Erosividad de las Lluvias en la Región Centro-Sur del Departamento de Caldas, Colombia

Rainfall Erosivity in the South Center Zone of the Department of Caldas, Colombia

Leyder Echeverri Tafur¹ y Franco Humberto Obando Moncayo²

Resumen. Se calculó la erosividad y la variación temporal de las lluvias, mediante los índices de Fournier Anual (IFA), Modificado de Fournier (IMF) y Concentración de las Precipitaciones (ICP). Se utilizaron los registros pluviométricos diarios de 10 años en 15 estaciones meteorológicas ubicadas en la región Centro-Sur del departamento de Caldas. El IFA se calculó mediante cuatro procedimientos (IFA,, IFA, IFA, e IFA,), el IMF a través de dos metodologías (IMF, e IMF,), al igual que el ICP (ICP, e ICP,). Con una matriz de coeficientes de correlación de Spearman, se obtuvieron correlaciones lineales altamente significativas entre IFA,, IFA, IFA, IMF, e IMF, Entre las dos primeras metodologías, se obtuvo un coeficiente de correlación (r=0,91) y entre el IMF, y el IMF, (r=0,97). El IFA₄ no se correlacionó con ninguno de los procedimientos. De otro lado, según el ICP., la precipitación media mensual se distribuye uniformemente, siguiendo la tendencia bimodal característica de la región andina colombiana, concentrándose aproximadamente el 70% del volumen anual de lluvias durante las dos temporadas más lluviosas (marzo-abril-mayo y septiembre-octubre-noviembre). El estudio permite concluir que los riesgos de erosión hídrica pueden ser mayores en la zona de influencia de las estaciones climáticas de los municipios de Manizales, Chinchiná y Palestina, ubicadas en el rango altitudinal comprendido entre 1.010 y 1.800 msnm, específicamente en la zona cafetera central del departamento de Caldas.

Abstract. Erosivity and temporal variation of rainfall were calculated, with annual rates Fournier index (AFI), Modified from Fournier index (MFI) and the Precipitation Concentration (PCI). We used the daily rainfall record of 10 years in 15 meteorological stations located in the central region - South of the department of Caldas. The AFI was estimated by four procedures (AFI,, AFI, and AFI,), the MFI through two methodologies (MFI, e MFI,), like the PCI (PCI, and PCI,). Through a matrix of Spearman correlation coefficients, were highly significant linear correlations between AFI, AFI, AFI, MFI, and MFI, Between the first two procedures, there was a correlation coefficient (r=0.91) and between MFI, and MFI₂ (r=0.97). The AFI₄ did not correlate with any of the procedures. Moreover, according to PCI,, the average monthly precipitation is distributed uniformly, following the trend bimodal characteristic of the Andean region of Colombia, concentrating about 70% of the annual volume of rainfall during the wetter seasons (March-April-May and September-October-November). The study suggests that the risk of water erosion may be greater in the zone of influence of the climate stations in the municipalities of Manizales, Chinchiná and Palestine, located within the altitudinal range between 1010 and 1800 meters above sea level, specifically in the central coffee zone in the department of Caldas.

Key words: Rainfall, erosivity, AFI, MFI, PCI.

Palabras claves: Lluvias, erosividad, IFA, IMF, ICP.

el suelo, expresada por el factor $\rm EI_{30}$ o factor R de la USLE (Universal Soil Loss Equation), fue definida por Wischmeier y Smith en 1958, luego de relacionar datos de pérdida de suelo y lluvias, a partir de parcelas unitarias en los Estados Unidos, encontrando que el producto de la energía cinética (E) y la intensidad máxima en un periodo de 30 minutos ($\rm I_{30}$), expresa la capacidad de las lluvias de causar erosión (Laflen y Moldenhauer, 2003). Este producto en (MJ \cdot mm \cdot ha⁻¹· h⁻¹· a⁻¹) es una medida de la manera como se combinan la energía y la intensidad en una tormenta y define los efectos conjuntos del impacto de las gotas de lluvia y la turbulencia de la escorrentía en el transporte de las partículas de suelo procedentes de un campo (Pérez y Mesa, 2002). Técnicamente el término EI₃₀ indica

cómo el desprendimiento de partículas es combinado

con la capacidad de transporte (Renard et al., 1997).

