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ABSTRACT: Precision agriculture, making use of the spatial and temporal variability of
cultivable land, allows farmers to refine fertilization, control field irrigation, estimate
planting productivity, and detect pests and disease in crops. To that end, this paper
identifies the spectral reflectance signature of brown rust (Puccinia melanocephala)
and orange rust (Puccinia kuehnii), which contaminate sugar cane leaves (Saccharum
spp.). By means of spectrometry, the mean values and standard deviations of the
spectral reflectance signature are obtained for five levels of contamination of the
leaves in each type of rust, observing the greatest differences between healthy and
diseased leaves in the red (R) and near infrared (NIR) bands. With the results obtained,
a multispectral camera was used to obtain images of the leaves and calculate the
Normalized Difference Vegetation Index (NDVI). The results identified the presence of
both plagues by differentiating healthy from contaminated leaves through the index value
with an average difference of 11.9% for brown rust and 9.9% for orange rust.

RESUMEN: La agricultura de precisión, haciendo uso de la variabilidad espacial y temporal
de las tierras cultivables, permite a los agricultores refinar la fertilización, controlar
la irrigación de los campos, estimar la productividad de la siembra, así como detectar
plagas y enfermedad en los cultivos. Con ese fin, en este trabajo se identifica la firma
de reflectancia espectral de la roya parda (Puccinia melanocephala) y la roya naranja
(Puccinia kuehnii), que contaminan hojas de caña de azúcar (Saccharum spp.). Mediante
espectrometría se obtienen los valoresmedios y las desviaciones estándares de la firma
de reflectancia espectral para cinco niveles de contaminación de las hojas en cada
tipo de roya, observándose las mayores diferencias entre hojas sanas y enfermas en
las bandas roja (R) e infrarroja cercana (NIR). Con los resultados obtenidos, se utilizó
una cámara fotográfica multiespectral para obtener imágenes de las hojas y calcular
mediante estas el índice de vegetación de diferencia normalizada (NDVI: Normalized
Difference Vegetation Index). Los resultados permitieron identificar la presencia de
ambas plagas diferenciando hojas sanas de contaminadas mediante el valor del índice
con una diferencia promedio del 11.9% para roya parda y del 9.9% para roya naranja.

1. Introduction

Sugar cane is one of the main sources of production of
sugar and other by-products, with the sugar industry being
one of the largest industries in many places, and a source

of employment for hundreds of thousands of people in
the tropical regions of the world, while cane sugar is an
ingredient of many foods. The diseases caused by rust are
considered one of the most destructive for agricultural
crops. In particular, the species of the genus Puccinia
cause the most severe damage to plants, due to the large
effects they can cause on the yield of susceptible cultivars
[1, 2].
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The brown rust disease of sugarcane, widely distributed
in almost all the sugarcane areas of the world, is caused
by the phytopathogenic fungus Puccinia melanocephala H.
Sydow and P. Sydow, and is considered to be one of the
most important diseases due to its affectation to the crop.
Losses range from 10% to more than 50% in susceptible
cultivars [3–7]. The orange rust of sugar cane (Puccinia
kuehnii (W. Krüger) E. J. Butler) is a parasite that infects
only species and hybrids of the genus Saccharum. The
orange rust is one of the most important at present, since
it causes the decrease in the agricultural yield of the plant,
with the consequent economic losses for the producers
[8–12].

Like the rust of other crops, the brown and orange
rust of sugar cane are characterized by causing foliar
lesions that, when evolving, break the epidermis of the leaf,
giving the surface of the leaf a rough appearance. These
lesions reduce the chlorophyll content of infected leaves,
the efficacy of carbon fixation, stomata conductance and
rate of photosynthesis [13]. In conditions of high severity,
pustules and lesions collapse and necrotic the leaves [14].
This necrosis in the leaves cause the loss of water from
the plant, leads to water stress and causes the reduction
of the yield of the stems [15, 16]. Unlike brown rust, the
causal agent of orange rust produces orange lesions
on the leaves (pustules), very small. The most frequent
dimensions of pustules of P. kuehnii reach the length
between 0.75 and 3.0 mm and between 0.24 and 0.61 mm
in width, which tend to cluster in the form of patches [17].

