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Torque estimation based on surface electromyography: potential 
tool for knee rehabilitation
Estimación de par basada en electromiografía de superficie: potencial herramienta para la rehabilitación de rodilla
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Abstract

Introduction: Multiple signal processing studies have reported the application of surface 
electromyography (sEMG) signals in robotics and motor rehabilitation processes.
Objective: To conduct a literature review on the use of sEMG signals as an alternative 
method for knee torque estimation in order to objectively measure the progress of patients 
at different stages of knee injury rehabilitation.
Materials and methods: A literature review of studies published between 1986 and 2018, 
without geographical limits, was carried out in the Engineering Village, IEEE Xplore, Science-
Direct, Web of Science, Scopus, and PubMed databases by combining 8 search terms.
Results: After completing the initial search, 355 records were retrieved. Duplicated publica-
tions were eliminated, and 308 articles were analyzed to determine if they met the inclusion 
criteria. Finally, 18 studies describing, in a comparative way, how to estimate torque based 
on sEMG signals were included.
Conclusion: The use of sEMG signals to calculate joint torque is an alternative method that 
allows therapists to obtain quantitative parameters and assess the progress of patients un-
dergoing knee rehabilitation processes.
Keywords: Knee Joint; Electromyography; Torque; Muscle Contraction (MeSH).

Resumen 

Introducción. Múltiples estudios de procesamiento de señales han reportado la aplicación 
de las señales de electromiografía de superficie (sEMG) en robótica y en procesos de reha-
bilitación motora.
Objetivo. Realizar una revisión de la literatura sobre el uso de señales de sEMG como alter-
nativa para la estimación del par de rodilla con el fin de medir objetivamente el progreso de 
los pacientes en las diferentes etapas de rehabilitación de lesiones de rodilla. 
Materiales y métodos. Se realizó una revisión de la literatura publicada entre 1986 y 2018, 
sin límites geográficos, en las bases de datos Engineering Village, IEEE Xplore, ScienceDirect, 
Web of Science, Scopus y PubMed mediante la combinación de 8 términos de búsqueda. 
Resultados. Al finalizar la búsqueda inicial se obtuvieron 355 registros. Luego de realizar 
la remoción de duplicados esta cifra descendió a 308, los cuales fueron analizados para de-
terminar si cumplían con los criterios de inclusión. Finalmente se incluyeron 18 estudios que 
describen de forma comparativa cómo estimar el par a partir de señales de sEMG.
Conclusión. El uso de señales de sEMG para calcular el par en una articulación es una he-
rramienta alternativa que permite al terapeuta acceder a parámetros cuantitativos y, de esta 
forma, valorar el progreso de los pacientes durante el proceso de rehabilitación de rodilla. 
Palabras clave: Articulación de la rodilla; Electromiografía; Contracción muscular (DeCS).
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Introduction

The knee is one of the most complex joint structures 
in the human body. It is composed of the tibiofemoral 
and patellofemoral joints1-4 and its formation involves 
both bone components (femur, tibia, and patella) and 
soft tissue components (synovial membrane, joint cap-
sule, bursae, retinaculum, meniscus, and ligaments).1,4-6 

The movements of the knee occur in the tibiofem-
oral joint and are mainly flexion and extension, but 
there may also be internal and external rotation to a 
lesser extent.2,6,7 The range of motion for knee flexion 
is 130° to 140°; however, these values may increase 
or decrease depending on the position of the hip joint 
during knee movement.2,8 

Currently, there are different diagnostic tests and 
specific exploratory maneuvers to assess the anatomic 
and functional characteristics of the knee joint complex. 
These tools are based on tests and clinical signs, and 
require the expertise of the physical therapist for a cor-
rect execution and interpretation of the results, and for 
a proper assessment of the integrity of the cartilage, 
muscles, menisci, ligament stability, etc.9 

The functioning of the knee can be affected by pathol-
ogies of traumatic, degenerative, genetic, neurological, 
or autoimmune origin,10 the first two being the most com-
mon types. Depending on the type of injury, different 
intervention protocols should be implemented, using 
different techniques aimed at proprioceptive re-educa-
tion to encourage the execution of reflex activities and 
activate and strengthen muscle groups to stabilize the 
joint and improve its muscle elasticity and joint thick-
ness. These techniques are also useful for gait training 
and re-education of the sporting gesture. 

