wind-power process with a high degree of
energy certainty. Those bands were crafted up from the
combination of three independent sets of forecasts and
the correspondent actual power series. As an example,
Figure 4 shows the confidence band for a particular day
within the test-set. Bands were calibrated seeking for the
average off-band energy (i.e. green areas in the figure)
to be below 10% of the average PLF. Besides, bands are
adjusted so less than 10% of the days violate the previous
condition. The calibration whose average band width
is minimal while fulfills the previous conditions, has an
average width deviation respect to the centroid (i.e. blue
curve) slightly above 10% of the average energy demand
(the fact this final figure replicates the previous is just a
coincide). The details of the technique used to craft these
bands are documented in [15].

3. Short-term optimization models

This section describes the main entities of the Uruguayan
electricity market and examples about how some of them
are modeled. The section also elaborates about how they
are assembled into a single optimization model.
Over the upmost part of Figure 5 is represented the power
offer of the system. Renewable (green) energies comprise:
wind and solar power (non-cumulative renewable / NCR),
Hydroelectricity (HYD) and Biomass, whose units are
basically thermal generation plants (TER). The installed
power plant is completed with standard fossil thermal
generation units. Upon the rightmost-bottom of Figure 5
non-manageable demands are represented. They
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Figure 5 Entities of the wholesale electricity market

are typically associated (though not limited) to some
residential appliances. Such inelastic appliances (IAP)
are considered hourly predictable demands over the time
horizon to optimize, which is 72hs ahead in this work (i.e.
the time horizon of wind-power forecasts). In other words,
inelastic appliances impose a power requirement to the
system. Variants of the basic model introduce: elastic
applications (EAP) or active applications (AAP). Elastic
applications are those where requirements are better
expressed in terms of energy rather than power. They
impose some instant power constraints, but the idea is
that substantial portions of the required energy within
certain time windows could be either deferred or advanced
into that window. Finally, in addition to being elastic, active
applications can return power to the grid when necessary.

In all the models explored in this work, elastic and
active applications are at the service of the system
(i.e. social-welfare). We assume they can be remotely
controlled, so as long as basic power requirements are
fulfilled, the gaps of energy to complete those demands
constitute control variables just as those of the installed
power plant, and they are also used to get the most of the
optimization. This is a subtle but fundamental difference

with approaches as [9] or [10], which are econometric
models based upon historical costs. The model here
presented pursues cost savings, but it is founded upon
technical constraints (commitment times, operational
limits, temporal dependence among variables, etc.), so it
is more realistic from the operational perspective.

3.1 Rapid thermal units

Each entity has a reference mixed-integer optimization
sub-model or block. All these blocks combined and
instantiated for a particular data-set define the whole
optimization problem for that instance and variant. For
example, Equation (1) is the framework to model simple
thermal plants, labeled as Other Thermal Units in Table 1.



min
x
g
t ,y

g
t ,w

g
t

a
∑
t∈T

x
g
t + b

∑
t∈T

w
g
t + α

∑
t∈T

y
g
t

mGT · xg
t ≤ wg

t , t ∈ T (i)

wg
t ≤ MGT · xg

t , t ∈ T (ii)

yg
t ≥ xg

t − xg
t−1, t ∈ T (iii)

2xg
t − 2xg

t+1 + xg
t+2 + xg

t+3 ≥ 0, t = 1, ., Tm − 3 (iv)

2xg
t − 2xg

t+1 + xg
t+2 + xg

t+3 ≤ 2, t = 1, ., Tm − 3 (v)

xg
t , y

g
t ∈ {0, 1}

(1)

Boolean variables xg
t indicate whether the unit g is active

or not at the time moment t. The period of activation
of a small thermal unit is less than 10min, so it can be
considered instantaneous for a time slot of one hour.
Whenever active (xg

t = 1) the power generated by each
unit (wg

t ) must be between technical minimum (mGT ) and
maximum (MGT ) values. This is imposed with constraints
(i) and (ii). Boolean variables ygt identify the instants of
time t at which a unit g is activated, which is forced by
constraint (iii).