The traditional method of detecting both types of rust
is by visual inspection according to the conspicuous
symptoms described above. However, this procedure is
time consumer and an intensive work, increasing the
complexity of its application with the extension of the
areas to be scrutinized, and needing the intervention
of experts highly prepared for this task. Therefore, an
efficient and effective method of early detection of the
presence of rust is necessary. This should be able to
cover large areas of crop in a short time, and also give the
possibility of providing graphical evidence, by means of
images, of the exact regions that are contaminated, as well
as the degree of contamination of each region in particular.

An alternative to achieve this is the use of aerial
images obtained in various bands of the electromagnetic
spectrum. These images allow what is known as
hyperspectral and multispectral analysis, which is now
widely used in agriculture. These are based on collecting
the reflectance of each element of a scene at different
wavelengths, ρ (λ), taken with special receptors able to
differentiate the various wavelengths, both visible light
and other outside the visible range, as is the infrared
region of the electromagnetic spectrum [18]. Different

properties of the components of a scene are manifested
through the spectral composition of the wavelengths that
each component of the scene emits. For each wavelength
or range of these, a reflectance factor indicates how much
of the incident radiation is reflected. Thus, ρ (λ) = 100%
means that all incident radiation is reflected, whereas
ρ (λ) = 0% means that all incident radiation is absorbed
[19]. The graph of ρ (λ) is called the spectral reflectance
curve, this curve is characteristic of each material, so it is
also called spectral reflectance signature, being a unique
correspondence between a material and its reflectance
spectrum [20–23].

Currently, characterizing scenes through their spectral
reflectance signature using spectrometers has become
a very useful alternative to identify the presence of
objects that are difficult to identify using other traditional
methods, such as texture analysis, color segmentation,
etc. The spectral reflectance signature of vegetation
varies for various reasons. Chlorophyll in healthy leaves
strongly absorbs radiation at the wavelengths of red and
blue, but reflects that of green [24]. Beyond the visible
zone, the plants show a strong increase in reflectance in
what is called the near infrared plateau [25]. The scientific
literature specialized in obtaining spectral reflectance
signatures collects several works for the study of the
presence of pests from images in which their spectral
content is characterized by different frequency bands
[26–28]. These analyzes have the characteristic of being
specific for each type of pest and for the local atmospheric
conditions, which influence the spectral composition of
the illumination and, therefore, of the obtained images.

On the other hand, multispectral images, unlike the
curves provided by the spectral reflectance signatures
obtained with spectrometers, are monochromatic images
taken with photographic cameras for a reduced group
of different wavelengths by means of optical filters.
The wavelengths used by multispectral cameras are
generally a subset of those contained in a spectral
reflectance signature. Using multispectral images we can
obtain vegetation indices (VI), quantitative measurements
obtained for each pixel of the image from a combination of
the reflectance values at various spectral bands in a form
designed to produce a simple amount that indicates the
vigor of the vegetation contained in each pixel of the image.
These indices allow us to estimate and evaluate the state
of health of the vegetation, based on the measurement of
the radiation that the plants emit or reflect [29]. Therefore,
by knowing the reflectance of vegetation at different
wavelengths, it is possible to calculate vegetation indices,
create maps and georeferenced images, which can be
used for pest detection.

One of the first applications of multispectral imaging
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was to detect the spread of the corn plague in the
American Midwest [30]. In [31] a study is made with
the objective of collecting and analyzing the spectral
reflectance signatures of sugarcane leaves infected
by white leaf disease and thus determine the level of
infection of the plant. More recently, in [32] spectral
evaluations were carried out in Brazil in cultivars of
sugarcane susceptible to orange rust. These authors
estimated the bidirectional reflectance factor (BRF)
from radiometric measurements. In addition, vegetation
indices were calculated, such as the standardized red edge
difference vegetation index (NDVI705), the modified red
edge normalized difference vegetation index (mNDVI705),
as well as an index to measure the effectiveness of the
use of radiation in photosynthesis, the photochemical
reflectance index (PRI). The results showed, in the spectral
curve of leaves of healthy sugar cane, higher BRF than
those infected by the orange rust in the spectral region of
the green, and lower values of BRF in leaves infected by
the fungus in the near infrared region. The determination
of vegetation indices was important to determine the
differences in spectral behavior in infected and healthy
sugarcane leaves, especially with PRI. However, since the
classic work of Apan et al.[33], published in 2004, in which
hyperspectral imaging data from the Hyperion satellite
were used to detect orange rust disease in sugar cane
fields in Australia, there is very little research dedicated
to identifying the spectral reflectance signature of rust
diseases in sugar cane.

