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ABSTRACT: The Iberian Market for Electricity resulted from a cooperation process developed
by the Portuguese and Spanish administrations, aiming to promote the integration of
the electrical systems of both countries. This common market consists of organised
markets or power exchanges, and non-organisedmarkets where bilateral over-the-counter
trading takes place with or without brokers. Within this scenario, electricity price
forecasts have become fundamental to the process of decision-making and strategy
development by market participants. The unique characteristics of electricity prices such
as non-stationarity, non-linearity and high volatility make this task very difficult. For this
reason, instead of a simple time forecast, market participants are more interested in a
causal forecast that is essential to estimate the uncertainty involved in the price. This work
focuses on modelling the impact of various explanatory variables on the electricity price
through a multiple linear regression analysis. The quality of the estimated models obtained
validates the use of statistical or causal methods, such as the Multiple Linear Regression
Model, as a plausible strategy to achieve causal forecasts of electricity prices in medium
and long-term electricity price forecasting. From the evaluation of the electricity price
forecasting for Portugal and Spain, in the year of 2017, themean absolute percentage errors
(MAPE) were 9.02% and 12.02%, respectively. In 2018, the MAPE, evaluated for 9 months,
for Portugal and Spain equals 7.12% and 6.45%, respectively.

RESUMEN: El Mercado Ibérico de Electricidad resulta del proceso de cooperación entre
las administraciones de Portugal y España con el objetivo de promover la integración de
los sistemas eléctricos de ambos países. Este mercado común consiste en mercados
organizados o intercambios de potencia, y mercados no organizados donde el comercio
bilateral de venta libre se realiza con o sin intermediarios. Dentro de este escenario, la
previsión de los precios de energía ha tomado un papel fundamental en el proceso de
decisión y estrategia de desarrollo para los mercados participantes. Las características
de precios de energía tales como la no-estacionalidad, no linealidad y la alta volatilidad
hace que este trabajo sea más complejo. Así, en lugar de una simple previsión, los
participantes están más interesados en las causas, que es esencial para estimar el precio.
Esta investigación analiza el impacto de variables externas en los precios de electricidad
utilizando un modelo de regresión lineal. La calidad de los modelos estimados obtenidos
valida el uso de métodos estadísticos o causales, como una estrategia plausible para
obtener previsiones causales de los precios de la electricidad a mediano y largo plazo. A
partir de la evaluación de la previsión del precio de la electricidad para Portugal y España,
para el año 2017, los errores porcentuales absolutos medios (MAPE) fueron de 9.02% y
de 12.02%, respectivamente. Para el año de 2018, el MAPE, evaluado para 9 meses, para
Portugal y España equivale a 7.12% y 6.45%, respectivamente.

1. Introduction

The Iberian Market for Electricity (MIBEL) outcomes from
a cooperative process developed by the Portuguese and
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Spanish governments, aiming at promoting the integration
of the electrical systems and markets of both countries
within a framework for providing access to all interested
parties under the terms of equality, transparency and
objectivity. Trading within MIBEL is done in a free
competitive regime, despite the need to comply with
market rules, applicable legislation, competition rules
and regulation on wholesale energy market integrity and
transparency.

There are two organised markets under the MIBEL
framework, apart from the system services’ market
existing in each country: the spot (day ahead and intraday)
market, operated by the Spanish branch of MIBEL (OMIE)
and abiding by the Spanish legislation, and the forwards
and derivatives market, operated by the Portuguese
branch of MIBEL (OMIP) and abiding by the Portuguese
legislation.

The OMIE market works as a single market for Portugal
and Spain if the available interconnection capacity between
both countries is sufficient to perform supply and demand
orders. When the interconnection capacity becomes
technically insufficient, markets are separated, and
specific prices are produced for each market under a
market splitting mechanism.

With the MIBEL implementation, the Iberian electricity
market was moved to an organised, liberalised market
regime, which was also an important step in the
consolidation of the European Electricity Market. In
this sense, it became possible for any Iberian consumer to
buy electricity from any producer or marketer operating
in Portugal or Spain, under a regime of free competition [1].

The genuine role of the organized market for electricity is
to match the supply and the demand of electricity in order
to determine the market clearing price. The market price
is established in an auction, conducted in a periodical basis
for each of the load periods, as the intersection between
the supply curve, constructed from aggregated supply
bids, and the demand curve, constructed from aggregated
demand bids or the system operator estimated demand
[2]. Buy/sell orders are accepted in order of increasing
(decreasing) prices until the total demand (supply) is met.

