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ABSTRACT: In a Wireless Sensor Network (WSN), finding the optimal route from each node to
the sink is not a straightforward task because of the distributed and dynamic characteristics
of the network. For instance, the network suffers frequent changes because the channel
quality varies over time and the nodes can leave or join the network at any moment. In
order to deal with this variability, we propose the Dynamic Gallager-Humblet-Spira (DGHS)
algorithm that builds and maintains a minimum spanning tree for distributed and dynamic
networks, and we have found that DGHS reduces the number of control messages and the
energy consumption, at the cost of a slight increase in the memory size and convergence
time. This paper presents a detailed description of the different stages of the DGHS
algorithm (neighbor discovery, tree construction and data collection), an in-depth analysis
of extensive results that validates our proposal, and an exhaustive description of the GHS
limitations.

RESUMEN: En una red inalámbrica de sensores (WSN por su sigla en inglés), encontrar la ruta
óptima desde cada nodo al sumidero no es una tarea sencilla debido a las características
distribuidas y dinámicas de la red. Por ejemplo, la red sufre cambios frecuentes porque
la calidad del canal varía con el tiempo y los nodos pueden abandonar o unirse a la
red en cualquier instante. Con el objetivo de controlar esta variabilidad, proponemos el
algoritmo dinámico Gallager-Humblet-Spira (DGHS) que construye y mantiene un árbol
de expansión mínima para redes dinámicas y distribuidas, y hemos encontrado que DGHS
reduce el número de mensajes de control y el consumo de energía, a costa de un ligero
aumento en el tamaño de la memoria y el tiempo de convergencia. Este artículo presenta
una descripción detallada de las diferentes etapa del algoritmo DGHS (descubrimiento de
vecinos, construcción del árbol y recopilación de datos), un análisis profundo de un conjunto
extenso de resultados que validan nuestra propuesta, y una descripción exhaustiva de las
limitaciones que tiene GHS.

1. Introduction

Wireless SensorNetworks (WSNs) are composed of sensor
nodes with constrained resources. The nodes measure
a physical variable (e.g., temperature, humidity, or light)
in an area of interest, and then, send this information to
the sink. WSNs do not rely on pre-existing infrastructure,
so, the network topology is built by the nodes once
deployed. Initially, the nodes do not have any previous
knowledge about their neighborhood because they are
scattered randomly, so, they collect information about

their neighbors and the link quality using a procedure
called neighbor discovery. Using this information, each
node computes routes to reach the sink through multiple
hops. In this paper, we propose an algorithm called
Dynamic Gallager-Humblet-Spira (DGHS) that builds and
maintains a minimum spanning tree which we use to
collect data.

In WSNs, finding the optimal route from each node to
the sink is not straightforward because of the distributed
and dynamic features of the network. On the one hand,
the nodes should avoid any centralized control that
depletes their energy by sending control packets over long
distances. Instead, they should collaborate among them
through the exchange of local information. On the other
hand, the network is dynamic because of the frequent
changes: the channel quality varies over time, and the
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nodes can join or leave the network as a result of mobility
or battery exhaustion [1]. Thus, mechanisms for topology
construction and maintenance must be distributed and
adapt to the dynamic features of the network.

Depending on its internal rules, topology construction
mechanisms can lead to different types of structures, such
as trees, clusters, or meshes. In the tree topology, each
node selects a single parent that receives and forwards
the data packets. The parent selection determines how
and when the tree is built, so, it is the core of the tree
construction mechanisms. The criteria for selecting a
neighbor as a parent is different for every application.
When the parent selection is over, a tree topology rooted
at the sink is available. This tree topology is suitable for
WSNs since it enables the many-to-one communication
needed to collect data.

Many mechanisms have been proposed to construct
a tree topology (See Section 2). However, few mechanisms
work in a distributed manner and adapt the tree to the
dynamic features of the network. In this paper, we
propose a distributed and dynamic algorithm called
Dynamic Gallager-Humblet-Spira (DGHS) that builds and
maintains a minimum spanning tree. DGHS is based on
the Gallager-Humblet-Spira (GHS) [2, 3] algorithm. Note
the distinction between DGHS - our mechanism - and GHS
- the algorithm proposed by Gallager Humblet Spira. GHS
is a static algorithm that finds the minimum spanning tree
in a network but does not repair the topology when node
failures occur. Additionally, GHS is a theoretical work that
has not been evaluated on a wireless network setting.
Thus, the contributions of DGHS are twofold: First, DGHS
extends GHS by repairing the tree when node failures
occur; and secondly, to the best of our knowledge, this is
the first paper that evaluates a GHS-based algorithm for a
WSN.

DGHS has four phases, namely neighbor discovery,
tree construction, data collection, and tree maintenance.
In the neighbor discovery, the nodes collect information
about their neighbors and the link quality. In DGHS,
the link quality is defined as the average number of lost
discovery packets. In the tree construction, DGHS finds
the minimum spanning tree by executing GHS. In GHS,
each node is a different fragment. Subsequently, pairs of
fragments merge into a new one. The fragments continue
to join until only one remains: the final fragment is the
minimum spanning tree. This minimum spanning tree
generated by GHS is not rooted at the sink. Thus, in
the data collection phase, the sink roots the minimum
spanning tree at itself by sending a single control message
via the branches of the tree. Then, each node starts
sending data packets. In the tree maintenance phase,
the nodes repair the tree when communication failures

occur (i.e., the nodes cannot communicate anymore) by
merging disconnected fragments. The repair mechanism
is initiated by the sink and partially reruns GHS to join
disconnected fragments.