The terms in the objective function respectively correspond
to: the hourly fixed cost of operationwhen the unit is active;
the variable cost incurred by the level of power generated;
and the operational costs incurred in by activating the
unit, i.e., fuel expenditures for warming up the unit plus a
maintenance share per operation cycles.

Besides of being costly in terms of maintenance, the
process of frequently activating thermal units is not
operationally friendly. Recall that under other regulations,
this kind of rapid units can be sold as ramping services,
with a discretionary cost. In the Uruguayan context, we
must include precise technical particulars. Therefore,
as an example, we added constraints to guarantee that
once started, a unit should be active (for instance) at
least 3 hours (constraints (iv)), and also to force it to be
inactive for at least 3 hours after stopped (constraints
(v)). These constraints should be complemented with
boundary conditions when the initial or final activity states
are inherited as part of the instance.

23



C. Risso, Revista Facultad de Ingeniería, Universidad de Antioquia, No. 93, pp. 19-31, 2019

Table 2 Parameters for simple thermal units

Name of each Number of Power (MW) a b
Thermal Unit power subunits min max USD USD

MWh

Central Batlle (Motores) 6 6 60 0 82
Punta del Tigre: 1 to 6 6 90 288 7423 86
Punta del Tigre: 7 and 8 2 0.6 48 1619 88
Central Térmica Respaldo 2 40 208 6819 103

Table 2 shows a possible set of parameters for those simple
thermal units, for a particular oil price during 2016. We
could not find public data to valuate α.

3.2 Units with complex commitments

Unlike simple thermal units, the Combined Cycle Plant
(or CCP) has slow time commitments, of around four
hours till full-operation, so its start-up details should
be integrated into the model. Reference parameters
are: mGT = 58MW, MGT = 550MW, a = 5240USD
(hourly fixed cost), b = 63USD/MW (variable cost) and
α = 5500USD. Along the four hours it takes the CCP to
attain its full-operation, the plant gradually increases the
output power following a predetermine ramp. During that
ramp-up, the efficiency is lower, so b is 35% higher and
we use two variable costs: bcc = b bra = 1.35b. Figure 6
sketches the production curve, that is, the power-vs-time
curve the CCP has to follow before achieving its technical
maximum.

To model such type of unit we used four types of
variables and over twenty types of constraints. Equation
(2) corresponds to a relaxation of the whole problem.
Variables xt, and wt are homologous to (1), although in
this case we differentiate power produced over the ramp
(wra

t ), with that delivered at full-operation (wcc
t ). Variables

xt indicate whether the CCP is fully operative (xt = 1) or
not, while yt = 1marks that the unit at the instant t is in a
stair of the starting power ramp.
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Figure 6 Power evolution over time to reach technical
maximum (MGT ), and the corresponding sequence of stairs



min a
∑
t∈T

xt + bra
∑
t∈T

w
ra
t + bcc

∑
t∈T

w
cc
t + α

∑
t∈T

yt

58xt ≤ wcc
t ≤ 550xt, (i)

yt ≥ xt+4 − xt+3, (ii)

xt ≥ yt−1 − yt, (iii)

3yt − 3yt+1 + yt+2 + yt+3 + yt+4 ≥ 0, (iv)

yt + yt+1 + yt+2 + yt+3 + yt+4 ≤ 4, (v)

48xt+3+wra
t+3≥8.3yt+3+19.7yt+2+9.9yt+1+10yt, (vi)

wra
t+3 ≤ 79yt+3 + 187yt+2 + 94yt+1 + 95yt, (vii)

wra
t ≤ 455yt, (viii)

3xt − 3xt+1 + xt+2 + xt+3 + xt+4 ≥ 0, (ix)

8xt − 8xt+1 +
∑t+9

τ=t+2 xτ ≤ 8, (x)

xt + yt ≤ 1, (xi)

xt, yt ∈ {0, 1}, wra
t ≥ 0,

(2)

A curious fact is that the CCP power stairs sequence
lasts 4hours, independently of the target power. The
values of the sequence on the other hand, must adjust
proportionally to the aimed power. The following is an
example of values to be taken by variables when the CCP
is required to be fully operative by t and producing 440MW
at that time.