La erosividad o capacidad de las lluvias de erosionar

El factor R, se calcula utilizando todas las lluvias que igualan o exceden 10 mm y se consideran independientes cuando están separadas por períodos de seis horas o más. Los datos se obtienen de pluviogramas de registro diario en los que se pueden identificar períodos continuos de treinta minutos (Paulet, 1973). Sin embargo, en muchos países, los registros de lluvia a partir de pluviogramas, para calcular el índice de erosividad son escasos; por lo tanto, se trata de un parámetro difícil de estimar (Gabriels et al., 2003). Por tal razón, diversos autores han intentado relacionar dicho factor con parámetros más fáciles de obtener y calcular a partir de registros pluviométricos (Jordán y Bellinfante, 2000). Entre las metodologías más conocidas, se encuentran el Índice de Fournier, el Índice Modificado de Fournier y el Indice de Concentración de las Precipitaciones (Pascual et al., 2001).

Recibido: Marzo 18 de 2009; Aceptado: Febrero 2 de 2010

¹ Ingeniero Agrónomo. Universidad de Caldas. Grupo de Investigación SOSANDINOS. Facultad de Ciencias Agropecuarias. A.A. 2427. Manizales, Colombia. <leydere2000@yahoo.com>

² Profesor Asistente. Universidad de Caldas. Facultad de Ciencias Agropecuarias. Departamento de Sistemas de Producción. A.A. 275. Manizales, Colombia. <fobando1@yahoo.com>

El Índice de Fournier (IF), no tiene muchos seguidores entre los científicos de suelos, debido primordialmente a que no involucra los factores físicos presentes en el proceso de erosión. Además, para emplear el IF como un indicador de la capacidad erosiva de las lluvias, es necesario considerar que en zonas donde el régimen pluvial presenta más de un pico mensual de precipitación o en donde los valores pluviométricos son en general elevados, sólo considera el mes de mayor precipitación, descartando los valores del resto de los meses (Jordán y Bellinfante, 2000). Sin embargo, continúa teniendo muchos usuarios, especialmente por la facilidad en la consecución de la información. En Colombia ha sido utilizado por varios investigadores, especialmente en la región andina central. Gómez (1975), propuso un sistema cualitativo para determinar el uso y manejo de los suelos de ladera, basado en el cálculo de la agresividad de la lluvia a partir del Índice de Fournier Anual (IFA). De igual manera, Gómez (1991), estimó la erosividad de las lluvias en la zona suroccidental del departamento de Antioquia mediante este índice.

Arnoldus (1977), luego de obtener correlaciones entre el índice EI₃₀ y el IF, propuso el Índice Modificado de Fournier (ĬMF), fundamentado en el hecho que no sólo el mes de mayor precipitación produce erosión superficial, sino que hay meses con menores cantidades de precipitación que también producen erosión. Este índice fue utilizado en 1992 en el Proyecto (CORINE) de la Unión Europea, para determinar los riesgos de erosión en los países Mediterráneos y realizar mapas isoerosivos (Gabriels et al., 2003). En Colombia, Ramírez (2006), estimó la erosividad de las lluvias en la zona cafetera central y occidental del departamento de Caldas mediante este índice y además planteó una clasificación de 8 intervalos en un rango comprendido entre 193,7 y 251,4 como valores umbrales del poder erosivo de la precipitación.

De otro lado, en su intento por definir la variabilidad temporal de la distribución de las lluvias en el año, Oliver (1980), propuso el Índice de Concentración de las Precipitaciones (ICP). Los límites teóricos van desde 8,3 si las lluvias en cada uno de los meses del año son similares, hasta 100 si todas las precipitaciones se concentran en un solo mes. El valor del ICP reviste un gran interés, si se tiene en cuenta la incidencia de la precipitación sobre la erosión del suelo, que genera una dinámica

más activa cuanto mayor es la concentración en el tiempo (Jordán y Bellinfante, 2000).

El objetivo de esta investigación fue determinar el potencial erosivo y la variabilidad temporal de las lluvias en la región Centro-Sur del departamento de Caldas mediante índices estimados utilizando registros pluviométricos.

MATERIALES Y MÉTODOS

Localización. El estudio se realizó en la región Centro Sur del departamento de Caldas (Colombia), en los municipios de Manizales, Chinchiná, Neira, Palestina y Villamaría (CORPOCALDAS, 2001), en un área aproximada de 148.307 ha sobre la vertiente occidental de la cordillera central colombiana, entre los 04º 45 a 05º 15' de Latitud Norte y 75º 45' a 75º 15' de Longitud Oeste.