We implement DGHS on Contiki which is a widely
used open-source operating system for low-power and
memory-constrained devices. Subsequently, we evaluate
the performance of DGHS on Cooja which is the Contiki
network emulator. We compare DGHS with a state-ofthe-
art tree construction mechanism known as Least Path
Interference Beaconing Protocol (LIBP) [4, 5]. The
results show that DGHS uses fewer control packets and
consumes on average less energy than LIBP, at the cost of
a slight increase in thememory size and convergence time.

Specifically, the results show that DGHS uses 25.6% fewer
control packets than LIBP during the tree construction.
Besides, DGHS consumes on average less energy that
LIBP: it consumes on average 0.6mW less during the
tree construction, and 1.9mW less during the data
collection. These results are explained given that
DGHS is messageoptimal and sends the data packets
through the optimal route (i.e., via the minimum spanning
tree). Moreover, DGHS shows a slightly higher memory
consumption and slower convergence time because of its
complexity.

When compared to our previous work [6], this paper
presents: (i) a detailed description of the stages of the
DGHS algorithm (neighbor discovery, tree construction
and data collection), (ii) an in-depth analysis of extensive
results that validates our proposal, and (iii) an exhaustive
description of the limitations of GHS for WSNs.

This paper is organized as follows: Section 2 presents
recent work about tree construction mechanisms; Section
3 briefly describes GHS and its limitations; Section 4
explains in detail the DGHS algorithm; Section 5 shows the
evaluation setting and the performance metrics; Section
6 evaluates the performance of DGHS and LIBP; and,
Section 7 presents our conclusions and future work.

2. Related work

The problem of constructing and maintaining a tree
topology in a distributed manner is a challenging task.
This is because the nodes have limited computational and
memory resources and the network is dynamic: the nodes
are prone to failures, and the channel quality varies over
time [1]. We present relevant work that aims at solving
this problem and summarize our findings in Table 1. Note
that this table also serves as a qualitative comparison of
DGHS with previous work.
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Table 1 Previous work regarding tree construction mechanisms

Mechanism Objective
Evaluation
Metrics

Evaluation
Setting

Distributed Dynamic Limitations

DGHS
Tree construction
and maintenance

Number of control packets
Energy consumption
Convergence time

Memory consumption

Emulation Yes Yes
A slight increase in

memory and convergence
time compared to LIBP

GHS [2, 3] Minimum spanning tree
Communication cost
Time complexity

Simulation Yes No See Section 3.2

LIBP[4, 5] Reduce interfering paths

Power consumption
Scalability
Throughput

Recovery from failure

Emulation Yes Yes
It does not assess
the network lifetime

TCBDGA[7]
Balance energy
consumption

Average tour length
Times of reconstructions

Simulation Yes Yes
Nodes must know
its own location

TST[8] Minimize tree lenght
Time complexity

Message complexity
Simulation Yes No

Nodes must know
its own location

HTC[9]
Delay efficient

data aggregation
Energy level

Response time
Simulation Yes Yes

Nodes can have a
maximum of two children

Overhear[10] Secure data collection
Network lifetime
Running time

Simulation No Yes
It is a centralized

approach

RPL[11]
It depends on

the objective function
Bandwidth
Traffic flow

Testbed Yes Yes
It is not appropriate

for point-to-point traffic
CTP[12] Link quality ETX Testbed Yes Yes Recovery time

ADCMCST[13] Balance payload
Time complexity

Payload
Simulation No No

It assumes
symmetric links

In [4, 5], the authors present a protocol called Least
Path Interference Beaconing (LIBP) that constructs a tree
which reduces the interference on the parent nodes. To
do that, LIBP limits the number of children that each
parent supports. The tree construction is done by sending
periodic beacons. Initially, the sink broadcasts a beacon
including its identity and weight. Upon reception of this
beacon, the nodes reply with an acknowledgment (ACK)
informing the sink that it has new children. Then, the
sink increments its weight according to the number of
new children. By repeating this process, LIBP creates a
tree topology that reduces the interference on the parent
nodes. Moreover, LIBP repairs the network in the event of
parent failure.

[7] presents in-depth an algorithm called TCBDGA
(Tree-Cluster-Based Data-Gathering Algorithm). It
constructs several tree topologies that gather data using a
mobile sink. Initially, the nodes build a single tree topology
by selecting a parent according to the residual energy,
the distance to the sink, and the local node density.
Subsequently, this tree is decomposed into sub-trees
considering its depth and traffic load. Finally, the mobile
sink visits the sub-trees to collect data and to reconstruct
them when their residual energy is low. In [8], the authors
present an algorithm called Toward Source Tree (TST)
that constructs a tree which forwards information from a
source to multiple receivers (i.e., a multicast tree). TST
aims at minimizing the tree length and, as a consequence,
the delay. To do that, a virtual tree is built by using

only the receivers. Subsequently, pairs of receivers are
connected by finding relay nodes between them. Finally,
the possible cycles are eliminated from the resultant tree.
The drawback of TST is that it assumes that the nodes
know their location and it does not work for dynamic
networks.

[9] presents an algorithm called Hybrid Tree Construction
(HTC) that builds and maintains a tree in which the nodes
can only have two children (i.e., a binary tree). By using
this tree structure and a time slot scheduling, the nodes
aggregate data. The tree construction starts with a
neighbor discovery that assesses the energy level and
response time of the neighbors. Subsequently, each node
selects a parent and a child based on the lowest response
time guaranteeing a minimum delay. If two neighbors
have the same response time, then the energy level is
used as a tiebreaker. Moreover, HTC re-constructs the
tree in case of nodes failure.