This paper presents a study of spectral reflectance
signatures that show sugarcane leaves contaminated with
brown rust (P. melanocephala) and orange rust (P. kuehnii),
obtained by spectrometry. From this study, we used a
multispectral camera to obtain the normalized difference
vegetation index (NDVI). The NDVI obtained in each case
allowed differentiating between healthy leaves and those
contaminated with rust, mainly for brown rust. The results
identified the presence of both pests by differentiating
healthy from contaminated leaves through the index value
with an average difference of 11.87% for brown rust and
9.94% for orange rust.

2. Materials and methods

2.1 Methodology

As mentioned above, this study begins with the
identification of the spectral reflectance signature of
brown rust (P. melanocephala) and orange rust (P. kuehnii),
which contaminate sugarcane crops (Saccharum spp.).
Our methodology focuses on the identifying of spectral
bands capable of differentiating between healthy and
contaminated leaves. These bands were finally used to
obtain multispectral images, which allows the calculation

of a vegetation index capable of distinguishing the
difference between the presence and absence of rust. To
do this, we follow the steps below:

1) Selection of cultivars.

2) Preparation of culture samples.

3) Use of the spectrometer to obtain spectral signatures.

4) Use of multispectral camera to obtain images in
spectral bands of interest.

5) Calculating the vegetation index.

6) Analysis of results.

The steps of this methodology are summarized in Figure 1
and described in the following subsections.

2.2 Preparation of culture samples

The samples of brown rust were collected in an experiment
considered as proof of resistance to this disease of
cultivars under study. This experiment was planted in
September 2016 in the experimental block of the Estación
Territorial de Investigaciones de la Caña de Azúcar Centro
Villa Clara (ETICA Centro Villa Clara), province of Villa
Clara, Cuba. This station belongs to the Instituto de
Investigaciones de la Caña de Azúcar (INICA). The collection
of the leaves was done close to 11:00 am in the month of
March 2017, having an age of six months. The samples
of orange rust were collected in an experiment for the
evaluation of resistance of commercial cultivars to orange
rust and monitoring of the evolution of this disease.
Samples of this experiment were planted and harvested
equally in ETICA Centro Villa Clara, in the same dates of
the brown rust. For the study, samples of leaves infected
with the brown rust of cultivar B4362 (susceptible to P.
melanocephala) and of leaves infected with the orange
rust of cultivar C01-227 (susceptible to P. kuehnii) were
collected.

For the selection of samples of infected leaves, in
each case a leaf diagnosis was first adopted, leaves +3
(third leaf with visible dewlap) were collected, using the
scale of five degrees of attack severity (estimating the
percentage of area foliar affected by pustules), according
to [34], where: grade 1 is applied when the affected leaf
area (ALA) reaches up to 5% (ALA ≤ 5%), grade 2 (5% <
ALA ≤ 15%), grade 3 (15% < ALA ≤ 25%), grade 4 (25% <
ALA ≤ 50%) and grade 5 (50% < ALA). Subsequently, the
presence of the causative agent was confirmed through an
optical microscope, taking into account the characteristics
and morphological differences of the uredospores of
both rusts described by [35]. Cultivars with grade 1 are
considered resistant to brown rust and orange rust, and
grade 5 are considered highly susceptible [36]. Five leaves
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Figure 1 Experimental methodology

of cultivar B4362 were collected, one healthy (not infected
by P. melanocephala) and four infected by brown rust with
ALA grade between 1 and 4. In the same way, five leaves
of the cultivar C01-227 (susceptible to P. kuehnii) were
collected: one healthy (not infected by P. kuehnii) and four
infected by orange rust with ALA grade between 1 and 4.

2.3 Use of the spectrometer to obtain
spectral signatures

To obtain the spectral reflectance signature, the Corona
Plus Remote spectrometer (Figure 2), marketed by the
German firm Carl Zeiss, was used. This is a laboratory
equipment that has a measuring head that is connected
to the central unit using fiber optics and this unit in
turn connects to a PC for the analysis of the data and
visualization of the results via the Ethernet interface.
Its reflectance measurement range is from 398 nm to
1,702 nm in 422 bands, with a spectral resolution lower
than 10 nm, sensing a circular area of sample with
approximately 2.5 mm radius, equivalent to 20 mm2. The
curves were obtained reading in points along each leave
with separations between 20 and 30 mm approximately,
without taking into account that the reading is made on a
contaminated area or not.