Electricity is a very special commodity, being technically
and economically non-storable. Besides, power
system stability requires a constant balance between
production and consumption, which in turn, depends
on climate conditions, the intensity of business and
everyday activities. Due to the liberalized nature of
the market, electricity prices acquire uncertain and
volatile characteristics, which can be up to two orders of
magnitude higher than any other commodity or financial

assets [3]. In this competitive environment, it is imperative
to predict the future price of electricity, aiming at the
definition of a dispatch strategy, investment profitability
analysis and planning, increasing the profit of energy
producers and assisting a decrease in the electricity price
for consumers.

Although the wholesale of electricity reflects the real-time
cost for supplying which varies minute by minute, the
cost formation of electricity prices for final consumers,
investment profitability analysis and planning are based
on an average seasonal cost. In this regard, the main
objective of this work is the construction of statistical (or
casual) models to forecast electricity prices, in a monthly
basis, in the time span of 2017 and 2018 years, through the
Multiple Linear Regression Model (MRLM). A simplified
version of this manuscript was previously published as a
conference paper [4]. The research has been extended,
including the analysis of four new exogenous variables
able to impact in the electricity price forecasting in the
Iberian countries.

This manuscript is organised as follows: section 2
presents the main factors that may contribute to the
variability of electricity prices; section 3 introduces and
discusses the forecasting methodology, while section
4 presents and discusses its application to the Iberian
countries. Finally, section 5 draws the main conclusions
of the performed analysis.

2. Key factors affecting electricity
prices

Unique features of electric energy pricing such as
non-stationarity, non-linearity and high volatility make
the forecast of electricity prices a difficult task. For this
reason, instead of a simple one-off forecast, market
players are more interested in a causal forecast able to
estimate the uncertainty involved in the price. Therefore, it
is necessary to analyse the variables that can explain, even
though partially, the variability of prices under a long-term
basis forecasting horizon, with lead times measured in
months.

A large number of external variables may explain the
electricity price dynamics, but there is little evidence
on the degree and sign of these influences. Exogenous
variables such as generation capacity, load profiles and
ambient conditions have been previously used in literature
to explain the electricity price dynamics. For instance,
power consumption, water supply air temperature and
load profiles were used in [5–7]. The forecast of zonal
electricity prices in Italy, as performed in [8], explored the
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effect of technologies, market power, network congestions
and demand.

This work analyses several exogenous variables, exploiting
the demand, ambient conditions, production of goods,
energy sources (renewable and non-renewable) and the
import and export energy balance.

Demand and ambient conditions pose a significant
contribution to the electricity price dynamics, and they
are modelled through Electricity Consumption (EC)
and Heating and Cooling Degree-Days (HDD and CDD,
respectively). The electricity demand is interrelated with
ambient conditions, i.e., heating and cooling requirements,
here accessed through technical indexes based onweather
conditions, HDD and CDD variables, which describe the
requirements of the energy demand for heating and
cooling (air conditioning) of buildings. They are derived
from meteorological observations of the air temperature
and interpolated in regular networkswith a resolution of 25
km in Europe. These variables present a complementary
characteristic throughout the year, i.e., they quantify the
degrees Celsius required for heating in the winter months
and cooling in the summer months.

The Industrial Production Index (IPI), measures changes
in the volume of production of goods at short and regular
intervals, relative to a period taken as a reference (2015
year). Under the assumption of stability of technical
coefficients, this index also measures the trend of value
added in volume. Doing so, its relation to the electricity
demand also affects the electricity price.

Electricity prices also correlate with the mix of energy
sources. In this sense, hydroelectric production, variability
of fossil fuel prices, penetration of renewable energy
sources and the extent in which electricity is imported are
also included in the model through exogenous variables
Hydroelectric Productivity Index (HPI), Europe Brent Spot
Price (EBSP), Crude Oil Imports (COI), Special Regime
Production (SRP) and electricity Import-Export Balance
(IEB).

Hydroelectric generation, due to its high penetration
in the Iberian electricity market, impacts considerably
in the electricity prices. The Hydroelectric Productivity
Index (HPI) reckons the deviation of the total amount
of electric energy produced from hydro resources in a
given period, in relation to that which would take place if
an average hydrological regime occurred. The latter is
evaluated taking into account 30 historical hydrological
regimes. If HPI is higher than 1, the period under analysis
is considered wet, and if HPI is lower than 1, from the
hydrological point of view, it is considered dry.