In [10], the authors construct a shortest-path tree
for secure data collection. On the one hand, the tree
construction is formulated as (1) an integer linear
programming problem; and, (2) a mixed-integer nonlinear
programming problem. Both approaches are solved in
a centralized manner by the sink. However, the second
approach shows a better network lifetime. On the other
hand, the secure data collection is implemented by
using the overhearing technique. In this technique, a
node overhears the incoming and outgoing packets of its
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neighbors to determine if they are intentionally dropping or
modifying the packets. [11] presents an algorithm called
Routing Protocol for Low-Power and Lossy Networks
(RPL). It is a multi-hop routing protocol which supports
IPv6, being useful for integrating WSNs to the internet.
RPL builds a tree topology in which the parent selection
is based on a metric referred as rank. This metric is
proportional to the hop distance from the sink; so, the
sink has the lowest rank meanwhile the other nodes
increase their rank according to the hop distance. RPL
also includes mechanisms for preventing routing loops
such as adding a sequence number to the transmitted
packets.

The Collection Tree Protocol (CTP) is a data collection
mechanism that builds and maintains a tree rooted at the
sink [12]. It exchanges beacon messages that transport
information about the link quality between neighbor
nodes. The node with the highest link quality is selected as
next hop, i.e., parent node. CTP has been comprehensively
tested on 13 different testbeds, encompassing 7 platforms,
and 6 link layers. Besides, it estimates the link quality
using information from the physical, link and network
layers, expanding the scope.

[13] presents an algorithm called ADCMCST (Algorithm
with the minimum number of child nodes) that constructs
a tree topology which aims at balancing the nodes payload.
To do that, ADCMCST limits the number of children of
every parent. Initially, the sink collects the graph of the
network and computes an initial tree by using the Breadth
First Search algorithm (BFS). Subsequently, the sink
limits the number of children by pruning edges on each
parent. The algorithm ends if the depth of the tree agrees
with a preset value. The drawback of ADCMCST is that it
is centralized.

3. Gallager-Humblet-Spira algorithm
(GHS)

Since we propose a tree construction and maintenance
mechanism based on GHS, we briefly present GHS and its
limitations. These limitations are tackled by DGHS.

3.1 Description of the GHS algorithm

GHS [2, 3] finds the minimum spanning tree in a graph
with bi-directional edges. It is a distributed algorithm
in which the nodes send control messages, wait for a
reply, and process the information. In GHS, each node
starts as a different fragment. The core idea is to join
fragments progressively until there is only one remaining.
GHS is implemented by seven control packets, namely
connect, initiate, test, accept, reject, report, and change

Figure 1 Basic concepts of the GHS algorithm

root. Besides, GHS determines an upper bound on the
total number of control messages: for a graph ofN nodes
and E edges the total number of control messages is at
most 5Nlog2N + 2E.

Next, we describe the basic concepts of GHS (See
Figure 1). A fragment is a connected subgraph that
belongs to the minimum spanning tree. Fragments can
only join via a particular kind of edge, known as the
outgoing edge. As a general rule, an outgoing edge has
a node that belongs to the fragment and another node
that does not. Since a fragment could have more than
one outgoing edge, the lowest-weight outgoing edge of a
fragment is an outgoing edge whose weight is the lowest.
[2] proves that the lowest-weight outgoing edge of a
fragment always belongs to the minimum spanning tree.
Additionally, the core nodes are the central computing units
of the fragment. They find the lowest-weight outgoing
edge of a fragment by collecting information about all the
outgoing edges. Besides, they initiate the union of two
fragments. Finally, the core edge is the one that connects
two core nodes.

3.2 Limitations of the GHS algorithm for
WSNs

We describe the limitations of GHS for a wireless network
setting and briefly mention how DGHS deals with those
limitations.

• Packet loss: GHS does not tolerate packet loss. If for
any reason a packet gets lost, GHS will not converge
to the minimum spanning tree. The loss of a packet
causes that the affected fragment cannot merge and
remains disconnected. Thus, it is mandatory to use a
reliable packet delivery service. DGHS uses a reliable
packet delivery service for the control messages.
The reliable packet delivery service is implemented
using an acknowledgment packet for every control
message. However, this method doubles the number
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of control messages. Remember that the total
number of control messages is at most 5Nlog2N +
2E for a network without packet loss. So, for a lossy
network, such as a WSN, the total number of control
messages would increase proportionally to the packet
loss rate.

• Packet errors: GHS does not tolerate bit errors. If for
any reason a packet contains bit errors GHS will not
converge to the minimum spanning tree. On the one
hand, if the bit error affects a node address, then the
packet will be lost. Thus, there will be disconnected
fragments, as explained before. On the other hand,
if the bit error affects the weight of an edge, then
GHS would converge to a non-minimum spanning
tree. Thus, to guarantee that DGHS converges to the
minimum spanning tree, it is mandatory to use an
error detection technique, such as cyclic redundancy
check (CRC).

• Tree rooted at the sink: The minimum spanning tree
generated by GHS is not rooted at the sink. When GHS
terminates, the minimum spanning tree is rooted at
two core nodes; and, it would be a coincidence if any
of these nodes happens to be the sink. DGHS uses
an additional control message to root the tree at the
sink. It is important to mention that the additional
control message does not modify the structure of the
minimum spanning tree: it just changes the direction
of the edges.