t− 5 t− 4 t− 3 t− 2 t− 1 t t+ 1

xt 0 0 0 0 0 1 1
yt 0 1 1 1 1 0 0
wra

t 0 63.2 212.8 288 364 0 0
wcc

t 0 0 0 0 0 440 480

Constraints (i) in (2) bound the technical power limits.
Group (ii) forces a ramp to be started t − 4 hours before
entering into full-operation, while (iii) forces the CCP to
start full-operation after a ramp is finished. Constraints
(iv) and (v) combined impose the ramp to last exactly 4
hours. Constraints (vi) to (viii) ensure power production
to be between lower and upper stairs limits during the
ramp-up. The resulting wra

t does not have to follow the
exact sequence (as in the previous example), so (2) is
actually a relaxation from which y’s values are taken for
a second (re-feasibilization) stage, not shown here. Once
in full operation condition, the CCP should not be stopped
until four hours later (i.e. eight hours since started), and
once stopped there should be a period of at least 6 hours
until start it up again. That is imposed through constraints
(ix) and (x). Finally, constraints (xi) yield to mutual
exclusion between ramp and full-operation stages. CCP
is the most efficient among the thermal units. However, it
is not always chosen by the optimization process because
of its complex commitment times, which sometimes does
not fit system needs.

3.3 Hydroelectric

A third of the installed power plant and a half of the energy
produced in Uruguay still come from hydroelectricity.
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Hydroelectric dams are geographically distributed over the
mid-north of the country, as sketched in Figure 7. Three
of them are in tandem along an internal river (Río Negro),
while the fourth –placed over the Uruguay River– is a
binational joint project with Argentina.

Lago “Rincón

del Bonete”

Salto
Grande

Gabriel

Terra

Baygorria

Palmar

Figure 7 Geographical distribution of hydroelectric dams in
Uruguay

The main state variable of a hydroelectric dam is the
volume of water in its storage lake. That volume
determines the head (i.e., the height difference between
the surface of the reservoir and the turbines). Control
variables regard with how much water flows through the
turbines, and how much is spilled.

The higher the head, the most energy obtained by
volume of water turbinated. Actually, this also depends
on the level the river after the dam, which in Uruguayan
low steep river courses is highly dependent on the total
flow itself (i.e. turbinated plus spilled), so the production
function is far from being linear.

Natural influxes into the reservoir increase the volume of
water in it, while turbinated water decreases it. Intuition
suggests that production efficiency passes by keeping
the head as high as possible, while waters flow turbines
downwards. However, whenever the head surpasses a
security threshold, water must be spilled.

Spilling not only wastes the resource, but, as mentioned
before, increases the level downstream, what reduces the
efficiency for the fraction of water really passing through
the turbines.

As it counts in Table 3 and can be observed in Figure 7,
the sequence of dams over the Río Negro binds influxes
of some dams with the outflux of the previous. Table 3
also shows the emptying time when the unit is used at its
maximum power. Within an optimization horizon of three
days, control decisions hardly affect the efficiency (head or

Table 3 Parameters of the hydroelectric units in the Uruguayan
power plant

Hydroelectric Power Empty Influxes
power plant (MW) (days) Coming From

Rincón del Bonete 148 140d Río Negro
Baygorria 108 1d Bonete’s outflux 6hs earlier
Palmar 333 14d Yí river and Baygorria 10hs earlier

Salto Grande (2x) 945 15d Uruguay river

spilling) in Bonete, Palmar or Salto. Baygorria on the other
hand must be finely tuned. In order to get to an integer
linear programing model, we used artificial variables and
a linear piecewise approximation for the production curve.
Besides, the lake’s geometry was assumed cylindrical for
simplicity. Elaborating into those details would deviate
the focus of this document, so they were intentionally left
outside of the scope.

Temporal outfluxes/influxes dependance and non-linearity
aside, hydroelectric units do not have complex
commitments as those of the CCP.