Rehabilitation processes are based on protocols and 
clinical practice guidelines with therapeutic objectives 
that seek to potentiate joint motion through anisometric 
contractions that modify the length of the muscle.11-13 
Also, to determine the progress of the interventions, 
multiple devices are available to measure variables such 
as angular position, angular velocities, force and torque 
in different joints of the body.14-17 However, these equip-
ment are expensive and rehabilitation centers cannot 
afford them and must perform therapies in the tradi-
tional manner. Therefore, it is common that physical 
therapists do not have access to quantitative data that 
help them determine patients’ progress during the dif-
ferent phases of rehabilitation.

Specifically, joint torque measurement is used to ob-
jectively determine patient progress as rehabilitation 
progresses15-17 and is used in therapeutic interventions 
for anterior cruciate ligament injuries,11,17 postoperative 
meniscectomy rehabilitations,16 lumbar injuries,15 among 
others. To this end, devices such as the Contrex18 and 
Human Norm19 systems are available on the market to 
monitor torque and allow the visualization of graphs that 
evidence the progress of this variable but, as mentioned 
above, they can be expensive and, in the Colombian 
case, they cost at least 10 times more than surface elec-
tromyography (sEMG) signal processing equipment.20,21

Isokinetic dynamometers are instruments that allow 
obtaining information on torque during knee flexion-ex-
tension movement and, this way, establish its angle and 
maximum peak, as well as muscle power, muscle balance, 
etc.; these results allow quantifying objectively the recov-
ery of the patient.16,22-27 It should be noted that, despite its 

usefulness, the periodic collection of these data is limited 
due to high technology costs and, therefore, institutions 
prefer to use isometric dynamometers that have a low-
er cost but only allow measurements in static positions. 
This considerably limits the collection of relevant informa-
tion for the implementation of rehabilitation processes. 

On the other hand, sEMG signals are used as an al-
ternative to estimate joint movements and the amount 
of force needed to perform a motor task,28 as well as to 
determine the state of the musculoskeletal or neuromus-
cular system,29-31 as they provide valuable information 
on the timing and relative intensity of muscle activity.32,33 
These signals are measured with surface electrodes 
placed on the skin above the muscle group of inter-
est.28,29,34 Currently, there are several low-cost sEMG 
sensors, which represents an advantage over other de-
vices such as isokinetic dynamometers. 

Given this scenario, the objective of the present work 
was to conduct a literature review on the use of sEMG 
signals as an alternative to calculate knee joint torque 
to objectively measure patients’ progress during the 
different stages of rehabilitation of injuries in this joint. 

Materials and methods

A literature review was conducted based on the Cochrane 
Collaboration handbook.35 The search was performed 
on the Engineering Village, IEEE Xplore, ScienceDirect, 
Web of Science, Scopus and PubMed databases using 
the following search strategy: years of publication: 1986 
to 2018; type of publications: article and conference 
proceedings; language: English and Spanish; search 
equation: (“torque measurement” OR “torque estima-
tion” OR “estimation of torque”) AND (EMG OR sEMG OR 
electromyography OR electromyographic) AND Knee.

This review was based on the algorithms that have 
been developed to estimate knee joint torque through 
sEMG signals. It also considered how these algorithms 
can be used as an alternative to quantify the progress of 
patients during rehabilitation. To determine the search 
equation, MeSH terms that met the description required 
by the authors were established. 

Publications in which sEMG signals were used to cal-
culate knee joint torque were included. State-of-the-art 
reviews and references where torque was not measured 
using sEMG signals or which estimated torque in joints 
other than the knee were excluded. For information 
analysis, the current commercial value of isometric and 
isokinetic dynamometers in Colombia was considered.

