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ABSTRACT: Energy management focuses on improving the efficient use of resources and
increasing energy access in a path towards amore sustainable society. In spite of the strategies
that have been proposed to guarantee increased access to the energy resources at affordable
costs, there are still challenges to ensure the conservation of the resources and the protection of
the environment. In line with these objectives, Cloud Computing for Smart Energy Management
project (CC-SEM) is a research effort for building an integrated platform for smart monitoring,
controlling, and planning energy consumption and generation in urban scenarios. CC-SEM
includes, firstly, the design of a low-cost IoT device capable of monitoring, operating, and
controlling home appliances according to predefined rules. It was developed with the aim of
automatically manage consumption. Secondly, an analysis of 5G Narrowband IoT as a suitable
cellular technology for Smart Grid outage restoration and management message delivery was
addressed. Thirdly, an analysis of domestic consumption patterns was carried out to help
to predict home consumption, using literature measurements. Fourthly, within the context
of electrical network simulation, a forecasting and performance evaluation methodology for
the generation of individual photovoltaic systems is proposed. In summary, CC-SEM presents
the research efforts to provide a set of tools for controlling home devices, planning/simulating
scenarios of energy generation, and to propose advances in the communication infrastructure
for transmitting the generated data.

RESUMEN: La gestión energética se centra en mejorar el uso eficiente de los recursos y
aumentar el acceso a la energía en camino hacia una sociedad más sostenible. En línea
con estos objetivos, el proyecto Cloud Computing for Smart Energy Management (CC-SEM)
investiga la construcción de una plataforma integrada para el monitoreo inteligente, el
control y la planificación del consumo, y la generación de energía en escenarios urbanos.
CC-SEM incluye, en primer lugar, el diseño de un dispositivo IoT de bajo costo capaz de
monitorear, operar y controlar electrodomésticos. Éste fue desarrollado con el objetivo de
administrar automáticamente el consumo. En segundo lugar, un análisis de la idoneidad de
la tecnología celular 5G NB-IoT con respecto al envío de mensajes de restauración y gestión
para interrupciones del suministro en redes eléctricas inteligentes. En tercer lugar, un análisis
de patrones de consumo doméstico para ayudar a predecir el mismo, utilizando mediciones
de la literatura. En cuarto lugar, dentro del contexto de simulaciones de redes eléctricas,
una metodología de pronóstico y evaluación de rendimiento para la generación de sistemas
fotovoltaicos. CC-SEM presenta avances respecto del control de dispositivos domésticos,
planificación/simulación de escenarios de generación de energía, y propone avances en la
infraestructura de comunicación de los datos generados.
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1. Introduction

Energy management is a crucial issue in modern society.
Many strategies have been proposed to guarantee
increased access to the energy resources at affordable
costs for citizens while ensuring the conservation of the
resources and the protection of the environment [1].

For the implementation of effective energy management
policies, innovative technologies must be integrated
into an easy-to-use and efficient system to include the
capabilities of performing realistic simulations, controlling
and planning the electricity market (to be applied by the
energy companies), and end-user applications to monitor
and manage the energy consumption at home level.
The capabilities of monitoring/controlling/managing
the energy consumption and generation are key issues
when implementing the smart city paradigm, especially
when considering the emphasis on citizen engagement,
environment protection, and economic considerations [2].

This article describes the Cloud Computing for Smart
Energy Management (CC-SEM) project, developed
by researchers from Argentina (Consejo Nacional de
Investigaciones Científicas y Tecnológicas (CONICET) and
Universidad de Buenos Aires (UBA)), Uruguay (Universidad
de la República (UdelaR)) and France (Université de
Reims-Champagne Ardenne (Reims)), and presents
preliminary results. CC-SEM proposes developing an
integrated platform for smart monitoring and controlling
the energy consumption in urban scenarios, by integrating
Big Data analysis, computational intelligence, Internet of
Things (IoT), High Performance, and Cloud Computing. In
our Latinamerican region, there have been some limited
developments towards building some specific components
for energy management, but no global solutions have
been explored or made available to the public. As a
consequence, the CC-SEM project proposes a useful
system with real application and social relevance.

Nowadays, integrating renewable energy is a relevant
interest nowadays, as part of a global effort to reduce the
effect of the CO2 emissions [3, 4]. However, this integration
poses a big challenge for the operation of the energy grid,
due to the unpredictable nature of some of the renewable
energy sources, such as wind and solar. Instability on
renewable energy affects the electric grid, causing voltage
fluctuations, changes on current and frequency, etc. In
this scenario, the utilization of specific techniques for
smart grid management is mandatory. Conceiving an
automatic management strategy that works correctly on
macro scenarios (energy grid management and energy
distribution) and micro scenarios (guaranteeing the
appropriate quality of service for users) is not an easy
task. One viable alternative is using mathematical models

and computational intelligence techniques for planning
and operating the energy distribution and utilization in
real-time. To apply intelligent management systems,
specific hardware is needed to evaluate and control energy
consumption by using sensors, data communications,
and control devices. These devices must be able to
communicate between them and with central servers to
integrate all the logic of the system and determine quick
responses to different dynamic situations (sudden increase
in energy consumption, reduction in energy generation,
increase on the energy generation costs). Recently, new
smart consumption monitors were made available to
be installed. For example, the Linky smart meter [5] by
Électricité de France (EDF) that is being widely deployed,
allowing not the collection of consumption but also some
remote actions. Other projects such as ElectriSense [6]
can even identify the families of devices consuming
energy. None of these systems are open-source and their
capabilities are often restricted to data acquisition and
basic automation.