3.4 Storage batteries

Units of energy storage aremodeled in Equation (3) without
an objective function, i.e., without a direct profit. So they
are at the service of the system.

bt = b0 + δ

τ=t∑
τ=1

rcτ −
τ=t∑
τ=1

rdτ (i)

0 ≤ rct ≤ rc (ii)
0 ≤ rdt ≤ rd (iii)

0 ≤ bt ≤ b (iv)

(3)

The state variable bt indicates the level of charge of the
battery, i.e., the energy cumulated in it at time t. Control
variables rct and rdt indicate how much power is used
at time t to respectively charge or discharge the battery.
In the first case the power is taken from the grid (as a
demand), while in the second is returned (as generation).
There are upper limits for control and state variables. The
parameter δ<1 represents the inefficiency (loss of power)
of charge/discharge cycles. There are no storage units in
the Uruguayan grid, so as a reference, we used parameters
as in a real-world project (“Neoen & Tesla Motors” in
Australia). They are: rc = 35MW, rd = 100MW, b =
140MWh y δ = 0.9.

3.5 Demands

Demands are the entities that bind all sub-problems into
one. When demands are hourly determined, they form
part of the data-set of the instance and are integrated
into problem as set of T constraints:

∑
g∈G wg

t ≥ dt,
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t ∈ T . Being T the number of hours along which we are
optimizing, dt the expected demand at the hour t, G the
set of generation units and wg

t the power produced by the
unit g at time t (plus storage’s uncharging when available).
In more general terms, consider an application j in a set
of applications J , and Aj a set of cj disjoint time intervals
Aj = {Aj

1, . . . , A
j
cj} proper of that application. LetD

j
p be

the energy requirement of the application j along the pth

interval (1 ≤ p ≤ cj ), and consider the control variable
zjt , the power supplied by the grid to fulfill demand j at
hour t. Besides, let zjt and z

j
t respectively be the lower and

upper power bounds. Expressed so, an elastic demand is
satisfied whenever constraints in Equation (4) are satisfied.


∑
t∈Aj

p

zjt ≥ Dj
p, 1 ≤ p ≤ cj , j ∈ J (i)

zjt ≤ zjt ≤ zjt ∀t
(4)

The new power balance condition is
∑

g∈G wg
t ≥

∑
j∈J zjt ,

for every t ∈ T .

Observe that traditional (hourly fixed) demands can
be easily expressed using A = {1, · · · , T} and setting
Dt = dt. In this document, we derive two flavors from this
general model for demands. One of them is the traditional,
where there is only one kind of demand, whose hourly
requirements are known. In the other, we assume that
30% of the residential demand is elastic within each day.

Almost 52% of the total energy in Uruguay is dispatched
for residential use. Therefore, power demand is first
disaggregated between residential (dRt ) and large scale
energy consumers (dLt ). Next, we set zt = 0.7dRt + dLt ,
zt = ∞, A = {A1, A2, A3} where A1 = {1, . . . , 24},
A2 = {25, . . . , 48} and A3 = {49, . . . , 72}. Finally,
we assign D1 =

∑24
t=1 0.3d

R
t , D2 =

∑48
t=25 0.3d

R
t and

D3 =
∑72

t=49 0.3d
R
t .

3.6 Mathematical models

Although the optimization subproblems previously
reported correctly describe components by separate,
there is more than one choice to combine them into a
whole Mixed-Integer Optimization Problem (MIP).

Aligned with the purpose of this work, we chose two
dimensions to branch MIP flavors, with two variants each,
so the number of MIP versions totalizes four. Parameters
apart, the demand’s elasticity itself is a characteristic
of primordial importance. When demands are hourly
determined (inelastic), we simply used constraints∑

g∈G wg
t ≥ dt to bind all blocks into a single MIP,

because this approach is numerically much simpler and

more efficient. Constraints and variables as in (3) and
(4) are only included when controllable demands are
effectively available, that is, demands’ controllability and
storage are always paired.

Non-conventional energies’ volatility is another key aspect
of interest to this work. There are many approaches to
integrate uncertainty into an optimization problem. A
simple one goes by optimizing upon the average, which is
basically assuming deterministic behavior. More accurate
approaches are explicitly stochastic but they require to
deal with a higher number of variables. Thus, in addition to
opening models by demand elasticity, we branch them by
using deterministic or stochastic versions of the problem.