The data obtained by the spectrometer were
processed by the Aspect Plus software, version 1.76 (C)
(https://www.zeiss.com/spectroscopy/products/
software/aspect-plus.html). This is a modular
and flexible spectral analysis software package that
works under MS Windows. Through Aspect Plus, spectral
measurements and processing can be performed for the
Zeiss MCS 5xx and Corona spectrometers.

 

 

Figure 2 Spectrometer Corona Plus Remote
(https://www.zeiss.com/spectroscopy/products/
spectrometer-systems/corona-plus-remote.html)

2.4 Multispectral images production

To validate the practical application of the analysis of
the obtained spectral reflectance signatures, images
obtained with a multispectral camera were used.
The multispectral images were obtained using the
Parrot Sequoia camera (https://www.parrot.com/
business-solutions-us/parrot-professional/
parrot-sequoia). This camera contains five independent
sensors that operate simultaneously to obtain their
respective images in the different spectral bands, a
sunshine intensity sensor to adjust the cameras to the
existing lighting conditions, a GPS module, an inertial
measurement unit that registers the orientation of the
cameras, as well as a magnetometer that acts as a
compass and indicates the direction in the flight. Designed
for agriculture with excellent precision, it can be adapted
to all types of drones. The data provided by all these
components are integrated as metadata in captured
images.

The five cameras obtain respectively a panchromatic
image (RGB) of 16 Mpx (4,608x3,456), 24 bits per pixel (8
bpp for each channel of color), with a pixel of 1.34 µm,

12

https://www.zeiss.com/spectroscopy/products/software/aspect-plus.html
https://www.zeiss.com/spectroscopy/products/software/aspect-plus.html
https://www.zeiss.com/spectroscopy/products/spectrometer-systems/corona-plus-remote.html
https://www.zeiss.com/spectroscopy/products/spectrometer-systems/corona-plus-remote.html
https://www.parrot.com/business-solutions-us/parrot-professional/parrot-sequoia
https://www.parrot.com/business-solutions-us/parrot-professional/parrot-sequoia
https://www.parrot.com/business-solutions-us/parrot-professional/parrot-sequoia


J. L. Soca-Muñoz et al., Revista Facultad de Ingeniería, Universidad de Antioquia, No. 96, pp. 9-20, 2020

 

 

Figure 3 Examples of leaves used contaminated with brown rust and orange rust

focal length of 4.88 mm, and are saved in JPG format, as
well as four monochromatic images in: 1) range of green
(G) at 550 nm with 40 nm bandwidth (BW), 2) range of red
(R) at 660 nm with 40 nm BW, 3) range of red edge (RE) at
735 nm with 10 nm BW, and 4) range of near infrared (NIR)
at 790 nm with 40 nm BW. The monochromatic images are
1.2 Mpx (1,288x960), 16 bits per pixel (65,536 gray levels),
with 3.75 µm pixel, 3.98 mm focal length, and are saved in
TIF format.

Using the Parrot Sequoia multispectral camera with
sun lighting in the morning of a clear day, images of
the sugarcane leaf samples were taken. The distance
between the camera and the leaves was approximately
1.5 m, which gives a resolution at ground level, or ground
sample distance (GSD), of 1.4 mm per pixel. The GSD
determines the spatial resolution of the images. This is
defined as those fine details that can be captured by the
images or what portion of the ground can cover a pixel of
the image. The smaller the GSD in a digital image, the
smaller the details that can be captured and the greater
the spatial resolution. According to [37], this distance can
be calculated using Equation 1,

GSD =
HPs

f
(1)

whereH is the height at which the image was taken, Ps is
the distance between pixels in the camera sensor (pitch),
and f the focal length of the camera lens. From the GSD
used, it is achieved that the spots of contamination with
rust in the leaves can be covered by several pixels in
the image, making clearly visible the pixels of the image
that correspond to the affected regions when calculating
the indexes. This analysis must be taken into account
for images taken at distances of several tens of meters,
in which the distance covered by a pixel of the image is
greater than the size of the spot on the contaminated
region of the leaf. Figure 3 shows an example of some of
the leaves used contaminated with orange rust and brown

rust.