Having sensors to generate data consumption measures
is not enough. Strategies to transmit and use this
information should be developed and adopted by users and
companies. Understanding and applying computational
intelligence algorithms is one of the possible paths to
analyze this data, determining routines and patterns of
energy utilization by individual users. Another option is
planning strategies to optimize the energy consumption,
by deciding when to power on and off each device from the
home, building or neighborhood. The planning strategies
will have into account the user restrictions and support
real-time actions from the user without having a critical
impact on the planning. According to the capabilities of
the devices, this planning can be fully automatized using
IoT actuators or manually, by suggesting actions to the
user via the smartphone interface [7–9].

In the context of microgrids, other projects have
been proposed. Particularly, in [10], a smart energy
management system (SEMS) was presented, addressing
some of the matters exposed above. SEMS optimally
coordinate the power production of distributed generation
sources and the energy storage system, minimizing the
operational costs.

CC-SEM project addresses the aforementioned issues,
by proposing a research effort focused on building an
integrated platform for smart monitoring, controlling,
and planning energy consumption and generation in
urban scenarios. This article is an extended version of
our conference article [11]. The main contributions of
the scientific content reported in this article include: i) a
detailed description of the project goals and activities, ii)
an extended analysis of the obtained results, including a
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description of the low cost energy consumption monitor
and controller, extended results on the characterization of
domestic energy consumption and the comparison of two
process pipelines for the forecast of urban photovoltaic
energy generation, and iii) an analysis of the suitability of
NB-IoT as the smart meter communication technology
for the proposed platform.

The article is organized as follows. Section 2 presents an
overall description of the project. Themain activities within
the project are described in Section 3. Preliminary results
are reported in Section 4. Finally, some conclusions about
the ongoing work and the main lines for future work are
formulated in Section 5.

2. Project description

This section describes the main features of the CC-SEM
project.

2.1 Project goals and motivation

The main goal of the project is to design a platform
that allows the integration of fundamental concepts
and tools for energy management in smart cities, using
cloud computing, computational intelligence for big data
analysis, and software for simulation and optimization
of the energy generation and distribution. The aim is
providing both users and administrators of the electrical
grid a useful set of tools for intelligent planning and
organization of the electricity consumption and generation
nowadays and in future smart cities. From the point of
view of the users, the project proposes the design and
management of a smart home controller for electric
devices applying IoT related software, and the application
of Big Data processing techniques for the analysis of
domestic energy consumption and smart planning. From
the point of view of the electric grid administrators, novel
tools are presented to monitor the state of the network
and the overall quality of services, and the use of novel
simulation tools is proposed to analyze and foresee the
energy demand. This approach is planned to be adopted
by electric market regulators in Argentina and Uruguay.

Energy optimization and planning is on the agenda
of many countries. Only few solutions implement an
easy-to-use platform to be used by both end-users and
energy companies integrating hardware, software, and
communications. Energy providers have few (or even no)
knowledge about electricity utilization in homes. With
the current electrical infrastructure, the provider cannot
determine if the energy is well-used or wasted. Having
a hardware infrastructure that allows obtaining useful
information about utilization is the first stage in a global
system to optimize energy at homes, with themain goals of

reducing the costs of energy consumption and generation,
and improve the quality of service offered to the users.

Another important motivation of the project is to conceive a
generic set of tools to allow both users and administrators
to extract useful information from the raw data measured
by the home controller by applying computational
intelligence/machine learning techniques. We propose
basing the communications on the IoT paradigm to
guarantee ubiquitous access to the system, everywhere,
anytime, and using a wide range of communication devices
(smartphones, tablets, web interface, other management
systems, etc.). The applications that integrate the
proposed system need to be conceived as a part of a global
monitoring/planning system to be used in real-time in
modern smart cities.

2.2 Methodology

The proposed methodology, in line with the project goals,
is two-fold. On one hand, the methodology is based on
missions that help the project members to consolidate
a collaboration network. The institutions have been
in contact in the past: research groups at UdelaR and
Reims have collaborated in research activities related
to distributed computing and cloud computing, and
research groups at UdelaR and UBA have collaborated in
research activities related to high performance/distributed
computing and applications. However, CC-SEM is the
first initiative to set a common project between the three
institutions. On the other hand, the research subject is
realistic and represents a real need, as observed in recent
contacts with Academia, Industry, and social actors related
to energy management and the real implementation of the
smart cities paradigm.

Due to the interdisciplinary nature of the project, and the
fact that several actors (e.g., users, companies, agencies)
are interested in the project outcomes, all results achieved
during the project are being rapidly made available to the
community via the project website, public repositories, and
on seminaries, meetings, and conferences.