The Europe Brent Spot Price is a major benchmark
price for purchases of light crude oil in Europe. When
aggregated with Crude Oil Imports of the Iberian countries,
it allows the quantification of costs to generate electricity
from fuel, such as natural gas.

In opposition to the ordinary regime production, including
traditional non-renewable sources and large hydro-plants,
the special regime production comprises generation from
renewable sources, cogeneration, small production and
production regulated by any other special regimes, such
as the generation of electricity for self-consumption. The
variable Renewable Special Regime Production measures
the impact of this production from renewable sources in
the electricity prices.

Finally, the extent to which electricity is imported or
exported is evaluated through the Import-Export Balance
that ultimately depends on the interconnections between
Portugal, Spain and France.

It should be noted that from the variables stated above,
the ones that depend on the dimension of the countries
under analysis, are used in a per capita basis. Table 1
summarizes the dependent variable and independent
variables that have demonstrated a high correlation with
the electricity price on a monthly basis, their units and
data sources.

Herein after, information of the country in the data
set is given through suffixes -P and -S, for Portugal and
Spain, respectively.

3. Forecasting research
methodology

Forecasting time horizons are not consensual in literature
and vary in agreement with the primary objective of the
analysis. Thresholds for electricity price forecasting may
vary from a few minutes up to days ahead (short-term
time horizons), from few days to few months ahead
(medium-term time horizons) and months, quarter or
even years (long-term time horizons), being the latest
usually based on lead times measured in months. As
previously introduced, the proposed analysis aims at
forecasting electricity prices on a monthly basis ahead.

Numerous methods of forecasting electricity prices
have been proposed over the last years. There are several
modelling approaches, statistical models, multi-agent
models, and computational intelligence techniques, which
can be found in [3]. It is also noteworthy the growing use
of hybrid models, combining those methodologies, as
described in [18].
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Table 1 Variables used for electricity price forecasting

Variable Unit Data source
Average monthly Electricity Price of the daily market (EP) euro/MWh [9]
Electricity Consumption per capita (EC) kWh [10, 11]
Heating Degree Days (HDD) (Nr) [12]
Cooling Degree Days (CDD) (Nr) [12]
Industrial Production Index (IPI) (n.a.) [13, 14]
Hydroelectric Productivity Index (HPI) (n.a.) [10, 11]
Europe Brent Spot Price FOB (EBSP) Dollars per Barrel [15]
Crude Oil Imports per capita (COI) Metric Tons [16, 17]
Renewable Special Regime Production per capita (SRP) MWh [10, 11]
Electricity Import-Export Balance per capita (IEB) MWh [10, 11]

The forecast methodology in this work uses a statistical
approach, which chiefly derived from classical load
forecasting. Statistical methods forecast the current price
by using a mathematical combination of the previous
prices and/or previous or current values of the exogenous
or independent variables. The main advantage of the
price forecasting based on exogenous variables is that
it allows system operators to interpret some physical
characteristics in the electricity price formation. In this
context, and despite a large number of alternatives,
Multiple Linear Regression Model (MLRM) is still among
the most popular forecasting approach and is the model
adopted in the current analysis.

3.1 Multiple Linear Regression Model

The MLRM is a statistical model that assumes there is
a linear relationship between the dependent or predictor
variables, Y, and X independent variables, the latter being
exogenous, explanatory, non-stochastic and observable
variables, used to explain the variation of the variable Y. A
model that comprises more than one independent variable
is a multiple regression between a dependent variable and
a set ofn+1 independent variables assuming a linear form
and stochastic because it includes an error term [19]. The
Multiple Linear Regression Model is given by Equation 1,
as follows:

Yt = b0 + b1X1t + b2X2t + bjXjt + . . .+ bkXkn + ut

t = 1, 2, . . . , n, j = 1, 2, . . . , k
(1)

where bo is the y-intercept, bj represents the parameters
of the model, and ut is the error term.

A casual association is not assumed between dependent
and independent variables. In this sense, the dependent
variable, Y, depends on a set of n+1 known factors and an
unknown factor, being an endogenous variable, explained,
stochastic or random and observable.

Typically, the linear regression model uses the following

assumptions [20]:

• The regression mode is linear, as proposed in
Equation (1);

• The regressors are assumed to be fixed or
non-stochastic in the sense that their values are
fixed in repeated sampling;

• Given the values of the independent variables, the
expected value of the error term is zero;

• The variance of each error term, given the values of
independent variables, is constant or homoscedastic;

• There is no correlation between two error terms, i.e.,
there is no autocorrelation;

• There are no perfect linear relationships among the
dependent variables, i.e., there is nomulticollinearity;

• The regression model is correctly specified.