Información pluviométrica. Se analizaron los registros pluviométricos diarios, para un período de 10 años de registro en 15 estaciones meteorológicas (Tabla 1). La información fue suministrada por el Centro Nacional de Investigaciones de Café (Cenicafé) y por el Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM).

Índices de erosividad de las Iluvias. Para determinar la erosividad media anual y la variación temporal de las Iluvias, se utilizó el Índice de Fournier Anual (IFA), el Índice Modificado de Fournier (IMF) y el Índice de Concentración de las Precipitaciones (ICP). Además, se estimó el factor R a partir del IMF, empleando una ecuación validada para las condiciones pluviométricas de la zona cafetera central del departamento de Caldas.

Procedimientos. Inicialmente se dividió la precipitación total mensual de cada año en tres periodos decadales. La década I (día 1 al 10), década II (día 11 al 20) y la década III (día 21 al 28, 29, 30 o 31) según el mes, tal como propone Gómez (1991). Luego se calcularon ocho procedimientos (4 para el Índice de Fournier Anual: IFA₁, IFA₂, IFA₃ e IFA₄; 2 para el Índice Modificado de Fournier: IMF₁ e IMF₂ y 2 para el Índice de Concentración de las Precipitaciones: ICP₁ e ICP₂).

IFA₁. Primero se estimó para cada año, el IF por periodo decadal (IdF), utilizando la ecuación <1>, propuesta por Gómez (1991). Luego se sumaron los 3 IdF para obtener el IF mensual (IFm).

Tabla 1. Estaciones meteorológicas consideradas para el cálculo de la erosividad y la variación temporal de las lluvias en la región Centro-Sur del departamento de Caldas, Colombia.

Estación	Municipio	Latitud (N)	Longitud (W)	Altitud (msnm)	Entidad	Años analizados
Java	Manizales	05° 01′	75º 33'	1780	Cenicafé	1993 – 2002
Agronomía	Manizales	05° 03'	75º 29'	2150	Cenicafé	1990 – 1999
Las Colinas	Manizales	05º 06'	75º 34'	1450	Cenicafé	1993 – 2002
Santa Teresa	Manizales	05° 07′	75° 32′	1800	Cenicafé	1993 – 2002
La Selva	Manizales	05° 07'	75º 36'	1350	Cenicafé	1990 – 1999
La Sierra	Chinchiná	04° 59′	75° 38′	1450	Cenicafé	1993 – 2002
Naranjal	Chinchiná	04° 59′	75º 39'	1400	Cenicafé	1990 – 1999
La Francia	Chinchiná	04º 59'	75º 41'	1267	Cenicafé	1994 – 2002
Cenicafé	Chinchiná	05° 00'	75° 36′	1310	Cenicafé	1990 – 1999
La Palma	Palestina	05° 00'	75° 41′	1300	Cenicafé	1993 – 2002
Santágueda	Palestina	05° 05'	75° 40′	1010	Cenicafé	1990 – 1999
Granja Luker	Palestina	05° 05'	75° 41′	1020	Cenicafé	1990 – 1999
Neira	Neira	05° 10′	75° 31′	2080	IDEAM	1991 – 2000
La Cristalina	Neira	05° 12′	75º 26'	2340	IDEAM	1991 – 2000
Papayal	Villamaría	04º 57'	75º 29'	2220	IDEAM	1991 – 2000

Posteriormente para cada mes se sumaron todos los IFm estimados y se promediaron sobre el número de años analizados. Finalmente el IFA₁ corresponde a la sumatoria de los 12 IFm.

 $IdF: (PMpd)^2 / PTp (1)$

donde:

IdF = Índice decadal de Fournier

PMpd = Precipitación máxima del período decadal (mm)

PTpd = Precipitación total del período decadal (mm)

IFA₂. Se obtuvo calculando el IFA al sumar los 36 IdF de cada año; luego se dividió la sumatoria de todos los IFA sobre el número de años considerados

IFA₃. Se determinó con base en la metodología propuesta por Rey (1996), ecuación (2). Para cada día decadal, se estimó la precipitación media, al sumar

la lluvia total del día en cada mes y en cada año y promediarla sobre el número de años de registro; posteriormente se elevó al cuadrado, luego se sumaron los valores obtenidos y se dividieron sobre la sumatoria de los promedios de los diez días para calcular el IdF'. Posteriormente se sumaron los 3 IdF' para hallar el IF mensual (IFm). Finalmente, el IFA₃ corresponde a la sumatoria de los 12 IFm.