3. Project activities

This section describes the main project activities, which
are related to the contributions reported in this article.
In Figure 1, an abstract representation of the proposed
system is presented. Generators and households, from
generation and distribution stages, respectively, are
monitored and controlled by dedicated devices connected
to a management system (using cellular or wired
networks). In line with this view, current research efforts
were concentrated on three major axes:
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1. Automatic energy management for home devices.
This axis aims at designing a hardware platform for
monitoring and controlling domestic consumption,
following an open architecture approach, to allow
future expansions. The IoT paradigm is applied
to support communication between components,
and guarantee ubiquitous access to the proposed
controller and software tools to be developed within
the project. In this regard, a specific low-cost energy
consumption monitor and controller was developed,
whose main details are presented in Section 4.1.

2. Big Data analytic for domestic energy consumption
and smart planning. This axis refers to extracting
useful information to be considered when planning
the energy utilization (by end-users) and generation
(by energy companies). It focuses on developing
integrated methodologies and techniques for
extracting useful information from the raw energy
consumption data, to be used in smart energy
management and optimization in urban scenarios,
regarding energy utilization, estimation of the
economic cost, and maintaining a good quality of
service for users. Section 4.3 presents the application
of computational intelligence techniques for the
characterization of household energy consumption.

3. Tools and algorithms for electrical network
simulation. One defining characteristic of smart
grids is that both power and information flow in
both senses, from and to the consumers, who will
take a more active role. The goal of this axis is to
build a unified computational framework to simulate
smart grids with the capability of analyzing a
national-wide power network under typical situations
of interest for the different actors of the power sector:
generators, carriers, utilities, consumers, planners,
developers, decision-makers, etc. In this context,
with an increasing number of devices, effective data
communication strategies are needed. Some devices
can communicate directly to the home user gateway
and the Internet, but many of them cannot [12]. In this
regard, Section 4.2 presents a narrow-band protocol
for smart grids and its evaluation over different
urban scenarios, and Section 4.4 describes the
application of computational intelligence techniques
for renewable energy generation forecast.

4. Initial advances

This section reports partial results obtained in the context
of the CCSEM project.

 

 

Figure 1 Electrical network main stages and its communication
with the management system through the monitor and control

devices

4.1 Low cost energy consumption monitor
and controller

A prototype for the smart metering system was designed
and built according to the general specification from
our project. The proposed system integrates three
components: i) a specific module and protocol (Energy
Efficiency, EFEN), which allows defining/storing user
actions and preferences, and compute plannings; ii)
the monitor/controller itself, and iii) an interface for
communication with the home controllers, based on
Khimo framework. These components are implemented
in independent modules that allow monitoring, operating,
and controlling home devices according to specific rules.

EFEN defines home devices, stores power consumption
data, provides an interface for device control, and also
computes ad-hoc planning taking into account user
preferences. In EFEN, electric devices are grouped in
homes, but larger aggregations are also supported:
homes can be grouped in buildings and buildings can be
grouped in neighborhoods. This categorization allows
performing energy planning at different levels, according
to the preferences of single users/community users,
and/or the needs of electric companies. EFEN also
provides an Application Programming Interface (API)
meant to implement the integration of computational
intelligence algorithms for big data analysis/pattern
recognition and energy planning, to be designed in WP
4. EFEN also includes a feasibility check for defined
agendas, a tool to simulate historical power consumption
time series (useful for verification purposes), energy
and cost evaluation, and user satisfaction estimation
algorithms.

The controller, presented in Figure 2, is based on a
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Figure 2 Prototype of the low cost energy consumption monitor
and controller with detailed components

Single Board Computer (Raspberry Pi, providing a
flexible and portable solution) that controls other two
modules: i) a power meter STPM01/10, integrated
using the steval-ipe016v1 board, which performs the
measurements using the SPI protocol, and ii) a relay
for power supply control. The controller communicates
with the central system (Khimo) via the Internet. The
system is controlled by the Khimo module, which allows
performing communications via the IoT paradigm [13] to
guarantee ubiquitous access (everywhere, anytime), and
using multiple communication devices (e.g., smartphones,
tablets, web interfaces, etc.). Khimo allows remote
monitoring and controlling of several devices in real-time.

A specific protocol (EFEN_PROTO) was developed to
guarantee efficiency in the communications between
Khimo and EFEN, and also to enable controlling devices.
Using a bidirectional communication channel, enabling
event subscription, and avoiding intermittent queries
(i.e., polling) to each controlled device, EFEN_PROTO
provides efficiency for gathering power consumption
and other information from devices, and also to define
actions according to the state of home appliances. Action
grouping is applied to deliver messages of the same type.
By grouping home appliances according to the actions to
perform over them, EFEN_PROTO avoids redundancy, thus
improving the communication efficiency.

A greedy algorithm was proposed as a first step to design
computational intelligence methods for home energy
planning. This greedy algorithm focuses on minimizing
power consumption and maximizing user satisfaction,
by taking local decisions to build a global agenda and
considering the maximum power available is a hard
restriction.

The main details about the design of the controller
were published in [14] and the application of IoT-based
information for designing simple heuristics for smart
home energy planning is described in [15]. Further details
can be found on the website https://www.fing.edu.
uy/inco/grupos/cecal/hpc/EFEHO.