355 records were retrieved, of which 47 were elim-
inated because they were duplicated. Exclusion and 
inclusion criteria were applied to the remaining 308 re-
cords, which led to eliminate 290 of them. Therefore, 
18 publications were finally included (Figure 1).

Results

A total of 18 publications that describe, in a compara-
tive way, how to estimate knee joint torque from sEMG 
signals were retrieved; the most relevant aspects are 
presented in Table 1. All the articles found were published 
in English and were original research works published 
in indexed journals and in memoirs of events.

Table 2 classifies the records included according to 
the year of publication. It shows that most articles were 
published in 2017, with 27.78%.
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Table 1. Torque estimation algorithms based on surface electromyography signals. 

Author/Year
Torque 

estimation 
strategy

Surface 
electromyography 
signal processing

Muscles used Type of 
contraction

Number 
of people 
studied

Hahn 36

2007 Neural networks Full wave rectification 
and 5Hz low-pass filter

Vastus lateralis and biceps 
femoris

Isokinetic, 
eccentric, and 
concentric

20

Anwar et al.37 
2017

Neural networks, 
fuzzy logic Quadratic mean Rectus femoris and vastus 

medialis Isokinetic 1

Anwar & Al-
Jumaily38

2017

Support vector 
machine

Mean frequency, 
median frequency, 
total transformed 
spectral power, and 
wavelet

Rectus femoris, vastus 
medialis, vastus 
lateralis, biceps femoris, 
semitendinosus, 
semimembranosus

Isometric 5

Nurhanim et 
al.39

2017

Particle swarm 
optimization Quadratic mean Vastus lateralis Isokinetic 1

Peng et al.40

2015 Neural networks Full wave rectification 
and 2Hz low-pass filter

Rectus femoris, vastus 
lateralis, vastus medialis, 
biceps femoris, and 
semitendinosus

Eccentric and 
concentric 1

Menegaldo et 
al.41

2014

Hill’s muscle 
model

Rectification and band-
pass filter

Rectus femoris, vastus 
medialis, and vastus lateralis Isometric 1

Tsutsui et 
al.42

2005
Neural networks Rectification and 

moving average
Rectus femoris and biceps 
femoris Isometric 1

Simon et 
al. 43

1995

Polynomial 
model

Rectification and low-
pass filter

Rectus femoris, vastus 
lateralis, vastus medialis, 
semitendinosus, and biceps 
femoris

Isokinetic 5

Heine et al.44

2018
Hill’s muscle 
model

Rectification and 6Hz 
low-pass filter

Vastus medialis, vastus 
lateralis, vastus medialis, and 
rectus femoris

Isokinetic 1

Ardestani et 
al.45

2014

Wavelet neural 
networks

Quadratic mean and 
1Hz low-pass filter

Semimembranosus, biceps 
femoris, vastus intermedius, 
vastus lateralis, and rectus 
femoris

Gait 4

Anwar & 
Anam46

2016

Neural networks 
and machine 
learning

Mean frequency, 
median frequency, 
average power, total 
power, power spectral 
density, spectral 
momentum, and power 
spectral ratio

Rectus femoris, vastus 
medialis, vastus 
lateralis, biceps femoris, 
semitendinosus, 
semimembranosus

Isometric 5

Results identified in the Engineering
Village, IEEE Xplore, ScienceDirect, 
Web of Science, Scopus, and PubMed
databases (n=355)

Potentially eligible records based on
title and abstract (n=308)

Duplicated results eliminated
(n=47)

Total number of full articles screened
for eligibility (n=18)

Excluded records (n=290)
• Torque estimation without
using sEMG signals: 85
• Theoretical studies: 0
• Torque estimation in joints
other than the knee: 205

Figure 1. Bibliographic search flowchart. 
Source: Own elaboration.
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Table 1. Torque estimation algorithms based on surface electromyography signals. (continued)