Based on the assumptions mentioned above, the most
popular method for parameters estimation, the Ordinary
Least Squares (OLS), provides estimators which have
several desirable statistical properties, such as [21]:

• The estimators are linear, which means that they are
linear functions of the dependent variable, Y;

• The estimators are unbiased, which means that, in
repeated applications of the method, on average, they
are equal to their true values;

• The estimators are efficient, which means that they
have minimum variance.

3.2 Measures of forecasting accuracy

The main purpose of the modelling and forecasting
processes is to clearly discern the future values of the
dependent variable, and the most important criterion of all
is how accurately a model does this. The most familiar
concept of forecasting accuracy is evaluated through the
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error magnitude accuracy, et , which relates to the forecast
error of a particular forecastingmodel, defined by Equation
2 [22]:

et = At − Ft (2)

being At the actual value and Ft its forecast in the time
period, t.

Although there are various measures of forecasting
accuracy that can be used for forecast evaluation, in
this work it is used the mean absolute percentage error
(MAPE) expressed in generic percentage terms, computed
by Equation 3 [20]:

MAPE =
1

n

n∑
t=1

∣∣∣∣At − Ft

At

∣∣∣∣ (3)

As stated previously in Section 3, electricity prices under
analysis are based on a monthly temporal basis, for
which data is significantly higher than zero. Under these
circumstances, the MAPEmeasure performs satisfactorily
on the forecasting accuracy evaluation.

4. Electricity price modelling and
forecasting

4.1 Data sample and generic model

The modelling methodology adopted the historical data
from January 2010 till December 2015, with a total of 72
observations. Data from 2016 year was used to validate the
model, and data from 2017 and 2018 years were applied
to produce the forecasts and to build the models, based
on the previous validation from 2016 data, already working
with 84 observations (January 2010 till December 2016).

The results were produced through GRETL statistical
software (Gnu Regression, Econometrics and Time-series
Library) for Windows.

The output model is no more than a representation
of the relations between the variables at the same time
set, according to Equation 1. Average monthly electricity
price (EP) modelling and forecasting, for the Portuguese
and Spanish markets, employs the econometric model
given by Equation 4

It should be noted that models for Portuguese and
Spanish markets interrelate the electricity price with
explanatory variables for each country.

4.2 Electricity prices modelling for Portugal

The results obtained for Portugal with the Multiple
Linear Regression Model, estimated by the application
of the Ordinary Least Squares Method for 2017 year are
presented in Table 2.

From the results obtained, the coefficient of determination
is 0.6, which indicates that the independent variables
explained about 60% of the variations that occurred in the
electricity prices in Portugal. The adjusted coefficient of
determination is 0.5519 which indicates that about 55%
of the changes in electricity prices were explained by the
variations in the independent variables. It is also possible
to conclude:

• The autonomous component indicates that -36.6325
of the electricity prices for Portugal are not explained
by independent variables. However, this variable does
not reveal a statistically significant value;

• If the variables IPI-P, SRP-P, HDD-P, CDD-P, and
HPI-P vary by one unit, the Electricity Price variable
decreases. However, from those variables, only
IPI-P, HDD-P, CDD-P and HPI-P reveal statistical
significance;

• The variable electricity consumption per capita (EC-P)
has a positive relation with the Electricity Price: if
the first one varies one unit the later increases
by approximately 0.1237 units. This variable is
statistically significant, with a significance level of 1%;

• The variable COI-P has a positive relation with the
Electricity Price: if the first one varies one unit,
the Portuguese electricity price variable increases in
39.0607 units;

• From the analysis of the Electricity Import-Export
Balance per capita (IEB-P), it has a direct relation with
the Electricity Price, if the first one varies in one unit,
the Portuguese electricity price variable increases in
22.2343 units;

• Regarding the F statistic (9.74), there is sufficient
statistical evidence to verify that there are
variables that assume values other than zero
and, as previously mentioned, the variables
included in the model explain satisfactorily
the changes in Electricity Prices in Portugal;

EPt = a+ b0ECt + b1HDDt + b2CDDt + b4IPIt + b5HPIt + b6EBSPt + b7COIt + b8SRPt + b9IEBt

t = 1, 2, . . . , n
(4)
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Table 2 Performance measures of the estimated model for Portugal, 2017 year