Stochastic versions use the classic stochastic
programming framework (see [4]) with four stages
in this case. Time intervals (in hours) for each stage
respectively are: 1-6, 7-24, 25-48 and 49-72. There is
only one scenario for stage 1. Stages 2 to 4 open into
3 scenarios each, so the total number of leaves in the
scenarios tree is 27. As we see in the following section,
these stages are aligned with wind-power particulars.

It is a fact the existence of electrical networks among
generation plants and consumers, which add constraints
that could degrade solution’s optimality. This work
disregards constraints of such components.

4. Experimental results

Since solar power was incipient by the time this work
was being developed, we only consider uncertainties
coming from wind-power. In every case, confidence bands
(see Figure 4) are used to bound process realizations.
Deterministic versions assume the wind power will be as
the centroid of the band (blue curve in Figure 4), which is
simpler but potentially inaccurate.

Assuming a power assimilation preprocessing, forecasts
are proven accurate during the first six hours (see
[16]), so we can model stage-1 as deterministic. For
the rest of the stages, trajectories are built to explore
the confidence bands in order to reproduce different
realizations. We use trajectories that combine: lower,
mid and upper wind-power expectations, then, stochastic
programming versions of the problems use 27 trajectories.
The procedure for crafting trajectories includes an
interpolation process upon boundaries between stages.
That final processing conveys a more realistic behavior
for transitions between low-to-high or high-to-low levels
of wind-power, without which, power curves would lose
their natural continuity. The probability of each trajectory
is estimated up from historical forecast vs actual power
records.
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Along this section we identify representative scenarios,
which are defined by combining the state of
hydro-resources with wind-power expectations. As it
counts in Section 3.6, for each representative scenario
four versions of the problem are solved.

Historical data about actual dispatch is not available (they
are considered confidential by authorities). However, since
historical information for the real wind-power is available,
we tested the convenience of every optimal schedule
crafted, by comparing it with results of simulations of the
real cost the system would have incurred in by using that
plan as a guide.

4.1 Optimization tools

No optimization algorithm was developed to tackle down
problem instances analyzed during this work. All of them
were solved using a generic comercial Mixed Integer
Optimizer: IBM(R) ILOG(R) CPLEX(R) Interactive Optimizer
12.6.3.0, on an HP ProLiant DL385 G7 server with 24 AMD
Opteron(tm) 6172 processors, 72GB of DDR3 RAM and
running CentOS 6.10 Linux operating system.

Running times registered over the whole set of cases
studied (80 instances) in this work ranged from 1 to 320
seconds, which we found plenty acceptable.

Recall that (2) is actually a relaxation used to set
CCP ramp-up instants. There is always a a-posteriori
re-feasibilization stage, a computationally much simpler
optimization, due to the lower number of integer variables.
Thus, regardless of the version of the problem, the whole
optimization is completed after two sub-optimizations
(aka. iterations).

Simplest versions of the problem (i.e. deterministic
with inelastic demands) presented sub-second running
times to find optimal solutions on both iterations. Besides,
the gap between both objective’s values was under 0.5%.
The last figure is the difference between a feasible solution
(i.e. the outcome of the second iteration) and the optimal
solution of a relaxation of the problem (i.e. first iteration),
therefore it constitutes a bound of the error introduced by
our approach for modeling the CCP after two iterations.

For those more complex versions (i.e. stochastic with
elastic demands and storage) a time-out of 300s was set to
CPLEX prior to run it for the first iteration. In all cases the
solver exited by achieving that time-out, but always after
finding feasible solutions with error bounds –estimated
from the dual-primal gap– below 0.6%. Running time
till finding optimal solutions over second iterations in
“stochastic + elastic demands + storage” versions were
always below 20 seconds.

As a final comment, we note that both the ”CPLEX
execution times” (slightly above 5 minutes) and the errors
that arise from Optimization plus Modeling were up to our
initial expectations for this work.