Author/Year
Torque 

estimation 
strategy

Surface 
electromyography 
signal processing

Muscles used Type of 
contraction

Number 
of people 
studied

Peng et al.47

2015

Musculoskeletal 
model and 
optimization 
with genetic 
algorithms

2Hz low-pass filter Quadriceps, hamstrings, and 
gastrocnemius

Eccentric and 
concentric 1

Bai et al.48

2013

Continuous 
wavelet 
transform

Mean frequency Quadriceps and hamstrings Eccentric and 
concentric 10

Simon et al.49

1994
Pattern 
comparison

Rectification and low- 
pass filter

Rectus femoris, vastus lateralis, 
vastus medialis, biceps femoris, 
and semitendinosus

Isokinetic 5

Amarantini & 
Martin50

2004
Optimization Full wave rectification

Rectus femoris, vastus 
medialis, biceps femoris, and 
gastrocnemius

Site walks 9

Anwar & Al-
Dmour51

2017

Adaptive neural 
networks and 
fuzzy logic

- Quadriceps Isokinetic 1

Liu et al.52

2017
Hill’s muscle 
model

Full wave rectification, 
low-pass filter

Rectus femoris, vastus lateralis 
and semitendinosus

Eccentric and 
concentric 1

Shabani & 
Mahjoob 53

2016

Hill’s muscle 
model

Full wave rectification, 
200Hz low pass filter

Rectus femoris, vastus 
medialis, vastus lateralis, 
semimembranosus, 
semitendinosus, and biceps 
femoris

Eccentric and 
concentric 1

Source: Own elaboration.

Table 2. Number of works included per year.

Year 1994 1995 2004 2005 2007 2013 2014 2015 2016 2017 2018

Articles 1 1 1 1 1 1 2 2 2 5 1
Source: Own elaboration.

The Journal of Biomechanics was the source from 
which the largest number of publications was retrieved 

(2 references). The remaining journals and conferences 
only contributed one article each (Table 3).

Table 3. Sources of the publications included.

Name of journal or conference Number of articles References

Journal of Biomechanics 2 36,50

Procedia Computer Science 1 37

2016 International Conference on Systems in Medicine and Biology (ICSMB) 1 38

2016 2nd IEEE International Symposium on Robotics and Manufacturing Automation (ROMA) 1 39

2015 International Joint Conference on Neural Networks (IJCNN) 1 40

Biomedical engineering online 1 41

Optomechatronic Sensors and Instrumentation 1 42

Proceedings of 17th International Conference of the Engineering in Medicine and Biology Society 1 43

Medical Engineering & Physics 1 44

Expert Systems with Applications 1 45

2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob) 1 46

2015 IEEE International Conference on Robotics and Biomimetics (ROBIO) 1 47

2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR) 1 48

Proceedings of 16th Annual International Conference of the IEEE Engineering in Medicine and 
Biology Society 1

49

2017 IEEE Symposium Series on Computational Intelligence (SSCI) 1 51

2017 IEEE International Conference on Cyborg and Bionic Systems (CBS) 1 52

2016 4th International Conference on Robotics and Mechatronics (ICROM) 1 53

Source: Own elaboration.
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Of the 18 papers included, 14 used algorithms to 
calculate knee joint torque during the execution of mo-
tor tasks involving movement36,38-41,43,45,47-53 and 4 used 
them for motor tasks without joint movement.37,42,44,46 

Each algorithm has different characteristics, such as 
the type of sEMG signal processing, the muscles used, 
the strategy implemented for the development of the 
algorithm, and the number of people studied. Some of 
the strategies used are neural networks, fuzzy logic, 
Hill’s muscle model, support vector machines, particle 
swarm optimization, polynomial models, wavelet neural 
networks, and wavelet transform. Similarly, the algo-
rithms differ in the types of contractions (concentric, 
eccentric, isokinetic, or isometric) used during sEMG 
signal detection.

Moreover, 13 of the articles reviewed used black-box 
techniques to estimate knee joint torque, while 5 did so 
using white-box models, specifically Hill’s muscle models. 
Of the 13 investigations that opted for black-box models, 
7 used neural networks; 3, regression and optimiza-
tion-based models; 1, continuous wavelet transform; 
1, vector support machines; and 1, pattern matching.