Coefficient Error ratio-t p-value Significance VIF
a −36.6325 25.6295 −1.429 0.1571
IPI-P −0.1751 0.0851 −2.057 4.32E-02 ** 1.474
SRP-P −17.2485 23.0701 −0.7477 4.57E-01 3.348
EC-P 0.1237 0.0331 3.734 4.00E-04 *** 4.031
HDD-P −0.07268 2.06E-02 −3.527 7.00E-04 *** 7.116
CDD-P −0.1085 4.87E-02 −2.230 2.88E-02 ** 2.773
HPI-P −11.6943 2.2848 −5.118 2.36E-06 *** 1.951
EBSP-P 0.0207 0.0385 0.5364 5.93E-01 1.927
COI-P 39.0607 24.7522 1.578 1.19E-01 1.76
IEB-P 22.2343 18.4084 1.208 2.31E-01 3.375
Mean var.dependent 44.4036 D.S. var. dependent 10.5654
White Test (TR2) 44.82 Durbin-Watson 1.086
R2 0.6 R2 adjusted 0.5519
F (9.74) 12.36 p-value (F) 1.05E-11
Notes: *, Significance of 10%; **, Significance of 5%; ***, Significance of 1%.

• From the analysis of the violation of the basic
hypotheses of the model, in terms of multicollinearity
and based on the values of the Variance Inflation
Factor (VIF), there is no violation of the basic
hypothesis of multicollinearity, since the VIF values,
for all variables, are lower than 10. It can be
concluded that there is no dependence on explanatory
variables;

• Regarding the residue analysis, normality was
evaluated using the Kolmogorov-Smirnov test
made through the statistic test χ2 = 0.6701, with
p-value=0.7351, which means that this model follows
a normal distribution at a significance level of 1%, so
this hypothesis is not violated. The mean is equal to
µ= 5.0753E-15, i.e., approximately zero, from which
the zero-mean hypothesis is also not violated E (µ)=0;

• For homoscedasticity, a constant variance of the
error term was verified by the White test for
heteroskedasticity and the test statistic TR2= 45.6799
with test value (χ2 (54) > 45.6799) =0.7825. Because
the test value is higher than 10%, it can be concluded
that there is no violation of homoscedasticity, i.e., the
variance is constant from observation for observation.
There is no loss of the characteristics of OLS
estimators, since they remain BLUE;

• The Durbin-Watson statistic=1.0863 lies in the zone
of positive autocorrelation of the errors. Then, it
can be concluded that there is an infringement
of the independence of the error term and
that this model suffers from autocorrelation of
the errors. In order to correct the infraction
hypothesis, the Cochrane-Orcutt test was applied.
Accordingly, the following statistic was obtained:
Durbin-Watson=2.0855, which is now in the zone of

independence of the errors.

In order to be able to model and predict electricity prices
for 2018 year, it was necessary to create a trend line from
the price of electricity for Portugal and create 12 dummies
(dm) or periodic auxiliary variables that represent each of
the months of the year of 2018. These auxiliary variables
were created as assistance to the model, due to the
absence of data from the independent variables referring
to the year 2018, from September 2018. In addition,
to remove the trend component, a variable has been
eliminated (for instance, dm2), and the least squares
method was applied. The performance measures of the
model are presented in Table 3.

It is also necessary to verify that the obtained model
for 2018 does not violate the infractions in order to be able
to validate it. Based on the performance measures of the
current model and regarding the violation of the model
hypotheses, it can be concluded that:

• All auxiliary variables are statistically significant at a
significance level of 1%;

• There is no violation of the basic hypothesis of
multicollinearity, considering the low values of the
Inflation Factor of the variance;

• Constant variance of the error term, by White
test for heteroscedasticity, since the value of
evidence is higher than 10%, there is no violation of
homoscedasticity;

• The Durbin Watson statistic=1.2243 was found in the
zone of positive autocorrelation of the errors,meaning
that there is an infraction to the independence
of the error term. To overcome the previously
verified infraction, the Cochrane-Orcutt test was
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Table 3 Performance measures of the model with periodic auxiliary variables for the Portuguese market, 2018 year