4.2 Problem instances

Instances were defined up from scenarios particularly
interesting to analyze sensibility against some key aspect
the problem. Due to the importance of hydroelectric
energy for the country, the availability of hydraulic
resources is one the dimensions to explore. We defined
five hydro-scenarios to test, they are as follows. HB1
is the historically-typical/statistically-representative
scenario, with a good head of water in reservoirs and high
expectations of new influxes over the next weeks to come.
SH1 assumes a drought condition, with medium resources
in the reservoirs and poor expectations about the new
influxes. SH2 is a worse drought condition than in SH1,
since now the head level in reservoirs is critical. EHT1
is an intermediate situation to HB1 and SH1. Resources
are good but important new influxes are unlikely, so the
valuation of the water (that comes frommid-term planning
models) pushes prices towards those of fossil fuels. The
valuation gives lowest prices for those reservoirs over Río
Negro. EHT2 is similar to EHT1, but now Salto Grande
reservoir has lower prices than those of Río Negro.
Although not representative regarding the typical volume
of rains in a year, SH1, SH2, EHT1 and EHT2 are important
to stress the model.

The second dimension for scenarios is defined by the
second power source by importance: the power-wind,
which is also the main source of short-term uncertainty.
We selected four “forecasts+actual power” among the set
of historical series. Days in Figure 8 were chosen because
they are typical, i.e., they are close to the medians of:
off-band error, effective wind-power produced, and width
of their confidence band. Hence, 4th and 17th December
2016 are statistically representative. Days in Figure 9 on
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Figure 8 Representative wind-power samples

the other hand were chosen to stress the model. The
leftmost sample for having the confidence band with the
largest width, and the rightmost one for being among the
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samples with the higher off-band energy, i.e., for being
among those bands with the poorest performance.
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Figure 9 Stressing samples regarding forecast and wind-power
series

In addition, the last sample has a particularity regarding
power. Observe that in the period between the hour 51 and
54 rises almost 70% of the PLF, which rounds 1GW, close
to the average power consumption of the country.

4.3 Numerical results

In total, 80 problems are solved to explore those scenarios
over different models (4 models × 5 hydro-scenarios × 4
wind-scenarios). In the first place, we show the results
for the deterministic models over all hydro and wind
scenarios. Results are presented in Table 4 (for hydro
HB1 scenario), Table 5 (for EHT1 and EHT1 scenarios), and
Table 6 (for SH1 and SH2).

Table 4 Cost [USD] deterministic optimization 72hs ahead.
[hydro-scenario HB1]

4-dec 17-dec 10-apr 10-jul
Inelastic Demand 348,930 334,760 241,230 359,730
Elastic Demand 327,200 311,240 239,350 344,780

Complementing the gross information of Table 4, Table 5
and Table 6, we must add that after simulating the
system dispatch using actual wind-power values, the
absolute difference between the projected schedule and
the simulation of the operation was between 3% and 6%.
Those differences correspond to error margins between
a-priori dispatch plans and a-posteriori actual figures.
Instances for hydro-scenario HB1 do not require the
usage of thermal generation. This fact explains the low
production costs. Conversely, several thermal units are to
be activated in hydro-deficient scenarios EHT1, EHT2, SH1
and SH2, pushing up costs over the order of magnitude.

Observe that although costs and other conditions are
similar, the system manages much more efficiently
hydro-scenarios ETH2 than their homologous in EHT1,
whose figures are similar to those of SH1 and SH2.
Regardless of the hydro-scenario or demand elasticity,
Apr/10/2016 always gets the lowest cost, with reductions in

Table 5 Cost [thousands of USD] deterministic optimization
72hs ahead [scenarios EHT1, EHT2]

EHT1
4-dec 17-dec 10-apr 10-jul

Inelastic Demand 5,389 5,120 3,737 5,448
Elastic Demand 5,281 5,026 3,660 5,338

EHT2
4-dec 17-dec 10-apr 10-jul

Inelastic Demand 4,091 3,869 2,850 4,126
Elastic Demand 3,951 3,761 2,667 3,958

Table 6 Cost [thousands of USD] deterministic optimization
72hs ahead [scenarios SH1, SH2]

SH1
4-dec 17-dec 10-apr 10-jul

Inelastic Demand 5,696 5,419 3,857 5,731
Elastic Demand 5,602 5,316 3,735 5,630

SH2
4-dec 17-dec 10-apr 10-jul

Inelastic Demand 5,706 5,428 3,857 5,742
Elastic Demand 5,621 5,337 3,735 5,646

the order of 30%. That date corresponds with an atypical
scenario of “three windy days in a row”, and evinces how
sensible the system cost is to the power coming from wind
farms.