4.2 NBIoT suitability for smart grid metering

To assess the state of smart grids, smart meters are
deployed to monitor the grid. Those devices inform
magnitudes that can be used to derive information
about the whole urban scenario. Thus, the supporting
communication network plays a fundamental role
to ensure collecting state information. While wired
networks entail high economic costs, wireless networks
are positioned as a competitive alternative [16]. In
particular, the exponential growth of cellular wireless
networks establishes a powerful infrastructure for
new communication technologies. In recent years, a
narrow-band radio technology (less than 200kHz) has
been developed: Narrow Band Internet of the Things
(NB-IoT) [17]. It is designed to satisfy requirements
of low-bitrate applications, with special emphasis in
coverage enhancement, ultra-low power consumption,
and massive terminal access.

Another characteristic of this technology is
non-latency-sensitivity, despite this, high channel
occupation scenarios occur, thus, increasing latency
levels over tolerable thresholds. In particular, when a
local or regional blackout occurs, a massive number of
Outage Restoration and Management (ORM) messages
are sent from the smart meters at the households to
the energy provider company. Each message has a
payload of 200bit and a maximum latency of 20 s. Latter
issue is critical for a Smart Grid platform, ergo any
metering communication technology should handle it
appropriately. In [18], an assessment of this problem was
carried out. Here we extend previous analysis proposing
two strategies for handling massive simultaneous ORM
messages, guaranteeing that all of these messages will
arrive correctly:

• To provide communication to a smaller number
of smart meters decreasing the base station (BS)
footprint.

• To utilize machine-to-machine (M2M) communication
for aggregating ORM messages between the smart
meters.

Our analysis assumes the following pessimistic scenario:
a low signal-to-noise (SNR) ratio of −20dB, just one
sub-carrier available for channel usage (single tone),
frequency numerology of 3.75kHz which sets resource
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unit (RU) time to 32ms, and re-transmissions are not
available (unacknowledged mode).

By taking into account the uplink sub-process in which
the smart meter sends a transfer block of 200bit to the
BS we establish a maximum number of RUs that can be
transmitted during the first 320 s after the failure occurred
in Equation 1.

RUsmax =
Responsetime

RUtime
=

320 s

32ms
= 104 (1)

Assuming each household (HH) has a single smart meter,
the maximum number of households that can transmit its
ORM message during the latency interval is presented in
Equation 2.

HHsmax =
RUsmax

RUsORM
=

104

1024
∼= 10 (2)

RUsORM is the number of RUs needed for an ORM
message in the established pessimistic scenario. To
obtain this value, we developed a lite NB-IoT simulator
for the uplink layer based on the Matlab Toolkit module:
Uplink Waveform Generation. The link-layer model is
implemented according to the NB-IoT physical uplink
shared channel (NPUSCH) standard ([19, 20]). Montecarlo
simulations are performed over an AWGN channel to
obtain block error rate (BLER) information for the different
link-layer configurations. The outcome of the simulation is
used to trace BLER curves and obtain optimal link settings
for target BLERs. This software was previously used [11,
21] to asses strategies for decreasing radio resource
consumption. A detailed description of the current version
is also presented in [22]. Thewhole project source code can
be found in [23]. Table 1 has an extract of the simulation
results.

Table 1 Extract of table generated by our NB-IoT uplink
simulator. Table columns inform the transfer block size,

effective SNR, target BLER and the amount of RUs needed to
transfer the information

TBS \bits SNR \dB BLER RUs

... ... ... ...
208 -20 0 1024
208 -20 0.0037 192
208 -20 0.1518 160
... ... ... ...

Table 2 present household densities (ρHH ) for different
urban scenarios [18]. In NB-IoT, coverage radio is less
than 15km, i.e a maximum footprint area of 706km2. To
guarantee that HHmax smart devices can send its ORM
messages concurrently, the footprint can be decreased.
Last column of Table 2 shows footprint radio (Fpr) for the
different environments. The weakness of this strategy is

that the number of BSs that should be installed to provide
coverage to the original area significantly increases.

Table 2 NB-IoT base station footprint vs household density for
aggregation factor α = 1

Environment ρHH \HHs km−2 Fpr \m
Dense Urban (DU) 2272 37

Urban (U) 1500 46
Suburban (SU) 350 95
Rural (RU) 50 252

Utilizing M2M communication can mitigate latter issue.
This strategy is based on (α-1) households sending their
information, i.e. ORM messages, to a common neighbor,
which in turn process them to generate an aggregated
message, that is sent to the common destination.

In this analysis, we suppose that the message does not
increase its size with respect to the original ORM message.
On the other hand, the consensus time, i.e. the interval
in which the smart meters send its messages to its
neighbor and it performs the processing for aggregating
those messages, is negligible. Both tasks take only a few
milliseconds (see [24]), which is orders of magnitudes
smaller than the maximum latency of the ORM message.

Equation 3 presents the function that determines BS
footprint radio with respect to household density and the
aggregation factor α.

ρHH,α =
ρHH

α

π Fp2r =
HHsmax

ρHH,α

Fpr(ρHH , α) = 103 2

√
α HHsmax

π ρHH
(3)

Figure 3 and 4 were generated based on the Equation 3,
and present different views of the magnitudes involved on
it. As can be observed, the augmentation of household
density decrease NB-IoT base station footprint radio, but
it can be compensated with the M2M aggregation factor α.
Particularly, in Figure 3 densest environment, footprint
radio reaches 37m when no M2M aggregation is used, and
rise up to 299m aggregating 64 devices.