• Treemaintenance: GHS finds the minimum spanning
tree for a particular network configuration. If the
network configuration changes, then the minimum
spanning tree is no longer valid. InWSNs, the network
configuration is highly dynamic because the channel
quality varies over time [1, 14] and the nodes are
prone to failures [15, 16]. Thus, as time goes by,
the minimum spanning tree loses its validity. As
an example, consider the case where the weight
of the edges changes in response to an unstable
channel. Under that circumstances, the minimum
spanning tree is not longer valid because the network
configuration has changed. Similarly, a node failure
generates a different network configuration. Thus,
GHS is not tolerant to network changes since it
does not implement any mechanism against them.
DGHS copes with the variability of the network by
implementing a tree maintenance phase that repairs
the tree when node failures occur (i.e., the nodes
cannot communicate anymore).

• Minimum spanning tree: Finding the minimum
spanning tree is a highly energy-consuming process
because the nodes require local information about
their neighbors and connecting edges, and global
information about the different fragments. By

collecting this information, a considerable number
of control messages is exchanged. Thus, some tree
construction mechanisms [17, 18] do not find the
minimum spanning tree that provides the lowest-cost
paths. Instead, they find a non-optimal tree whose
construction requires fewer control messages but
leads to a suboptimal data collection. However, the
evaluation results show that this non-optimal tree is
more energy inefficient in the long-term compared to
the minimum spanning tree.

4. Dynamic Gallager - Humblet -
Spira algorithm (DGHS)

The Dynamic Gallager-Humblet-Spira (DGHS) algorithm
builds and maintains a minimum spanning tree. To do
so, DGHS is divided into four phases, namely neighbor
discovery, tree construction, data collection, and tree
maintenance (See Figure 2). In the neighbor discovery
phase, the nodes collect information about their neighbors
and the link quality. DGHS defines the link quality as the
average number of lost discovery packets. In the tree
construction, DGHS finds the minimum spanning tree by
executing GHS. In GHS, each node is a different fragment.
Subsequently, pairs of fragments merge into a new one.
The fragments continue to join until only one remains: the
final fragment is the minimum spanning tree. However,
this minimum spanning tree is not rooted at the sink.
Hence, in the data collection phase, the sink roots the
minimumspanning tree at itself by sending a single control
message via the branches of the tree. Then, each node
starts sending data packets. In the tree maintenance
phase, the nodes repair the tree when communication
failures occur by merging disconnected fragments. The
repair mechanism is initiated by the sink and partially
reruns GHS to join disconnected fragments.

Neighbor
discovery

Tree
construction

Data
collection

DGHS

Tree
maintenance

Figure 2 Four phases of the Dynamic Gallager-Humblet-Spira
algorithm (DGHS)

4.1 Neighbor discovery

Initially, the nodes do not have any previous knowledge
about their neighborhood because they are scattered
randomly in the area of interest. So, they collect
information about their neighbors and the link quality
using a procedure called neighbor discovery. During the
neighbor discovery, the nodes periodically broadcast
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discovery packets with a sequence number. Upon
reception of a discovery packet, the nodes compute the
link weight which is defined as the average number of
discovery packets that have been lost. This computation
is done by computing the moving average of sequence
number gaps. By exchanging discovery packets, each
node maintains a table that includes the link weight for
each neighbor.

Specifically, DGHS computes the Exponential Weighted
Moving Average (EWMA) of the sequence number gaps. We
use EWMA to determine the quality of the links because
it applies weights to the samples according to their age.
In other words, recent samples strongly influence the
resulting average whereas old samples influence the
resulting average in a smaller proportion. This property of
EWMA is useful in WSNs because it is beneficial to keep
an updated neighborhood state which gives more weight
to recent samples. We show the definition of EWMA in
Equation 1.

St =

{
Y1, t = 1

αYt + (1− α)St−1, t > 1
(1)

where, Yt is the input variable (i.e., in this case the
sequence number gaps) and α is a constant between [0, 1]
that determines the influence of recent and old samples.
If α is close to 1 then the resulting average is almost
determined exclusively by recent samples; and, ifα is close
to 0 then the old samples are given more weight. Once
the nodes know their neighborhood, the tree construction
phase begins.

4.2 Tree construction

DGHS finds the minimum spanning tree by executing GHS.
We select GHS because it is a distributed algorithm, it
does not require synchronized nodes, it guarantees an
execution without deadlocks, it tolerates an unpredictable
delay of messages, and it is message-optimal [3]. Hence,
GHS is suitable for WSNs. More importantly, GHS is
considered the cornerstone algorithm for finding the
minimum spanning tree in a distributed manner. So,
several algorithms are based on GHS [19–21]. Note that
DGHS inherits the advantages of GHS.

Initially, each node belongs to a different fragment.
Subsequently, pairs of fragments merge into a new
one. To that end, a fragment identifies its lowest-weight
outgoing edge and requests the adjacent fragment to join.
After accepting the request, the two fragments join into
a new one via the lowest-weight outgoing edge. Pairs
of fragments continue to join until only one fragment
remains: this final fragment is the minimum spanning
tree of the graph. Each fragment has a unique name and
a level to guide the joining process. The name guarantees