Table 7 Relative deviation stochastic vs deterministic models
[hydro-scenario HB1]

4-dec 17-dec 10-apr 10-jul
Inelastic Demand -0.01% -0.24% -0.12% -0.09%
Elastic Demand 0.18% -0.01% -1.00% -0.21%

Focusing now on the expected cost for stochastic versions,
the values are quite similar to their corresponding
deterministic instance, so Table 7, Table 8 and Table 9
present the relative difference with respect to figures in
Table 4, Table 5 and Table 6, rather than absolute figures.

Table 8 Relative deviation stochastic vs deterministic models
[hydro-scenarios EHT1, EHT2]

EHT1
4-dec 17-dec 10-apr 10-jul

Inelastic Demand -0.28% -0.29% -0.19% -0.13%
Elastic Demand -0.42% -0.41% -0.36% -0.10%

EHT2
4-dec 17-dec 10-apr 10-jul

Inelastic Demand -0.45% -0.21% -1.41% -0.30%
Elastic Demand -0.44% -0.34% -0.25% -0.14%

Observe that in 36 out of 40 instances, the stochastic
version gets schedules with lower expected values than
those of the deterministic version. This fact by itself is not
relevant, however, after running a-posteriori simulations
to assess models’ robustness, we also found that
differences between projected schedules and simulations
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Table 9 Relative deviation stochastic vs deterministic models
[hydro-scenarios SH1, SH2]

SH1
4-dec 17-dec 10-apr 10-jul

Inelastic Demand -0.34% -0.33% -0.04% -0.09%
Elastic Demand -0.51% -0.45% 0.05% -0.02%

SH2
4-dec 17-dec 10-apr 10-jul

Inelastic Demand -0.33% -0.34% 0.00% -0.10%
Elastic Demand -0.50% -0.47% 0.09% -0.01%

were always under 3.5% for the stochastic version. Thus,
the stochastic version is not only better in quality but in
confidence, so we use its figures as a reference to valuate
the benefits of having smart-grids capabilities to control
up to 30% of the residential demand of energy.

Those figures show that having such control allows
costs to be reduced in all hydroelectric scenarios: 4.7%
(HB1), 3% (EHT1,2) y 2.1% (SH1,2). Savings are relatively
higher in the hydro standard HB1 scenario, but in absolute
terms are much higher in those of drought. If all those
savings were transferred to elastic demands, reductions
of price could be around 25%.

4.4 Insights of operational changes

In this section, we show some relevant technical details
of those numerical solutions previously discussed. As we
mentioned before, for each instance tested, four versions
of the problem were solved. Problem versions that explore
elastic demand simultaneously explore the usage of
batteries. After analyzing solutions when elastic demand
is available, batteries are never used to reduce production
costs.

Regarding on how elastic demand is managed to reduce
generation costs, we analyze two wind-power scenarios
for the typical hydro HB1. For simplicity, we show results
from deterministic versions. The wind-power scenario of
10-apr-2016 (leftmost of Figure 9) is particularly windy,
so, the entire demand of the country can be fulfilled by
complementing wind-power with some hydric. Moreover,
the residual demand (demand minus wind-power) can
almost be completed by using Salto Grande, except
around moments of peak demand, where it must be
complemented with Baygorria (first) and Palmar (later),
because of the outflux-to-influxes relation between them.
Figure 10 shows with solid lines how much energy is
produced at each hour from each source. Salto Grande
production function is represented with blue, Baygorria
with red and Palmar with green. By controlling demands,
it is possible to satisfy power requirements by solely using
Salto Grande, whose updated production curve is also
sketched in Figure 10 with a dashed blue line. Tracking
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Figure 10 Hydroelectric power necessary to complement
wind-power on 10-april-2016 [hydro-scenario HB1]

the dashed production line might look harder than the
original scheme, however, being able of providing the
necessary power through a single unit allows to modulate
grid’s frequency more easily than by coordinating three
units. Recall that although there are rapid thermal
units assimilable to ramping services (Table 2), fulfilling
demand with renewable (not imported) power sources is a
goal of the system, and coordinately managing distributed
hydroelectric units is harder thanmodulating with ramping
ones.