When is not necessary to send HHmax ORM messages
concurrently, M2M aggregation can be used to reduce
radio resource usage within themaximum latency interval.
Therefore, this could increment the number of available
RUs which can be used for other user equipment
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Figure 3 NB-IoT base station footprint vs household density for
different aggregation factors (α)

 

 

Figure 4 NB-IoT base station footprint vs aggregation factors
(α) for different household densities (ρHH )

applications. Equation 4 defines the amount of available
resource units depending on the transmission conditions:

A =

N−1∑
i=0

RUs(TBSi, SNRi, BLERi) (4)

where TBS is the transfer block size, SNR is the
signal-to-noise ratio and BLER is the block error rate. The
upper bound of the magnitude presented in Equation 4 can
be calculated, it is presented in inequality (5). Figure 5
shows how the upper limit of the available radio resources
within the maximum latency interval varies for different
number of OMRs and for different M2M aggregation factors.

A < RUsmax −ORMs RUsORM (5)

In conclusion, we address a critical communication
metering issue in a Smart Grid platform: to successfully

 

 

Figure 5 Available RUs during the response time vs the number
of ORMs for different aggregation factors (α)

deliver massive concurrent ORM messages according to
latency constraints. An assessment of NB-IoT suitability
as a communication technology for this matter was
performed. We proposed two strategies for adapting
NB-IoT capabilities to this latency problem: BS footprint
adjustment and M2M aggregation. Our results suggest that
NB-IoT is a suitable technology for smart metering over
a Smart Grid context, in particular for the platform that is
proposed in this work.

4.3 Characterization of domestic energy
consumption

In the previous section, we presented our efforts to
measure and collect data from a consumer, helping
her to identify usage patterns and situations that can
potentially reduce the energy consumption. Even though,
the domestic energy consumption is not only a consumer
problem but also affects the infrastructure on building
and neighborhoods, especially in the case of old and
overloaded power grid networks. With the massive
expansion of smart meters, the opportunity to gather
costumers data and use big data algorithms open the door
to extract useful information at different levels, from the
individual user to the entire grid itself.

In our project, one of the goals is to identify potential peaks
that, combined with the consumption from other users,
may lead to disturbances in the local distribution grid (in
a building or the neighborhood). Hence, we try to predict
situations that may stress the grid and trigger measures
to avoid the overload, be them passive (warning the users)
or active (automatic shutdown of devices). This is indeed
a problem that affects some power networks such as
those from Buenos Aires, where the fast development
of residential areas was not followed by infrastructure
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(a)

 

 

(b)

Figure 6 Example of individual consumption classified by day of the week (a) or by time of the day (b)

investments. Some projects like “Que no se corte” [25]
try to handle this problem voluntarily: through a phone
application, users sign in and feed basic information such
as their location and electrical devices. Later, the “Que no
se corte” application would send messages to encourage
users to change their usage patterns.

Crowdsourcing efforts such as “Que no se corte” are
necessary but they often struggle with the limited
information they can explore. Indeed, having access to
information on the power infrastructure is not always easy
(for example, the location and capacity of the electrical
transformers). Also, the usage profile differs from one
user to the other. For instance, in the literature we
mostly found methodologies to estimate the electric
load at the system level. As illustrated by [26, 27], the
electrical consumption at the system scale often follows
seasonal variations at macro and micro scale (seasons,
weekdays, an hour of the day), and the aggregation of
several customers profile produces a smooth profile with
consistent patterns that favor the forecasting accuracy.
Unlike the system-level load, the individual residential
consumption depends on the daily routine and users
lifestyle but also on other elements that are harder to
predict. While it is easy to forecast the consumption of a
programmable water heater, it is much harder to estimate
the consumption of other devices that may be activated
alone or at the same time (Does one always turn on the

oven and the dishwasher at the same time?). Some external
elements such as the air temperature and the external
weather can help to improve the predictions, but they
also have a limited impact and correlation, depending
on the residential characteristics (solar exposure, gas or
electric heating), the thermal inertia of the buildings and
the psychological resiliency of the inhabitants.

Several datasets for energy consumption can be found
in the literature (e.g., a complete list is presented
on http://wiki.nilm.eu/datasets.html). We
start analyzing the Individual household electric power
consumption dataset [28] as this dataset covers more than
three years of consumption of a house located at the south
of Paris, France. It presents the overall consumption and
the detail of specific sets of devices, with a resolution of
one minute between measures.

Our first analysis involved the attempt to extract
consumption patterns, like for example the profile
for each weekday or for different periods of the day (dawn,
morning, afternoon, night), which are reputed to present
similar behaviors. Neither of the categories we tested led
to conclusive results, as illustrated in Figure 6. Indeed, we
see that two different days/periods have different profiles
even if they belong to the same categories, making it hard
to forecast the residential consumption. We also tried
to correlate the consumption with the local weather, but
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the residence from this dataset seems to rely on other
energy sources for heating and cooking (gas or oil), so the
electrical consumption profile was driven mostly by less
powerful devices that have a strong dependence on the
user’s habits. While a few patterns pointed in [29] could
be extracted, they have small importance in the overall
consumption and do not help to forecast.