A second validation of the analysis of the obtained
spectral reflectance signatures was performed at field
level. For this purpose, multispectral images were taken
with the Parrot Sequoia camera, inserted in an unmanned
aerial vehicle that flew at a height of 80 m over the parcels
from which the sugar cane leaves were extracted with
each type of rust.

2.5 Calculating the vegetation index

The normalized difference vegetation index (NDVI) is used
to extract vegetation abundance from remote sensing data
by isolating the dramatic increase in reflectance over the
visible wavelengths from red ρ (R) to the reflectance from
near infrared ρ (NIR), and normalizes it by dividing by the
total reflectance of each pixel at those wavelengths using
Equation 2.

NDV I =
ρ (NIR)− ρ (R)

ρ (NIR) + ρ (R)
(2)

In this experiment, the NDVI is obtained by taking
multispectral images in the red (R) and near infrared (NIR)
bands. Thus, each pixel of the image calculated using
Equation 2 indicates the value of the NDVI at its location on
the leaf as shown in sections 3.2 and 3.3.

In theory, the value of this index ranges between -1
and 1. However, in practice the measurements generally
range between -0.1 and 0.8 [38, 39]. Clouds, water, snow
and ice give negative values of NDVI. Naked soils and other
background materials produce NDVI values between -0.1
and 0.1. The highestNDVI values occur when the amount of
green vegetation in the observed area increases, ranging
from 0.2 to 0.8. Healthy plants have a high NDVI value due
to their high infrared reflectance and relatively low red
light reflectance. Phenology and vigor are the main factors
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Figure 4 Spectral reflectance signatures of healthy leaves (0% of ALA), and contaminated leaves (50% of ALA) with orange rust
(upper row) and brown rust (lower row)

that affect the NDVI, so it is possible to estimate the state
of the health of the plant in general, the photosynthetic
activity, and the possible deficit of nutrients, as well as to
study the spatial and temporal tendencies in the dynamics
of vegetation, productivity and distribution. In [40] the
NDVI is used to identify areas of sugarcane and evaluate
their health condition from images of the IRS LISS-II
satellite, which makes it possible to calculate the area of
the land surface covered by the crop and which portion is
diseased. The authors of [41] used the NDVI, among other
indices, to demonstrate the influence of water deficit in
the low fruit production in apple trees. The work in [42]
measures sugarcane yield potential across a large number
of genotypes using canopy reflectance measurements,
such as NDVI. Recently, Johansen et al. [43] investigated
the use of high-spatial resolution satellite image data
and geographic object-based image analysis, based on
NDVI, to map putative sugarcane grub damage. In [44]
also focused on the task of classifying sugarcane, taking
as input NDVI time series extracted from remotely sensed
images. In addition, the authors of [45] evaluated the
potential of the NDVI to monitoring changes in sugarcane
yield imposed by different straw removal rates. Finally,

Zheng et al. [46] explored the potential of the Sentinel-2
satellite to discriminate between the severities of yellow
rust infection in winter wheat using some vegetation
indices, such as NDVI. However, research relating NDVI to
brown rust and orange rust in sugarcane has been poorly
evaluated in the literature.

3. Results

3.1 Analysis of spectral signatures

Using the Corona Plus Remote spectrometer and the
samples of sugarcane leaves contaminated with brown
rust and orange rust, we obtained the spectral reflectance
curves that are shown in Figure 4. For healthy leaves,
the low spectral reflectance in the portion of the blue
(450 nm) and red (670 nm) bands is observed in Figure
4, due to the strong absorption by the leaf pigments
(mainly chlorophyll). On the contrary, a peak of reflectance
in the green portion (550 nm) is manifested. In the
NIR region (700-1,300 nm), the high reflectance of the
leaves can be seen, a characteristic in which cellular
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Figure 5 Mean values and standard deviation of spectral signatures of healthy leaf and contaminated with brown rust in ALA grades
of 1 to 4. In the lower right part of figure, the mean values are compared, and the G, R, RE and NIR bands of the Parrot Sequoia