Coefficient Error ratio-t p-value Significance
Time 0.2013 0.0458 4.395 3.21E-05 ***
dm1 36.4268 5.1922 7.016 5.42E-10 ***
dm3 25.998 5.2276 4.973 3.44E-06 ***
dm4 24.8168 5.2458 4.731 8.94E-06 ***
dm5 32.2443 5.26 6.125 2.81E-08 ***
dm6 37.9767 5.28 7.188 2.49E-10 ***
dm7 39.353 5.30245 7.422 8.60E-11 ***
dm8 38.6342 5.32199 7.259 1.80E-10 ***
dm9 40.9517 5.34185 7.666 2.81E-11 ***
dm10 41.5504 5.36202 7.749 1.92E-11 ***
dm11 37.9729 5.38251 7.055 4.55E-10 ***
dm12 41.8 5.40 7.732 2.08E-11 ***
Mean var. dependent 45.4093 D.P. var. dependent 10.58904
White Test (TR2) 62.5709 Durbin-Watson 1.2243
R2 0.9256 R2 adjusted 0.4561
F (12.84) 87.1428 value P(F) 4.14E-42
Notes: *, Significance of 10%; **, Significance of 5%; ***, Significance of 1%.

applied. Accordingly, the following statistic was
obtained by Durbin-Watson=2.02538 which translates
in independence of the errors.

4.3 Electricity prices modelling for Spain

Following the same methodology described in previous
section, the model obtained for Spanish market, in 2017
year (presented in Table 4), presents a coefficient of
determination of 0.5826 and indicates that the variables
EC-S, HDD-S, CDD-S, HPI-S, IPI-S, EBSP-S, SRP-S,
COI-S, IEB-S explain 58.3% changes of electricity prices
in Spain during 2017 year. The adjusted coefficient of
determination is 0.53, which indicates that about 53% of
the changes in electricity prices in Spain are explained by
the independent variables.

Based on the results obtained and presented in the
table above, it can be concluded that:

• The autonomous component shows that -0.3407 of
electricity prices in the Spanish market are not
explained by the independent variables. This variable
is not a statistically significant variable;

• Variables IPI-S, SRP-S, HDD-S, CDD-S, HPI-S, and
IEB-S have an inverse relationship with the Electricity
Price. From those, only variables HDD-S and HPI-S
are statistically significant;

• EC-S, EBPS-S, and COI-S have a positive relation with
the Electricity Price but only the EC-S reveals to be
statistically significant, at a significance level of 5%;

• Regarding F statistic F(9.74)=11.47413, with a test
value lower than 1%, there is sufficient statistical

evidence that there are variables that assume values
different from zero and as previously mentioned,
the variables included in the model explain in
a satisfactory way the variations occurred in the
electricity prices in Spain;

• The analysis of the infraction to the basic hypotheses
of the model, considering the VIF, it is verified that
there is no infringement of the basic hypothesis of
multicollinearity (all variables present VIF lower than
10). There is no correlation between the explanatory
variables;

• The test of normality of the residue performed
through the statistic test χ2 = 0.767096, with test
value = 0.68144, means that this model follows a
normal distribution at a significance level of 1%, so
this hypothesis not violated. The mean value is
approximately zero, so the zero-mean hypothesis is
also not violated E(µ) = 0;

• Constant variance of the error term, through the
White test for heteroskedasticity and the test statistic,
is higher than 10%, i.e., there is no violation of
homoscedasticity.

Regarding the model and prediction of the electricity
prices for the Spanish market, for 2018 year, following
the same methodology stated in the previous section, the
model performance measures are presented in Table 5.

From the statistical tables proposed by Durbin and
Watson [23], for 9 independent variables the lower bound
(dL) is equal to 1.4173, upper bound (dU) equals 1.8876,
4-dU is equal to 2.1124 and finally 4-dL is equal to
2.5827. It was obtained the following Durbin-Watson
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Table 4 Performance measures of the estimated model for Spain, 2017 year

Coefficient Error ratio-t p-value Significance VIF
a −0.3407 26.6312 −0.01279 9.90E-01
IPI-S −0.1539 0.1159 −1.327 1.89E-01 1.744
SRP-S −21.2740 17.464 −1.218 2.27E-01 2.378
EC-S 0.07358 0.0309 2.381 1.98E-02 ** 4.189
HDD-S −0.03614 1.59E-02 −2.270 2.61E-02 ** 7.297
CDD-S −0.0856 5.70E-02 −1.501 1.38E-01 6.597
HPI-S −12.8954 1.7658 −7.303 2.67E-10 *** 1.187
EBSP-S 0.04761 0.04266 1.117 2.68E-01 2.429
COI-S 59.5177 41.24 1.443 1.53E-01 1.925
IEB-S −5.75140 46.5262 −0.1236 9.02E-01 2.33
Mean var. dependent 44.3088 D.S. var. dependent 10.1817
White Test (TR2) 51.4569 Durbin-Watson 0.8656
R2 0.58255 R2 adjusted 0.53178
F (9.74) 11.47413 p-value (F) 4.81E-11
Note: *, Significance of 10%; **, Significance of 5%; ***, Significance of 1%.