As specific seasonal patterns could not help the prediction
of the residential consumption, our next approach was
to use deep learning techniques such as Long-Short
Term Memory (LSTM). LSTM is a type of recurrent
neural network designed for sequence problems such as
time-series analysis and forecast.

In our specific case, we aimed at training the model to
predict the consumption of the residence based on a
sequence of previous measurements. This is not the first
time LSTM has been used to this purpose [26, 27, 30],
comforting our choice. However, the difference is that
we are not interested in developing specific models for
the forecast. Instead, we focus on the accuracy of simple
models that could be later integrated into smart-meters
with low CPU requirements. Because of this choice, we
implemented a simple LSTM network using the Keras
library, training it with the same dataset from Hebrail
and Berard. After a few experiments, we chose a pipeline
composed of one LSTM layer and two dense layers, as
depicted in Figure 7.

 

 

Figure 7 Structure of the forecasting pipeline

Hence, the network has a visible layer with one or several
inputs depending on the length of the historical window we
want to evaluate (for example, a 24hswindowswith). It also
includes a hidden layer with 100 LSTM blocks or neurons,
a hidden dense layer with an output size of ten and a final
dense layer that makes a single value prediction. The
default sigmoid activation function is used for the LSTM
block, and the last layer has a non-negative activation
constraint (https://keras.io/constraints/) to
prevent the algorithms to output negative values, which
is unrealistic in the case of power consumption. The
“inner” dense layer is not required but seems to produce
smoother predictions.

The training was made with 30% of the dataset (what
roughly corresponds to a year of measures). The network
was trained for 150 epochs and a batch size of 1. The
resulting trained model was able to give good predictions
on the remainder of the dataset (RMSE=22), as illustrated
in Figure 8.

 

 

Figure 8 Sample of LSTM forecast for the reference dataset

One inconvenient of applying deep learning techniques to
the consumption of each residential user is that we need
sufficient data to train the model. Indeed, good training
requires at least a few months of readings, which would
delay the start of operations for new costumers. As a
consequence, we decide to circumvent this drawback
by applying an existing model (from another residence)
and verifying its effectiveness. For this reason, we do
not try to optimize the parameters or develop more
elaborated LSTM networks, but instead, we focus on
applying the trained LSTM model over an independent
dataset (available at http://cosy.univ-reims.fr/
~lsteffenel/documents/residential.zip), obtained
from a real user thanks to the Linky smart meter [5].

Contrarily to the reference dataset, this residence fully
relies on electricity for heating and cooking, which can
raise different consumption profiles. Three different
intervals were compared as input history for the LSTM
model: one day, one week and four weeks (roughly a
month), as illustrated in Figure 9. The analysis of these
forecasts shows that using only 24hs of history brings
insufficient input data, and the forecast tends towards
the “persistence” of the previous state. Forecasts with a
month of history are better but, on the contrary, tend to
smooth the consumption and raise the expectation for the
lower values. Finally, the forecasts made with a week of
history seem to offer a better trade-off between accuracy
and the history length.

While prediction errors still occur (mostly “false positive”
forecasts, like for example on the mark 1-20 on the
samples), these estimations are good enough to help a
recommendation system or to help to detect potential
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(c)

Figure 9 LSTM forecasts with different history lengths: (a) 1
day, (b) 1 week and (c) 1 month

overloads (summing up the expected consumption from
several residences). As expected, the RMSE is still
important (about 300) but at least we have a baseline
model that can be quickly deployed. As soon as more
measurements are collected, individual models can be
created by incrementally training the model. Also, specific
parameter optimizations can be performed to improve the
accuracy.

The scalability and portability of the developed solution
can be ensured by relying on basic ETL (Extraction,
Transformation, Load) using MapReduce, while more
advanced operations can be conducted with high-level
tools (e.g., Pig or Apache Spark and Tensorflow/Keras).
Storage and access to the data can be made using
NoSQL databases, which are specially adapted to store

 

 

 

 

Figure 10 Different examples of non-intrusive load monitoring
(NILM) [6, 32]

data series from sensors and other data sources (e.g.,
power generation, historical consumption charts, weather
forecast) [31].

Further developments can include energy disaggregation,
also referred to as non-intrusive load monitoring (NILM).
NILM is a technique to make inferences about the different
individual loads of the system based on an aggregate
energy signal, such as that coming from a whole-home
power monitor. NILM is a full research domain with
several challenges, such for example the identification of
devices signatures even when they do not work always
in a constant regime (Figure 10). Indeed, most devices
present acyclic consumption behaviors, like for example
the different phases of a washing machine program. An
extended library of NILM datasets and papers can be found
at http://wiki.nilm.eu/datasets.html.

In the case of our project, we can focus on the identification
of power-hungry devices, like heaters and air conditioning
systems. Compared to other devices like TVs, lamps
or refrigerators, these devices may induce peaks of
consumption thatmay overload the distribution system. By
detecting their activity we can send warnings to the users
(using the “Que no se corte” application, for example) or
even trigger controlled shutdowns thanks to smart power
outlets connected to the metering system.
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4.4 Renewable energy generation forecast

Although there are some options to produce energy from
wind and other sources, photovoltaic (PV) systems are
the most likely way to generate centralized or distributed
renewable energy in an urban setting in a massive scale.
The challenges for adopting higher shares of this type
of energy are posed by its intermittence, inherited from
solar radiation dependency on local weather, mainly the
cloud cover and optical thickness. Aiming to forecast PV
generation for a particular system in a specific location,
both the resource and the system characteristics should
be considered. The capacity of forecasting PV generation
for different installations will help manage the electric
system reliably and economically.