camera are indicated

structures influence. This step type pattern between
the visible regions of the electromagnetic spectrum and
NIR is characteristic of green vegetation. Beyond the
NIR, the short wave infrared region (1300 nm and above),
an absorption peak at 1,450 nm can be perceived as a
result of the presence of water. On the contrary, in the
contaminated leaves there is a noticeable dispersion in
the spectral curves, which is due to the fact that the
contamination covers at most 50% of the leaf, and the
readings of each curve are made randomly along the leaf
between contaminated areas and not contaminated. The
main difference between healthy and contaminated leaves

is seen, for orange rust, in a decrease of ρ (λ) for the
region between 750 and 900 nm (RE∼NIR), and for brown
rust in an increase of ρ (λ) in the region between 600 and
700 nm (R), a decrease of ρ (λ) in the region between 750
and 900 nm (RE∼NIR), and an increase of ρ (λ) in the
region between 1,400 and 1,600 nm. Furthermore, the
difference between leaves contaminated with orange and
brown rust is mainly seen in the R, RE∼NIR and between
1,400 and 1,600 nm regions.

Quantifying the differences in the spectral bands of
the Parrot Sequoia multispectral camera, it can be
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Figure 6 Images obtained by the four bands of the multispectral camera in leaves contaminated with brown rust. Reflectance
values showing a point of a healthy region and a contaminated region

 

 

Figure 7 Comparative values of reflectance between healthy and contaminated leaves at degree 4 of ALA for the two types of rust in
the Parrot Sequoia camera bands
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observed that in the leaves contaminated with orange rust
(top row of Figure 4), the average reflectance decreases in
the G band from 22.6%, in the healthy leaf, to 20.01% in the
contaminated leaf. In addition, the R band remains almost
unchanged, and both the RE and NIR bands decrease from
57.67% and 65.85%, to 55.35% and 63.42% respectively.
On the other hand, the difference in signatures of spectral
reflectance between healthy leaf and contaminated with
brown rust is much greater. In the G band it decreases
from 20.56% reflectance in the healthy leaf to 16.3% in
the contaminated leaf, while in the R band an increase
is produced from 10.73% up to 16.78%. However, the
greatest differences are seen in the RE and NIR bands,
where the reflectance values decrease from 56.21% and
68.2% in the healthy leaf to 42.63% and 48.85% in the
contaminated leaf. Additionally, the spectral signatures
of the leaves contaminated with both types of rust also
exhibit differences. It is important to emphasize that those
leaves that are infected with orange rust will present a
higher reflectance than the leaves infected with brown
rust in the G, RE and NIR bands.

These differences can be better appreciated in Figure 5 for
the case of brown rust. In this figure, the mean values and
standard deviations of the reflectance values for healthy
leaf (0% ALA) are plotted, as well as contaminated in grade
1, 2, 3 and 4 (up to 50% of ALA) with this type of rust.
In addition, the mean values of the spectral signatures
for the five grade are included in the lower right corner,
indicating the wavelength values corresponding to the G,
R, RE and NIR sensors of the Parrot Sequoiamulti-spectral
camera. These mean values and standard deviations
were obtained by taking between 17 and 24 readings on
each leave. As can be seen, not only is there evidence
of the notable difference that spectral signatures have
between healthy and contaminated leaves, mainly from
15% of contamination (grade 2 of ALA), but also that in
the four monochromatic bands that can sense the Parrot
Sequoia multispectral camera most of these differences
occur. This same analysis carried out for the leaves
contaminated with orange rust shows less significant
differences between the different grade of contamination
and between these and the healthy leaves.

These results were obtained with higher spectral
resolution than that previously published by [33], which
used the Hyperion EO-1 satellite which has only 220
spectral bands in the range of 400 nm to 2,500 nm and a
spatial resolution (GSD) of 30 m.

3.2 Multispectral images analysis

The images obtained did not undergo any adjustment
process. As an example, the images in the four
multispectral bands obtained from the leaves

contaminated with brown rust can be seen in Figure 6
without radiometric correction, as well as the reflectance
levels that emit a healthy region of interest and another
contaminated region. The radiometric correction can
equalize the sunlight used to obtain these multispectral
images with the light of the halogen lamp used to obtain
the spectral reflectance curves.