Table 5 Performance measures of the model with periodic auxiliary variables for the Spanish market, 2018 year

Coefficient Error ratio-t p-value Significance
Time 0.2073 0.0449 4.618 1.38E-05 **
dm1 36.718 5.08961 7.214 2.21E-10 ***
dm3 25.7472 5.12433 5.025 2.80E-06 ***
dm4 24.4437 5.14219 4.75 8.18E-06 ***
dm5 31.9601 5.16 6.193 2.09E-08 ***
dm6 37.4616 5.18 7.234 2.02E-10 ***
dm7 38.8555 5.1977 7.476 6.73E-11 ***
dm8 38.1383 5.2169 7.311 1.43E-10 ***
dm9 40.2047 5.2363 7.678 2.66E-11 ***
dm10 40.7012 5.2561 7.744 1.97E-11 ***
dm11 37.3277 5.2762 7.075 4.16E-10 ***
dm12 41.3 5.30 7.806 1.48E-11 ***
Mean var. dependent 45.2971 D.P. var. dependent 10.2411
White Test (TR2) 64.1936 Durbin-Watson 1.2594
R2 0.9280 R2 adjusted -0.4959
F (12.84) 90.1925 value P(F) 1.1E-42
Note: *, Significance of 10%; **, Significance of 5%; ***, Significance of 1%.

statistic=0.865615, which lies in the zone of positive
autocorrelation of the errors, meaning that there is
an infringement of the independence of the term of
error. Following the application of Cochrane-Orcutt
test, a Durbin-Watson statistic=1.9481 is obtained, which
satisfies the independence of the errors.

From the information presented in Table 5, the model
for the Spanish market for 2018 year does not violate
the infractions, validating it. All auxiliary variables are
statistically significant with a significance level of 1%.
Additionally,

• Regarding the analysis of multicollinearity,
considering the VIF, it is verified that there is no
violation of this hypothesis;

• White test has a test value higher than 10%, i.e., there
is no violation of homoscedasticity;

• The Durbin-Watson statistic=1.2593 was obtained.
This value is in the positive zone of autocorrelation of
the errors, being necessary further analysis, using the
test of Cochrane-Orcutt to verify if that the infraction
can be solved. With the Cochrane-Orcutt test the
following Durbin-Watson statistic=2.029 was obtained
and, consequently, there is independence of the
errors.
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Table 6 Electricity prices forecast for Portugal, 2017 and 2018 years

Months
2017 2018
Real Price
€/MWh

Forecast Price
€/MWh

APE
%

Real Price
€/MWh

Forecast Price
€/MWh

APE
%

January 71.52 57.04 20.25 51.63 55.93 8.33
February 51.39 42.38 17.53 54.98 50.4 8.33
March 43.95 45.82 4.25 39.75 47.42 19.30
April 44.18 49.94 13.04 42.66 47.26 10.78
May 47.12 49.05 4.10 55.08 55.64 1.02
June 50.22 50.7 0.96 58.48 62.25 6.45
July 48.6 51.41 5.78 61.84 64.44 4.20
August 47.43 45.87 3.29 64.29 64.47 0.28
September 49.16 49.97 1.65 71.3 67.48 5.36
October 56.97 64 12.34 - 68.71 -
November 59.36 51.65 12.99 - 65.7 -
December 59.49 52.31 12.07 - 70.02 -
Mean values 52.45 50.85 9.02 55.56 59.98 7.12

Table 7 Electricity prices forecast for Spain, 2017 and 2018 years

Months
2017 2018
Real Price
€/MWh

Forecast Price
€/MWh

APE
%

Real Price
€/MWh

Forecast Price
€/MWh

APE
%

January 71.49 55.97 21.71 49.98 54.81 9.66
February 51.74 40.57 21.59 54.88 49.03 10.66
March 43.19 47.12 9.10 40.18 45.92 14.29
April 43.69 47.14 7.90 42.67 45.71 7.12
May 47.11 49.54 5.16 54.92 54.25 1.22
June 50.22 52.34 4.22 58.46 60.7 3.83
July 48.63 53.22 9.44 61.88 62.97 1.76
August 47.46 53.99 13.76 64.33 63.06 1.97
September 49.15 53.8 9.46 71.27 65.88 7.56
October 56.77 52.89 6.83 - 67.07 -
November 59.19 52.15 11.89 - 64.32 -
December 57.94 44.48 23.23 - 68.91 -
Mean values 52.22 50.27 12.02 55.40 58.55 6.45

4.4 Forecasting results for Portugal and
Spain

This section presents the forecasts for the Electricity
Price, for each of the country’ markets under analysis, for
2017 and 2018 years, based on the models created and
described in the previous sections.