Algorithm 1 Gallager-Humblet-Spira algorithm -
Pseudocode taken from [2] - Part 1

procedure wakeup
begin

m: Adjacent edge of minimum weight
SE(m)← Branch

5: LN← 0; SN← Found; Find-count← 0
Send Connect(0) on edge m

end
procedure Response to Connect(L) on edge j

begin
10: if L < LN then

begin
SE(j)← Branch
Send Initiate(LN, FN, SN) on edge j
if SN = Find then

15: find-count← find-count + 1
end

else if SE(j) = Basic then
place received message on end of queue

else
20: Send Initiate(LN+1, w(j), Find) on edge j

end
procedure Reply to Initiate (L,F,S) on edge j

begin
LN← L; FN← F; SN← S; in-branch← j

25: best-edge← nil; best-wt←∞
for all i̸=j such that SE(i)=Branch do

begin
Send Initiate(L,F,S) on edge i
if S = Find then

30: find-count← find-count + 1
end

if S = Find then
Execute procedure test

end
35: procedure test

if there are adjacent edges in the state Basic then
begin

test-edge← the minimum-weight adjacent
edge in state Basic

Send Test(LN,FN) on test-edge
40: end

else
test-edge← nil
Execute procedure report

procedure change-root
45: if SE(best-edge) = Branch then

Send Change-root on best-edge
else

Send Connect(LN) on best-edge
SE(best-edge)← Branch

50: procedure Response to Change-root
Execute procedure change-root
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Algorithm 1 Gallager-Humblet-Spira algorithm -
Pseudocode taken from [2] - Part 2

procedure Response to Test(L,F) on edge j
begin

if SN = Sleeping then
Execute procedure wakeup

5: if L > LN then
Place received message on end of queue

else if F ̸= FN then
Send Accept on edge j

else
10: begin

if SE(j) = Basic then
SE(j)← Rejected

if test-edge ̸= j then
Send Reject on edge j

15: else
Execute procedure test

end
end

procedure Response to Accept on edge j
20: begin

test-edge← nil;
if w(j) < best-wt then

best-edge←j; best-wt← w(j)
Execute procedure report

25: end
procedure Response to Reject on edge j

begin
if SE(j) = Basic then

SE(j)← Rejected
30: Execute procedure test

end
procedure Report

if find-count= 0 and test-edge= nil then
begin

35: SN← Found
Send Report(best-wt) on in-branch

end
procedure Response to Report(w) on edge j

if j ̸= in-branch then
40: begin

find-count← find-count - 1
if w< best-wt then

best-wt← w; best-edge← j
Execute procedure report

45: end
else if SN = Find then

Place received message on end of queue
else if w> best-wt then

Execute procedure change-root
50: else if w = best-wt =∞ then

Halt

that different fragments merge, and the level determines
how and when the joining occurs.

In the remaining of this Subsection, we present in
detail the construction of the minimum spanning tree. To
that end, we describe the situation where two fragments
exchange control messages to join. In other words, we
explain a complete round of the tree construction. Note
that we included the pseudocode of theminimum spanning
tree construction in Algorithm 1 and the nomenclature in
Table 2.

Table 2 Nomenclature of GHS

Symbol Definition
SN Node State

Sleeping
Find
Found

Possible values of SN

SE(j) State of edge j
Basic
Branch
Rejected

Possible values of SE(j)

FN Fragment identity in the node
LN Fragment level in the node
F Fragment identity in the message
L Fragment level in the message
w(j) Weight of adjacent edge j

best-edge Best edge found
best-wt Weight of the best adjacent edge
test-edge Edge to be tested
in-branch Edge that received the initiate msg
find-count Counter of Find states

Before explaining the details of the GHS algorithm, it is
necessary to define the states of the nodes and the edges.
A node has two states: find or found. In the find-state,
the node is examining its edges to find the one which is
outgoing and has the lowest weight. Besides, the node
is waiting that its children report their lowest-weight
outgoing edge. In the found-state, the node has sent to its
parent the information about its lowest-weight outgoing
edge. Additionally, the node waits for a request to join
its fragment with the adjacent one via its lowest-weight
outgoing edge; or, it waits for a message informing that the
union was completed by another node within its fragment.
An edge has three states: basic, branch, and rejected.
A basic edge does not specify whether it belongs to the
minimum spanning tree or not; a branch edge belongs to
the minimum spanning tree; and, a rejected edge does not
belong.

Next, we present the details of the GHS algorithm.
In GHS, the nodes send messages, wait for a reply, and
process the information. In this way, we describe GHS
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by introducing its control messages, namely, connect,
initiate, test, accept, reject, report, and change root. In the
rest of this Section, we employ two fragments to show the
message exchange. Suppose a fragment named fn with a
node p and level l; and, another fragment named fn′ with
a node q and level l′.

At the very beginning of the algorithm, each node is
a fragment with name and level equal to zero. Then, the
fragments actively seek to join among them. To that end,
each fragment finds its lowest-weight outgoing edge and
requests the adjacent fragment (i.e., the fragment on the
other side of the lowest-weight outgoing edge) to join. At
this moment, finding the lowest-weight outgoing edge
of the fragment is trivial because it corresponds to the
lowest-weight edge of the single node. This is because
fragments are composed of a single node, so, all the edges
are outgoing, and there are no other nodes which may
have a lower-weight outgoing edge. Moreover, a fragment
requests another to join by sending a connect message.
Suppose fragment fn requests fragment fn′ to join. To
that end, node p belonging to the fragment fn sends over
the lowest-weight outgoing edge the connect message
⟨connect, l⟩. Upon reception of a connect message, node
q belonging to the fragment fn′ responds depending on
the level l′ and the status of the edge pq through which the
message was received:

• If both fragments have the same level and pq is not a
branch edge, then fragment fn′ pospones processing
the connect message. This connect message is
analyzed againwhen the level l′ becomes greater than
l, or pq becomes a branch edge.