With this in mind, the authors of the present research 
describe below a work developed using neuronal networks, 
one using a regression model (black-box model), and an-
other using a musculoskeletal model (white-box model).

First, Han36 estimated the knee joint torque of 20 
individuals using a three-layer feed-forward artificial 
neural network in two stages. In the first stage, they 
were asked to perform the maximum voluntary contrac-
tion; in the second stage, they were asked to perform 
exercises at 30°/s and 60°/s within the whole range of 
motion of the knee, exercising eccentric and concentric 
contraction. In both stages, the measurements of the 
sEMG signals and joint torque were recorded. It should 
be noted that in the neural network model, the second 
layer contained a variable number of “hidden” units 
(5, 10, 15, 20, 25, 30) that represented the portion of 
the network learning process in which most of the pro-
cessing solution occurred. Also, age, sex, height, body 
mass, the envelopes of the sEMG signals of the ago-
nist (vastus lateralis) and antagonist (biceps femoris) 
muscles, which were obtained from full wave rectifi-
cation using a 5 Hz low-pass filter, the joint angle and 
joint speed were considered as predictive variables of 
net torque. The study concluded that artificial neural 
network models achieved a more accurate torque esti-
mate (R=96) compared to stepwise regression models 
(R=0.76), that the accuracy of the model increased con-
siderably when the number of “hidden” units increased 
from 5 to 10, that accuracy improved progressively as 
more hidden units were added, and that, according to 
the results obtained, it is possible to say that the per-
formance of the model could be the best if 15 or more 
“hidden” units were used, achieving 100% convergence 
and 88% to 90% accuracy.

On the other hand, Simon et al.43 analyzed in 5 test 
subjects the relationship between the sEMG signals of the 
rectus femoris, vastus lateralis, vastus medialis, semi-
tendinosus and biceps femoris muscles, as well as knee 
joint torque during flexion and extension. In this work, 
the authors designed a regression model as a function 
of angular position and velocity, the previous values of 
the torque and the rectified and smoothed sEMG signals. 
Based on this, they determined the coefficients using 

the least squares method from the information of 3 of 
the test subjects; the information of the 2 remaining 
subjects was used to validate the model. The authors 
obtained acceptable results in the validation subjects, 
where the R^2 values were 0.98 and 0.96 for exten-
sion, and 0.92 and 0.73 for flexion. 

Finally, Peng et al.47 designed a model that consists 
of two main modules. Firstly, a muscle-tendon model 
calculates muscle force through the dynamics of mus-
cle contraction; secondly, the values of these forces are 
entered into a musculoskeletal model to estimate joint 
torque. This model requires knowing details related to 
the muscles, such as length, force-length relationship, 
force-velocity relationship, among others; to validate it, 
the researchers used the mean squared error and the 
correlation coefficient, obtaining 3.65Nm in the first one 
and 0.96 points in the second one when they delayed 
the signal in 100ms. The results were considered logi-
cal due to the nature of the sEMG signal, which occurs 
10-100ms before joint movement. It should be noted 
that this type of model allows us to know the individual 
contribution of each of the muscles studied, which can 
optimize patients’ rehabilitation plans.

The algorithms of knee joint torque estimation found 
in this research have been developed by means of di-
verse techniques and their main objective is to estimate 
torque using the electrophysiological signals of the mus-
cles of this joint. Unlike other algorithms that do not use 
muscle signals, they allow physical therapists to obtain 
additional and relevant information, such as muscle ac-
tivation during rehabilitation processes. 

Discussion

The processing of sEMG signals allows measuring knee 
joint torque during the execution of movements

According to the literature reviewed, there are multi-
ple algorithms that allow estimating knee torque using 
sEMG signals from the muscles associated with the flex-
ion and extension of this joint. 23% of the algorithms 
found are used for measurements under static condi-
tions37,42,44,46 and the remaining 77% for measurements 
during the execution of movements.36,38,39-41,43,45,47-53 To 
develop these algorithms, techniques such as the Hill’s 
muscle model,29,41,44 particle swarm optimization,39 poly-
nomial models,49 wavelet neural networks and wavelet 
transform are used.45 Of these, only the Hill’s muscle 
model is white-box because it is based on biomechani-
cal models; the others are classified as black-box models 
since they do not pretend to know the structure of the 
study muscles.