To evaluate the accuracy of the prediction, it will be
used the Absolute Percent Error (APE) and Mean
Absolute Percent Error (MAPE). The assumed confidence
interval to produce forecasts is 95%. The results
obtained for the two models selected, with the previous
described methodologies, and for the respective statistical
measures/indicators are presented in Table 6 and Table 7,
for Portugal and Spain, respectively.

Regarding the Portuguese market (Table 6) and 2017
year, it can be observed that the difference between the
actual and expected annual averages is € 1.6 and the
MAPE is 9.02%. Forecasts for 2017 follow the behaviour
of real historical prices. For 2018, and considering
the known prices, that is, between January 2018 and
September 2018, it is notorious that the forecast follows
the same behaviour. The MAPE, evaluated for 9 months,
equals 7.12%.

From the analysis of the data of average monthly
electricity price for the Portuguese Market, considering
the period of analysis from January 2017 to September
2018, it is verified that this indicates maximum values
in the winter months, where variables such as EC-P
and HDD-P are higher which may justify the increase
in electricity prices. Extrapolating this analysis to the
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remaining periods, it is possible verify that the electricity
prices register lower values for the summer months,
where the EC-P is smaller. The minimum values of the
electricity Prices are registered in March and April, for
both years under analysis. This decrease in price is
justified when the months have a very high HPI-P, from
which higher-cost energy sources can be withdrawn from
service, contributing to the decrease of the Electricity
Price.

Regarding electricity prices for Spain (Table 7), it is
observed that the forecast values for 2017 are higher, by
€ 1.95. The MAPE obtained for 2017 was 12.02%, higher
than its counterpart from Portuguese market forecast
and for the year 2018, about 6.45%. Analysing the year
of 2017, it can be verified that the predictions follow
the same behaviour of the original series, which allows
trusting the model. With reference to the forecast of the
average monthly electricity price for the Spanish market,
maximum values are also found in winter months, where
variables such as EC-S and HDD-S are higher. Similar to
the results obtained for Portugal, it can be verified that the
electricity prices register low values in summer months,
when the EC-S is lower.

5. Conclusions

This paper presented a statistical model with explanatory
variables for long-term electricity price forecasting in the
Iberian electricity market. The establishment of such
a reference model presents itself as an opportunity to
interpret their components, intending to understand the
complexity associated with price forecasting.

Regarding the Portuguese market, variables reflecting
the production of goods (Industrial Production Index),
ambient conditions (Heating and Cooling Degree Days),
hydroelectric potential (Hydroelectric Productivity Index)
and demand (Electricity Consumption per capita) are
statistically significant. As far as the Spanish market is
concerned, only the variables Hydroelectric Productivity
Index, Heating Degree Days and Electricity Consumption
per capita, are statistically significant. Therefore, it is
possible to state that the electricity price in the Iberian
electricity market is mainly interrelated with the inputs
demand, ambient weather conditions and generation
capacity.

From the analysis of the performance of the developed
models, the model for the Portuguese electricity market
for the year 2017, presents better results than the model
applied for the Spanish electricity market. Regarding the
forecast models for the year 2018, the model developed
for Spain gives the best performance and the lowest MAPE.

The developed modelling suggests that factors with
higher impact in the Portuguese electricity market may
not be the same factors which influence the neighbouring
Spanish market, even though they share to the same
energy market.

The quality of the estimated models validates the
use of statistical or causal methods, such as the Multiple
Linear Regression Model, as a plausible strategy to obtain
causal forecasts of electric energy prices in medium and
long-term electricity price forecasting.

Future work will explore other approaches beside
regression models to compare forecasting performances,
strengths and weaknesses of different statistical
techniques. A comparison with autoregressive-type
time series models, relating the electricity price to its
own past, and also a hybrid approach, adding the effect
of the most notable exogenous variables should also be
performed.
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