To this end, in this project, we explore and evaluate
different combinations of two free and open-source
tools, a Numerical Weather Prediction (NWP) system
and a PV modeling library. The Weather Research and
Forecasting (WRF) Model is a mesoscale NWP system
designed for both atmospheric research and operational
forecasting applications [33, 34]. pvlib-python is a
community-supported tool that provides a set of functions
and classes for simulating the performance of photovoltaic
energy systems [35, 36]. pvlib-python was originally
ported from the homonymous MATLAB toolbox developed
at Sandia National Laboratories and implements many
of the models and methods developed at the Labs. The
pvlib-python library comes with some functions to
retrieve weather forecast data from some particular web
services, thus through minimal modifications, it was
adapted to read data produced by our installation of the
WRF model.

In this work, we present a comparison of the outcomings
of two strategies using off-the-shelf configurations of the
NWP model to provide radiation input to the PV modeling
library. This was intended to set the grounds for future
developments, evaluating each approach.

WRF-direct: In this first strategy, we directly use surface
radiation direct and diffuse components provided by
WRF. These components were affected by the aerosol
optical depth (AOD) measured by the SAVER-Net
Project [37] at the closest moment [36].

WRF-coverage: In this second case, we post-processWRF
output through the NCEP Unified Post Processing
System (UPP) [38] obtaining low, mid, and high-level
cloud covers. Those cloud coverages are then
composed to get a total cloud cover value, and
processed through pvlib-python routines to get
the surface global radiation [39] which is then
decomposed into direct and diffuse components using
the DISC model [40].

Figure 11 shows a comparison of the surface global
irradiance (GHI) forecasted by each of the two strategies
along nine days during December 2017, for a location
in Buenos Aires, Argentina. GHI results are compared
with measurements provided by the SAVER-Net Project.
Minutely measurements were averaged over 12-minute
periods to make them coincide with WRF output frequency.
This period was selected as it contains days with a clear
sky, partial cloudiness and full overcast conditions. NCEP
Reanalysis data [41] was used as initial and boundary
conditions for WRF. In this setting, WRF is acting as
a dynamical interpolator of the reanalysis conditions.
Looking at days with clear sky conditions (Dec 18, 20, 24
and 25) reveals thatWRF-direct strategy better agrees with
measurements than WRF-coverage, exposing the need to
take into account the AOD effect. Conversely, days with
partial cloudiness (Dec 21 and 23) or overcast (Dec 19)
expose a WRF-direct tendency to overestimate radiation,
while WRF-coverage gives lower values than, in any case,
do not follow measurements much close. There are also
days with intermittent cloudiness (Dec 22 and 26) which
both strategies fail to detect.

A useful measure to evaluate model behavior is to
compare aggregated daily energy. Figure 12 shows the
total daily energy predicted by each strategy, and how
they compare against measurements. In this case, the
tendency is repeated withWRF-direct acting better in clear
sky conditions, but always overestimating radiation.

To acquire some insight into models internal behavior,
direct normal (DNI) and diffuse (DHI) irradiance
components as obtained from both strategies can be
analyzed. Results are shown in Figure 13. In both
strategies, the diffuse component is increased over the
direct component in days with high cloudiness. Strange
behavior is observed in clear sky days near noon for
the WRF-coverage DNI results, dent-shape limits the
maximum value attained. This is compensated by an
increase in the DHI component. This appears to be a
spurious effect caused by the DISCmodel implementation.
Comparison against DNI or DHI measurements and a deep
analysis of the DISC model will be needed to asses which
behavior better represents reality.

After global radiation is decomposed in direct and diffuse
components, the pipeline to get generation data from
weather prediction models for a particular PV system is as
follow (see Figure 14):

1. Any of the two strategies provides a forecast for
irradiances: global horizontal (GHI), diffuse horizontal
(DHI), and direct normal (DNI); and other variables
which affect the PV system working condition like
temperature and wind speed as already exposed.

2. Irradiance data is processed through pvlib-python
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Figure 11 Surface global horizontal irradiance (GHI) variation during a 9-day period in December 2017. Comparison between
prediction of the WRF-direct and WRF-coverage strategies and measurements

 

 

Figure 12 Total daily energy for each of the 9 day in December 2017. Comparison between prediction of the WRF-direct and
WRF-coverage strategies and measurements

 

 

Figure 13 Direct normal (DNI) and diffuse (DHI) variation during a 9-day period in December 2017. Prediction of the WRF-direct and
WRF-coverage strategies

to obtain irradiance components projected on the
PV modules plane-of-array (POA): global, direct, and
diffuse.

3. Considering the configuration (number of series and
parallel connected) and model of PV modules, the
pvlib-python is used to forecast the DC power
production.