Although there are methods based on biomechan-
ical analyses and physical laws of motion dynamics to 
calculate the torque exerted by a subject during knee 
flexion and extension movements,54 algorithms based 
on electrophysiological signals, especially sEMG signals 
from the muscles of interest, are an effective alternative 
for measuring the torque exerted by this joint during 
movement and in different static positions.50 The latter 
method provides physical therapists with quantitative 
information to support the rehabilitation process of the 
subject since it allows assessing the activation and con-
traction of the muscles associated with the joint to be 
rehabilitated, in this case, the knee.9,28 
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Likewise, sEMG signals make it possible to objec-
tively determine progress in terms of strengthening 
the muscles that provide stability to the knee joint. In 
practice, this is usually done by means of manual or 
external resistance elements, such as dumbbells, ob-
taining inaccurate measurements.

In this sense, estimating knee joint torque by means 
of sEMG signals has advantages as the measurement can 
be carried out with low-cost commercial devices, such 
as the MyoWare Muscle Sensor from Sparkfun Electron-
ics. Similarly, these types of signals provide information 
related to the activation of the muscles involved in the 
joint of interest (knee) during exercises that require 
movement and resemble the muscles necessary for the 
development of activities of daily living. Finally, the al-
gorithms for estimating joint torque based on black-box 
models40,42,45,46 and using sEMG signals as input allow ob-
taining algorithms that behave appropriately for a specific 
subject without the need to know muscle parameters, 
which are required by Hill-type muscle models.

The sEMG signals have some limitations for the estima-
tion of joint torque, such as the fact that the algorithms 
that focus on regressions and optimizations39,43,50 seek 
to adjust the parameters of the models according to 
the experimental data obtained in a single person and, 
therefore, cannot be applied to any population. The same 
happens with algorithms based on neural networks: 
Anwar & Al-Jumaily38 did not validate it with data oth-
er than training data; Han36 trained a neural network 
to estimate joint torque in 20 people, but the training 
and the validation were done with information from a 
single patient, which can lead to an over-trained neural 
network; and Anwar & Al-Dmour51 trained a neuronal 
network with the data of a person for isokinetic exercis-
es, with which acceptable results of torque estimation 
at low speeds were observed, however, the results for 
exercises at high speeds were not satisfactory and the 
information collected cannot be generalized. 

On the other hand, Peng et al.40 & Bai et al.48 conducted 
studies in which they sought to provide an approximate 
measure of torque in the assessed joints by detecting 
user intent through sEMG signals. This approximate 
torque is used as input to rehabilitation systems for 
active-assisted exercises: however, it is not a precise 
torque. Finally, other studies were found41,44,47,52,53 in 
which algorithms based on the Hill’s muscle model use 
information related to the muscles of interest, such as 
the length of the tendons, which varies according to the 
angle at which the joint is located. Nevertheless, this 
model requires the calibration of these parameters for 
each subject and the measurement of the maximum 
voluntary contraction in each session, which makes it 
a subject-dependent model.

It should be mentioned that, to measure knee joint 
torque and torque of any joint in general, the electrodes 
must be properly placed on the muscles of interest since 
the sEMG signal varies depending on that location. In 
addition, there are other variables that affect signal, 
such as crosstalk, skin impedance, sweating, and am-
bient and skin temperature.18

Most of the methods found require other signals be-
sides sEMG signals to measure knee joint torque, such 
as kinematic signals36,37 and force signals.43 This implies 
that it is necessary to use additional elements to carry 
out the measurements.