• If both fragments have the same level and pq is a
branch edge, then q sends an initiate message to p.
Since both fragments are about to join at an equal
level, the new fragment gets a new name and level.
The name is equal to the weight of the edge pq, and
the level is increased by one. Besides, pq becomes
the core edge of the new fragment; p and q become
core nodes. Moreover, all the nodes in the new
fragment go to the find-state. So, the initiatemessage
is ⟨initiate, weight of pq, l + 1, find⟩.

• If the level l′ is greater than l, then q sets the state of
the edge qp to branch, and sends an initiate message.
Since both fragments are about to join at a different
level, the higher-level fragment imposes its name and
level over the lower-level fragment. In other words,
the lower-level fragment copies the name and level of
the higher-level fragment. Thus, the new fragment is
called fn′ and has level l′. So, the initiate message is
⟨initiate, fn′, l′, find

found ⟩. The last parameter is the
state of the node q, which can be either find or found,
and is represented as find

found . This state is assumed by
the nodes in the lower-level fragment.

So, if a fragment requests another to join by sending a
connect message, it gets an initiate message in response.
This initiate message determines the name, level and
state of the nodes in the new fragment. Upon reception
of the initiate message ⟨initiate, fn, l, find

found ⟩, a node
updates the name and level of its fragment using fn
and l, respectively. Besides, the node assumes the state
indicated by the last parameter of the message, and
selects the sender of the message as parent. Moreover,
the node retransmits the initiate message via its branch
edges. By retransmitting this message, all the nodes
update the name and level of the fragment; and, they also
update the route toward the core nodes.

When a node receives an initiate message and the
last parameter is find-state, it changes its state to find.
Immediately after the state change, the node starts
searching for its lowest-weight outgoing edge. To do that,
the node arranges the edges in a weight-ascending list.
Then, it sends a test message to the lowest weight edge.
In response, the node could receive an accept message,
which means that the edge is ougoing. So, the node has
found its lowest-weight outgoing edge, and the search is
over. On the other hand, the node could receive a reject
message, which means that the edge is not outgoing.
In this case, the node marks its lowest-weight edge as
rejected, and sends a test message to the next edge in
the list. If there are no more edges in the list, the node
assigns a weight of∞ to its lowest-weight outgoing edge.
For example, suppose that node p is trying to determine
whether node q is outgoing or not. To that end, p sends
the test message ⟨test, fn, l⟩ to q. Upon reception of the
test message, q reacts as follows:

• If the level l is greater than l′, then node q pospones
processing the test message. This test message
is analyzed again when the level l′ has reached or
surpassed l.

• If the level l is lower or equal than l′, then q
determines whether it belongs to the same fragment
than p. To do that, q compares both fragment
names. If fn and fn′ are equal, then q and p
belong to the same fragment. Thus, they cannot join.
So, q sends a reject message to p, and marks the
edge qp as rejected. On the other hand, if fn and
fn′ are different, then q and p belong to different
fragments. Thus, they can join. So, q sends an
accept message to p, and marks the edge qp as
lowest-weight outgoing basic edge. In this moment,
q has found its lowest-weight outgoing edge: qp.

Once the node has found its lowest-weight outgoing
basic edge, it waits for a report message from each
child. The report message ⟨report, lwoe⟩ contains
the lowest-weight outgoing edge (lwoe) that each child
knows. By collecting report messages, the node obtains
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information about outgoing edges in the fragment and
their weights. The node arranges these outgoing edges in
a weight-ascending list including its own lowest-weight
outgoing basic edge. Subsequently, the node determines
that the first element of the list is the lowest-weight
outgoing edge. Thus, the node selects the lowest-weight
outgoing edge by considering the outgoing edges reported
by its children and its own lowest-weight outgoing basic
edge. Subsequently, the node informs its parent about its
lowest-weight outgoing edge by sending a report message.
Once the report message is sent, the node changes its
state to found.

The report messages propagate in the fragment from
the leaf nodes to the core nodes. When a core node
has received a report message from each child and has
found its lowest-weight outgoing basic edge, it follows the
procedure described above to determine its lowest-weight
outgoing edge. However, this lowest-weight outgoing
edge is fundamental because it corresponds to the
lowest-weight outgoing edge of the whole fragment. If the
weight of this outgoing edge is∞, it means that GHS has
found the minimum spanning tree. If the weight is lower
than ∞, the core node sends a changeroot message to
node p, which originally reported the outgoing edge pq.
The core node knows the route towards p because each
node remembers the child that reported the best outgoing
edge. Upon reception of a changeroot message, node p
changes the state of its lowest-weight outgoing edge to
branch, and sends a connect message ⟨connect, l⟩ to q.

We are back at the situation where two fragments
exchange a connect message to join. Thus, we explained
a complete round of the GHS. The tree construction
proceeds by joining pairs of fragments until only one
remain. It is important to mention that the minimum
spanning tree generated by GHS is not necessarily rooted
at the sink. Hence, in the next phase, DGHS roots the tree
at the sink.

4.3 Data collection

GHS generates a minimum spanning tree that is not
rooted at the sink. When GHS terminates, the minimum
spanning tree is rooted at two core nodes; and, it would
be a coincidence if any of these nodes happens to be the
sink. Once GHS terminates, the sink must become the
root of the tree. To do that, the sink transmits an initiate
message over its branch edges with the parameters set
to null. Upon reception of an initiate message, the nodes
select the sender as a parent and retransmit the initiate
message over their branch edges. By doing so, all the
nodes select a new parent that leads to the sink. Thus,
the sink becomes the root of the minimum spanning
tree. Since the initiate messages are transmitted via the

branch edges, the parent selection does not change the
structure of the minimum spanning tree: it just changes
the direction of the edges. Once the sink becomes the root
of the minimum spanning tree, the data collection starts.