In spite of the numerical differences due to the uneven
illumination, and the non-radiometric correction, the
proportionality that exists between them and the
reflectance characteristic of the spectral reflectance
signatures can be verified. For healthy regions: low
reflectance in the R band, with high reflectance in the RE
and NIR bands. For the regions contaminated with both
types of rust: decrease of the spectral reflectance in the G,
RE and NIR bands, with an increase of reflectance in the R
band. This increase in the R band is more appreciable for
the leaves contaminated with brown rust. Figure 7 shows
these values comparatively in the four bands of the Parrot
Sequoia camera for the cases of healthy and contaminated
leaves in grade 4 of ALA with orange and brown rusts.
This figure confirms the result obtained previously by
spectrometry, in which differences in reflectance between
healthy and contaminated leaves are significant for brown
rust, but not for orange rust.

3.3 Vegetation index

The NDVI calculated from the reflectance values measured
by spectrometry shows clear differentiation between
healthy and contaminated zones, mainly for brown
rust, been greater the index value in healthy areas
than in contaminated areas. From Figure 7, the
minimum difference between NDVI values in healthy
and contaminated areas for the leaves with orange rust
is 0.1327, while for the leaves with brown rust is 0.2398.
Using the reflectance values obtained by the multispectral
images (Figure 6), the NDVI was calculated to obtain the
images shown in Figure 8 for both types of rust. In this
figure, the numerical values of the NDVI are shown in a
pixel of a healthy area and in another of a contaminated
area, the numerical difference between these zones
being corroborated for both types of rust. In this case, an
average difference between points of the uncontaminated
leaf and contaminated points of 0.2081 for orange rust and
0.2379 for brown rust is obtained. Taking into account that
the NDVI varies between -1 and 1, this represents a ratio of
relative decrease of the index between contaminated areas
with respect to non-contaminated areas in approximately
the 11.9% for brown rust and 9.9% for orange rust.

Unlike what was published in [33], where the R and
NIR bands are combined with the short wave infrared
(SWIR) at 1,600 nm from the Hyperion EO-1 satellite to
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Figure 8 NDVI calculated from the multispectral images for each type of rust indicating the numerical value of the index in one pixel
of a healthy region and in another of a contaminated region for each type of rust

 

 

Figure 9 Example of NDVI calculated on parcels of sugarcane susceptible to rust

achieve a high differentiation between sugar cane plants
contaminated with orange rust, this work demonstrates
the possibility of not using the SWIR band. This makes
it possible to use small multispectral cameras, which
have only the spectral bands R and NIR, placed on board
vehicles flying at low altitude, to monitor with high spatial
resolution parcels susceptible to brown rust and orange
rust.

The second validation, carried out at field level, flying
over sugar cane parcels susceptible to each type of
rust, also confirms the validity of the NDVI obtained by
multispectral imaging to differentiate areas contaminated
with rust from healthy areas. Figure 9 shows an example
of an image with the NDVI obtained. The validation of the
aerial images was carried out by an expert from the ETICA
Centro Villa Clara, where the experiments were carried out.

4. Conclusions

The spectral reflectance signature of the plants is
very useful in precision agriculture due to its typical
vegetation characteristic. The spectral reflectance
signatures obtained for sugar cane leaves (Saccharumspp.)
contaminated with brown rust (Puccinia melanocephala)
and orange rust (Puccinia kuehnii) were obtained with
spatial and spectral resolutions that exceed those
previously reported in the literature. The difference in
reflectance between healthy and contaminated leaves in
the R and NIR bands of the electromagnetic spectrum
makes it possible to use combinations of these bands to
detect contamination with both orange and brown rust.
An example of this is the NDVI calculation, either using
laboratory-level spectrometry or field-level multispectral
imaging using a low-cost camera. By flying at a relatively
low altitude with a low-cost multispectral camera, a high
spatio-temporal resolution can be achieved to detect
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orange rust and brown rust. However, the NDVI showed
minor differences (9.9%) between healthy and orange rust
contaminated leaves at the laboratory level. This is not the
case for leaves contaminated with brown rust, in which
the NDVI obtains significant differences (11.9%) between
healthy and contaminated leaves from ALA grade 2.
Therefore, the results provided by other vegetation indices
should be analyzed, differentiating healthy and diseased
regions with orange rust. In order to distinguish between
healthy and rust-contaminated regions in a sugarcane
leaf, the height of the flight must be such that the GSD is
comparable to the area of the spots due to contamination
in the leaves.
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