Estimating knee torque using sEMG signals allows 
physical therapists to assess the condition of the muscles 
that provide stability to the joint and measure progress 
during rehabilitation

For decades, sEMGs have contributed to the diagnosis 
of various pathologies in the field of rehabilitation.19 Ac-
cording to the reviewed literature, the intensity of the 
sEMG signal is highly correlated with the intensity of 
muscle force, which allows estimating the intention of 
movement and joint torque.35-39 Moreover, some stud-
ies show that dynamic and static measurements, in 
different positions of the joint, allow determining the 
value of the maximum torque that the subject is able 
to exert.11,15,23,20

Technological advances to capture and extract infor-
mation from sEMG signals make it possible to measure 
torque periodically. This provides the therapist with rel-
evant information about the condition of the muscle and 
allows determining the progress of the subject during 
rehabilitation. In addition, the information obtained al-
lows performing a quantitative evaluation of the patient’s 
condition and, based on this, determining the adequate 
resistance that may be required to perform different 
motor tasks during the rehabilitation process of injuries 
to structures such as the anterior cruciate ligament11,17 
and the menisci,16 as well as for gait training.25

Consistent with the above, sEMG signals could be used 
not only as an interface between humans and robotic 
rehabilitation systems, as is the case with exoskele-
tons,36,40,41 but also as a strategy for patient assessment 
and joint torque measurement. 

Physical therapists in Colombia do not usually have 
tools that allow them to obtain quantitative data to de-
termine the patient’s progress during the rehabilitation 
process.19,21 For this reason, the measurement of joint 
torque by means of sEMG signals would be of great 
help and would allow them to guide the intervention 
plan in accordance with clinical observations. Howev-
er, it is necessary to determine the times and moments 
in which sEMG is used to quantitatively determine the 
state of the muscles that provide stability to the joint 
since muscle fatigue reduces the efficiency of the con-
tractions and the movements performed,54 which could 
yield erroneous data on the progress of patients. 

Exercises based on anisometric contractions and torque 
measurement during a sequence of joint movement 
allow determining patients’ progress 

Anisometric contractions are useful during therapeu-
tic interventions because they allow increasing muscle 
force, power, and resistance by means of muscle fiber 
recruitment. This in turn optimizes joint stability and 
mobility and allows for a wide range of torque during a 
movement sequence, which can be estimated using al-
gorithms that take sEMG signals as inputs. 

During knee rehabilitation and training processes in 
athletes, it is important to determine the activity of the 
muscle during the execution of motor tasks to optimize 
the performance of the muscle based on the calculation 
of resistance and its influence in accessory muscles.19 
According to this, sEMG signals are a tool that, in addi-
tion to estimating joint torque, allows monitoring the 
electrical activity of the muscles. 



444Rev. Fac. Med. 2020 Vol. 68 No. 3: 438-45

In this scenario, it is proposed that measuring joint 
torque by means of sEMG signals is of great help for 
physical therapists during the diagnostic phase since 
they allow defining the therapeutic objectives based on 
quantitative data, determining the capacity of muscle 
fiber recruitment during the execution of the move-
ment, establishing the appropriate resistance for the 
execution of motor tasks, and determining the prog-
ress of the patients during the rehabilitation process.50 

Conclusions

The present literature review led to find an important 
number of publications that document the calculation of 
knee joint torque from sEMG signals during the execu-
tion of anisometric exercises. However, no publications 
were identified in which the torque calculated from sEMG 
signals was used in rehabilitation processes as such, so 
it is necessary to carry out research on this topic, which 
promises interesting applications in physical therapy.

Results regarding the measurement of knee joint 
torque from sEMG signals are an application of the bio-
medical signal processing theory and, therefore, an 
alternative route to traditional work in biomechanics 
and rehabilitation, which usually involves the applica-
tion of mechanical laws.

In practice, measuring joint torque dynamically using 
sEMG signals represents an easily accessible and low-
cost alternative to the use of isokinetic dynamometers 
for the patient’s rehabilitation process. This alternative 
is also an option that expands the possibilities of mon-
itoring and assessment. 

Another advantage of measuring knee joint torque 
using sEMG signals is that they are always available for 
processing and, therefore, the physical therapist per-
manently has data on muscle activation, which are not 
provided by other joint torque measurement technolo-
gies. However, sEMG signals also have limitations because 
they require professionals to have basic knowledge of 
the capture technique to obtain good-quality results. 
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