4. Regarding the information about the system inverter,
the AC power is forecasted.

To evaluate the performance of the above-mentioned
pipeline, power generation measurements from a
19.6kW PV plant property of the Environmental
Protection Agency of Buenos Aires city were used as
a comparison (https://www.sunnyportal.com/
Templates/PublicPageOverview.aspx?page=

cbf7bf62-4171-430d-ab0d-46854669a126&plant=
e4f89244-d746-42e2-9f72-909d76da9d66). This
plant can be regarded as a typical community distributed
generation installation. The actual plant is composed of
two 5kWp (the ‘p’ letter denotes peak power) inverters
connected to 250Wp PV modules and one 8kWp inverter
connected to 215Wp PV modules. The simulated PV
system was defined inside pvlib-python as composed
by one inverter (SMA America STP5000TL) and modules
(Amerisolar AS-6P30-250W) arranged in two strings of 11
modules each, equivalent to the circuit of one of the 5kWp
inverters of the actual plant. To generalize the results,
power generation was normalized concerning peak plant
power. The installation 15-minutes normalized power
is shown in Figure 15. The outcomes of the forecasting
pipeline with inputs provided by the two strategies are
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Figure 14 PV generation forecast pipeline including the two
meteorological variables forecasting strategies

also shown therein. In this case, an excellent agreement
is given for clear sky days with the WRF-direct pipeline,
stressing the importance of the AOD correction. In cloudy
days, the results resemble the differences observed in GHI.

As a summarizing measure of this section the daily
normalized energy forecasted by each strategy pipeline
is compared with the actual generation of the plant in
Figure 16. It can be observed that both strategies tend to
overestimate generation in cloudy days and underestimate
generation in clear-sky days, with WRF-direct better
forecasting clear-sky days generation with respect to
WRF-coverage. In these cases, the error is less than 10%,
but on cloudy days it raises considerably.

The two proposed strategies allow forecasting the
generation of individual PV systems. Although figures
show 12-min data for convenience, more frequent
sampling can be obtained as the actual model time step is
smaller, allowing to capture the dynamics of the possible
generation. The smallest sampling step not producing
spurious dynamics should be evaluated. For modeling
multiple systems assigned to the same WRF grid point,
for which no difference will be detected in the radiation
forecast, equivalent systems could be defined. Results
suggest that:

• OtherWRF and pvlib-python configurations need to
be explored, assessing their forecasting performance,

• Some type of cloudiness (intermittent on Dec 22 and

26, constant in the morning Dec 23) is not detected by
WRF-direct in the adopted configuration, more insight
needs to be gained to clarify this behavior,

• The effect of cloud coverage on radiation is
overestimated by WRF-coverage,

• DISC model misbehaves near noon on clear sky days,
other models could be evaluated.

• Performance of PV generation for days with great
diffuse components need to be verified against
radiation components for days with high cloudiness is
verified.

At the moment, development efforts are focused on model
calibration and validation. Several configurations and
submodel options could be chosen and a systematic error
quantification study is underway.

5. Conclusions and future work

This article presented an overall description of the
CC-SEM project in conjunction with preliminary results. In
this project, it is proposed to build an integrated platform
for smart monitoring, controlling, and planning energy
consumption and generation in urban scenarios. In
particular, three main activities are described.

In the axis 1, the defined goal is to automatically manage
energy for home devices, our main contribution consists
in the development of a low-cost IoT device capable of
monitoring, operating, and controlling home appliances
according to predefined rules. The prototype was
successfully used to gather part of the data used in the
remainder of the project.

Also, we address an important latency-sensitive metering
issue in the context of a Smart Grid: delivering massive
simultaneous ORM messages. Our results suggest that
NB-IoT is a suitable technology for the platform that is
proposed in this work.

We propose to utilize Big Data techniques for analyzing
domestic energy consumption and smart planning in
the axis 2. The contribution is based on the analysis
of domestic consumption patterns to help predicting
home consumption through a sequence of previous
measurements. The obtained estimations are good
enough to guide a recommendation system or to help to
detect potential network overloads.

In the last activity, axis 3, the objective was to simulate
an electrical network (which includes three stages:
generation, transmission, and distribution) with the
addition of a communication network. A forecasting and
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Figure 15 Normalized power generation forecasted by the two strategy pipelines compared with an actual PV plant in Buenos
Aires, Argentina. Instant power is compared with plant peak power en each case

 

 

Figure 16 Normalized daily energy generation forecasted by the two strategy pipelines compared with an actual PV plant in Buenos
Aires, Argentina, compared with actual plant generation

performance evaluation methodology to forecast the
generation of individual PV systems is proposed. An NWP
model is combined with a PV modeling library called
pvlib-python. This approach results in utter importance
due to PV systems representing a major technology
for massive renewable energy generation within urban
scenarios.

The main lines for current and future work include
performing a deep analysis of home consumption patterns
to better characterize specific behaviors of citizens
regarding other data sources, including socio-economic,
weather, and neighborhood-related data. In this regard,
in the current stage of the project, we are working
on performing more comprehensive experiments with
real data provided by National Energy Administration in
Uruguay (UTE) applying ANN and other computational
intelligence methods. Preliminary results suggest the
effectiveness of the approach. The project will also
continue to explore IoT development with new sensor
technology and advance in establishing a program of
controlled scaled domestic measurements. Finally,
regarding smart grid, new communications standards
will be analyzed and their impact on protocols and
infrastructure will be analyzed focusing on creating a new
communication layer on top of the electric network.
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