Each node sends a data packet to its parent every X
seconds, where X is a random number between [60,120]
seconds. The nodes send data packets using aperiodic
intervals of time to prevent nodes from synchronizing
and transmitting at the same time, which causes traffic
congestion. By sending information via the selected
parents, the nodes route the information via the optimal
path (i.e., the minimum spanning tree) improving their
energy efficiency.

The nodes collect temperature and humidity information
using the SHT11 sensor. In this way, the data packet
includes 2 bytes to store the temperature, 2 bytes for the
humidity, 2 bytes for the source address and 2 bytes for
the destination address. Hence, the total packet payload
is 8 bytes. We included the data collection phase in this
study to measure the energy consumption of the nodes
when they sense and transmit temperature and humidity
information.

4.4 Tree maintenance

In WSNs, the nodes are prone to failures because of
the harsh environments where they are deployed. Node
failures generate network partitions leading to uncovered
areas. GHS does not implement any mechanism to
deal with node failures. In DGHS, we propose a tree
maintenance mechanism that repairs the topology when
node failures occur.

When one or more nodes suffer a communication
failure (i.e., they are unable to transmit and receive
any packets) the fragment is divided into two or
more fragments: a fragment containing the sink
that we call the main fragment, and one or more
fragments that are disconnected from the main
fragment that we call the sub-fragments. Our objective
is to join again the sub-fragments with the main
fragment by partially rerunning GHS. To do so, the
sink periodically broadcasts the initiate message
⟨initiate, random name, l+1, find⟩. Upon reception of
this initiate message, the nodes replace their fragment’s
name with the random name, increase their level by
one, and assume the state find. By assuming the find
state, the nodes in the main fragment start looking for
sub-fragments to join. The random name allows that
the main fragment and the sub-fragments do not have the
same name, so, they can join. Besides, the higher level
of the main fragment means that it imposes its name and
level when a join occurs. Under this circumstances, the
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main fragment merges with the sub-fragments repairing
the network. Thus, we have partially rerun GHS to recover
the network from a node failure.

DGHSmustmeet two conditions to rerun GHS successfully.
The first condition is that the nodes in the main fragment
must wait until the initiate message has arrived at
every node in this fragment before start looking for a
sub-fragment. This ensures that all the nodes in the
main fragment know the random name avoiding that
they merge among them and generate routing loops.
The second condition is that the random name must be
different from the sub-fragments’ name. This ensures that
the main fragment and the sub-fragments can recognize
among them avoiding that they never join.

5. Performance evaluation setting

We implement DGHS on Contiki which is a widely used
open-source operating system for WSNs. Subsequently,
we evaluate the performance of DGHS on Cooja which is
the Contiki network emulator. We compare DGHS with a
state-of-the-art tree construction mechanism known as
LIBP (See Section 2). We use LIBP as a point of reference
for the comparison because it outperforms well-known
tree construction mechanisms, such as RPL [11] and
CTP [22], regarding power consumption, scalability,
throughput, and recovery from failure [4].

Table 3 Configuration parameters for the emulations

Parameter Specification
Network emulator Cooja
Emulated hardware TelosB node
Operating system Contiki version 3.x-3029-g2226912

Communication stack Rime
Radio model Unit disk graph
Network area 300×300m2

Number of nodes 40
Transmission range 50 meters
Interference range 100 meters
Packet payload 8 bytes

Data packet frequency [60-120] seconds
α 0.25

Total emulation time 240 seconds

We emulate 40 TelosB nodes in a 300 × 300 m2 area. The
nodes are randomly scattered. Regarding the wireless
channel, we use the unit disk graph model which assumes
that the nodes communicate and interfere in fixed-radius
circles. Besides, the transmission range is 50 meters,
and the interference range is 100 meters. During the data
collection, each node sends a data packet every X seconds,
where X is a random number between [60,120] seconds;

the packet payload is 8 bytes. We run 20 emulations with
different seeds and average the results. Table 3 shows the
configuration parameters for the emulations.

We analyze four metrics to evaluate the performance
of DGHS:

• Number of control packets: We count the total
number of control packets needed to build the tree.
Remember that in DGHS the nodes use seven types of
control packets to construct the tree (connect, initiate,
test, accept, reject, report, and change root); in LIBP,
the nodes use two types of control packets (beacon
and ACK). Each node counts the number of control
packets transmitted, and then we add these values.

• Energy consumption: We assess the energy
consumption during the tree construction and
the data collection. By doing so, we can distinguish
between (1) the energy consumption caused by
control packets that build the tree, and (2) the energy
consumption caused by data packets that traverse
the tree. We measure the energy consumption of
each node and compute the average.

• Convergence time: The convergence time is the
number of seconds that the algorithm requires to
construct the tree from scratch. So, the convergence
time adds the neighbor-discovery time and the
tree-construction time. We consider that the tree
construction is finished when every node can reach
the sink.

• Memory consumption: The nodes have constrained
memory resources. We measure the percentage of
flash and RAM that DGHS consumes on a TelosB node,
which has 48KB of flash and 10KB of RAM.

6. Performance evaluation results

We analyze the number of control packets, energy
consumption, convergence time, and memory
consumption for DGHS and LIBP.