A similar situation happens on 4-dec-2016, although
here, wind-power production is not as important as in
the previous case, and several units are needed to fill
the difference. However, the hydroelectric plant is still
sufficient to provide the additional power.

time horizon (hs)
10 20 30 40 50 60 70

H
y
d
ro

 p
o
w

e
r 

(M
W

)

0

200

400

600

800

Usage of hydroelectric resources

Figure 11 Hydroelectric power necessary to complement
wind-power on 4-december-2016 [hydro-scenario HB1]

Observe in Figure 11 that during most of the daytime,
Salto Grande is at its maximum production level (blue
curve), and it should be complemented with Baygorria
(red), Palmar (green) and even with Bonete (black) by the
end of the period. Bymoving demand, merely Salto Grande
and Baygorria can complement the power. Observe that,
once again, the scheme of units necessary to sustain the
grid is reduced, in this case from four to two. Partial
drought conditions of EHT1 blended with a normal (not
abundant) wind-power scenario, like that of 17-dec-2016,
impose complementing generation with fossil sources. In
particular, the stochastic version at some instants makes
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use of: the CCP unit (as it main source), Palmar, Baygorria
and Bonete (all hydros but Salto Grande), plus thermic
units: Battle Motores, Punta del Tigre groups 1 and 2.
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Figure 12 Evolution of wholesale market spot prices on
12-december-2016 [hydro-scenario EHT1]

Such diversity muddles spot prices setting, whose average
over the set of trajectories spanned by the stochastic
model is represented in Figure 12 with a blue line. It is
worth mentioning that the spot peak at time 70 does not
come from the variable cost of any unit but is the marginal
of the whole system. A system that integrates time
dependencies (e.g. ramp-up in the CCP, tandem electric
dams along Río Negro) that may drift to overproduction to
keep integrity.

After an optimal control of demand, the number of
units necessary to manage de systems decreases, what
flattens projected wholesale prices (red line), or, in
economic terms, reduces wholesales market volatility.

5. Conclusions and future work

This document presents how classical optimization
models were used to quantify the benefits of having
smart-grids technologies, a fundamental component
of smart-cities. Such benefits were computed upon a
real-world scenario, the Uruguayan electricity market,
a world leader in the usage of renewable energies, with
over 96% of its electricity coming from these sources.
Particularly, the country is facing the challenge of getting
over 35% of its electricity from wind-power, a highly
volatile source of energy.

Experimentation was developed assuming that 30%
of the residential demand can be controlled, showing
that if billed differentially, discounts could round 25%.
Large scale energy consumers can trade in the wholesale
electricity market, which turns less volatile by controlling
residential demands.

Residential users however, must contract with the
public owned company (UTE), so a centralized mechanism
as that described in this document is not only easy to

be developed, but it is actually viable in Uruguay, where
the state owned company is the sole residential distributor.

Regarding the particulars of the dispatch schedules, their
results show that smart-grids not only allow reducing
production costs, but also softness the stress to operate
the grid. A secondary but highly desirable consequence
of controlling demands to reduce costs, is that the set
of components necessary to provide power to the grid is
lower than in regular conditions. In addition, there are
fewer cycles of activation/deactivation of components.

Demand is usually headed apart from peaks, so
the resulting dispatch removes stress from passible
components of the power grid (conductors, voltage
transformers, etc). Experiments developed so far are
punctual, and simulate specific days taking its parameters
from historical data sets. A promising line of work consists
in expanding the software components developed so far,
to run instances along larger periods of time. Hence,
historical information could be used to evaluate results
over months or years. The analysis of the solutions shows
that most of the savings are consequence of a better use
of hydraulic resources. Therefore, it is probable that the
sustained application of such controls makes the system
more immune against falling in drought conditions, in
which costs are much higher. Another line of future work
is the integration of solar-power among the sources of
uncertainty.
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