Figure 3a shows the total number of control packets
needed to build a tree using DGHS and LIBP. We see
that LIBP uses 25.6% more control packets to construct
the tree: LIBP employs 334 control packets, and DGHS
uses 266. We expected that DGHS uses a lower number
of control packets because it is based on GHS which is
message-optimal. On the other hand, LIBP constructs
the tree by sending periodic beacons and ACKs. This
periodic approach does not limit the number of control
packets resulting in unnecessary transmissions. Other
tree construction mechanisms, such as RPL [11] and
CTP [22], implement an adaptive beaconing called the
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Figure 3 Performance evaluation results

Trickle algorithm [23]. The Trickle algorithm determines
the sending rates of beacons in such a way that it sends
control packets more often when there are network
changes, and it reduces the control traffic rates when
the network stabilizes. To do that, the Trickle algorithm
uses timers that control the sending rates of beacons.
The Trickle algorithm determines the value of the timer
by choosing a random value between [I/2,I] where I is
initially defined as Imin. When the timer expires, RPL
sends a beacon and duplicates the value of I up to Imax.
Additionally, the timer is reset to Imin when RPL detects
an inconsistency in the network. By setting Imin to a few
miliseconds and Imax to 1 hour, the Trickle algorithm can
reduce the control traffic up to 75% compared to sending
a beacon every 30 seconds [24].

Figure 3b shows the average energy consumption
per node during the tree construction and the data
collection. During the tree construction, DGHS consumes
9.2% less energy than LIBP: each node running DGHS
consumes 5.9mW on average, and each node running
LIBP consumes 6.5mW on average. DGHS consumes less
energy than LIBP during the tree construction because
it uses fewer control packets. So, the fact that DGHS is
based-on a message-optimal algorithm leads to energy
savings. During the data collection, DGHS consumes
22.1% less energy than LIBP: each node running DGHS
consumes 6.7mW on average, and each node running
LIBP consumes 8.6mW on average. DGHS consumes
less energy than LIBP because the nodes send the data
packets via optimal paths. Remember that DGHS routes
the packets via the minimum spanning tree which includes
the optimal paths. On the other hand, LIBP routes the
data packets via sub-optimal paths causing higher energy
consumption. Hence, DGHS is more energy-efficient than
LIBP during the tree construction and the data collection.
Note that the major energy savings occur in the data
collection where the network spends most of the time.
So, the long-term energy saving is significant since DGHS
could increase the network lifetime by around 22.1%.

Figure 3c shows the convergence time for the tree
construction in DGHS and LIBP. We see that DGHS
converges 8.1% slower than LIBP: it converges after 164.1
seconds, and LIBP does after 151.8 seconds. The higher
convergence time of DGHS is due to the delay of sending
information from the outgoing edges to the core nodes
using a multi-hop approach. Remember that the core
nodes collect information from the whole fragment and
determine which is the lowest-weight outgoing edge.
So, the higher convergence time of DGHS is because
sending information to the core nodes via multiple hops is
time-consuming. On the contrary, in LIBP, the nodes rely
exclusively on information from their one-hop neighbors.
Hence, they avoid sending information over multiple hops
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resulting in lower convergence time. In this way, DGHS
relies on information provided by neighbors that are
N-hops away (note that the value of N is determined by
the size of the fragment). On the contrary, LIBP relies on
information provided by 1-hop neighbors. So, the delay
of packets traversing N-hops increases the convergence
time of DGHS. Note that this convergence time is typical
of mechanism that gather complete information about
the neighborhood by sending packets through N-hops.
So, increasing the convergence time is the price paid for
having complete information of the neighborhood that
results in the optimal paths found by DGHS.

Figure 3d shows the percentage of flash and RAM
consumed by DGHS and LIBP on the TelosB nodes. We see
that DGHS slightly consumes more memory than LIBP:
it consumes 23.2% more flash and 11.1% more RAM.
The higher memory consumption of DGHS is because it
requires seven types of control messages and LIBP only
requires two. The additional control messages of DGHS
employ additional structures, lists, and validations causing
a higher memory consumption. This result was expected
since DGHS can find the minimum spanning tree, so, it
is more complex than a protocol that finds a sub-optimal
tree such as LIBP. It is important to mention that the
flash and RAM usage of DGHS is near to the maximum.
DGHS consumes 41.8KB out of 48KB of flash (i.e., 87.1%),
and 9.1KB out of 10KB of RAM (i.e., 91.0%). So, DGHS
implementation has little space to add new functionalities.
A straightforward solution to this problem is to use a node
with more memory resources. For example, the RE-Mote
(manufacturer Zolertia) has 512KB of flash and 32KB
of RAM; the wismote (manufacturer arago-systems) has
256KB of flash and 16KB of RAM. In this way, implementing
DGHS in those nodes would leave room for plenty of new
functionalities such as adding IPv6.

7. Conclusions and future work

We propose the DGHS algorithm which builds and
maintains a minimum spanning tree. To do so, DGHS is
divided into four phases, namely neighbor discovery, tree
construction, data collection, and tree maintenance. We
evaluate the performance of DGHS on Cooja, which is the
Contiki network emulator. The results show that DGHS
uses 25.6% fewer control packets than LIBP during the
tree construction. Besides, DGHS consumes on average
less energy that LIBP: it consumes on average 0.6mW
less during the tree construction, and 1.9mW less during
the data collection. However, DGHS slightly increases the
memory size and convergence time because of its higher
complexity. In conclusion, DGHS reduces the number
of control messages and the energy consumption, at the
cost of a slight increase in memory size and convergence
time. In future work, we plan to design a fault detection

mechanism that triggers the tree maintenance phase,
instead of searching for disconnected sub-fragments
periodically. We also plan to evaluate DGHS on a testbed to
consider the challenges of a real communication channel.
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