IdF : (Y del día 1)
2
 +..... (Y del día 10) 2 / (Y del día 1) +..... (Y del día 10) (2)

donde:

IdF' = Índice decadal de Fournier

Y = Precipitación media del día decadal (mm)

El IFA estimado utilizando los anteriores procedimientos, se clasificó según los rangos propuestos por Gómez (1975) (Tabla 2).

Tabla 2. Clasificación de la erosividad de las lluvias.

IFA	Grado de agresividad	Características de la precipitación
< 140	Leve	Lluvias leves, frecuentes, bien distribuidas
140 - 210	Baja	Lluvias de baja intensidad, frecuentes, bien distribuidas.
210 – 280	Media	Lluvias de mediana intensidad, frecuentes, de buena o regular distribución.
280 – 350 > 350	Alta Muy alta	Lluvias fuertes, frecuentes o no, de buena o mala distribución. Lluvias fuertes, frecuentes o no, de buena o mala distribución.

(Gómez, 1975)

IFA₄. Se estimó mediante la ecuación (3) y se clasificó de acuerdo a los valores considerados por Delgado (2003) (Tabla 3).

$$IF = p^2 / P$$
 (3)

donde:

IF = Índice de Fournier

p² = Precipitación media del mes más lluvioso del año

P = Precipitación media anual (mm)

IMF.. Para su cálculo se utilizó la ecuación <4> citada por Gabriels et al. (2003).

$$IMF = \sum_{i=1}^{12} \frac{p_i^2}{P_t}$$
 (4)

donde:

IMF = Indice modificado de Fournier

= Precipitación media mensual (mm) = Precipitación media anual (mm) = Mes

Tabla 3. Valores de referencia del Índice de Fournier (IF) para áreas montañosas tropicales.

IF	Calificación
< 15	Muy bajo
16 – 30	Bajo
31 – 50	Moderado
51 – 65	Alto
> 65	Muy Alto

(Delgado, 2003)

IMF₃. Se calculó mediante la ecuación <5> citada por Apaydin et al. (2006), donde el IMF se obtuvo para cada año con los datos de precipitación total mensual y anual. Luego se promedió la sumatoria de los IMF estimados sobre el número de años analizados.

$$IMF_{j} = \frac{1}{b} \sum_{j=1}^{b} IMF_{j}$$
 (5)

donde:

 $IMF_{j} = Indice Modificado de Fournier$

= Numero de años de registro

ICP,. Se estimó utilizando el procedimiento citado por Gabriels et al. (2003), ecuación (6).

$$ICP = 100 * \frac{\sum_{i=1}^{12} p_i^2}{P^2}$$
 (6)

donde:

ICP = İndicedeconcentración delas precipitaciones (%)

Precipitación media mensual (mm) = Precipitación media anual (mm)

= Mes

ICP₂. Se calculó mediante la ecuación (7) citada por Apaydin et al. (2006), donde el ICP se obtuvo para cada año con los datos de precipitación total mensual y anual. Luego se promedió la sumatoria de los ICP estimados sobre el número de años analizados.

$$ICP_{j} = \frac{1}{b} \sum_{i=1}^{b} ICP_{j}$$
 (7)

donde:

ICP_i = Índice de concentración de las precipitaciones (%)

= Número de años de registro

Los valores del IMF y del ICP se clasificaron de acuerdo a los rangos presentados por CEC (1992) y Michiels y Gabriels (1996) (Tablas 4 y 5).

Para estimar el factor R, se utilizó la ecuación <8> presentada por Ramírez (2006), el cual encontró una correlación (r = 0.84) entre el IMF y el EI_{20} promedio mensual reportado por Rivera (1990), para 15 años de registro. Mediante análisis de regresión lineal, el IMF explicó la variación del EI₃₀ en un 70% ($R^2 = 0.70$) a un nivel de significancia del 5%.

Tabla 4. Clasificación del Índice modificado de Fournier (IMF).

Clase	Rango	Descripción
1	< 60	Muy bajo
2	60 – 90	Bajo
3	90 – 120	Moderado
4	120 – 160	Alto
5	> 160	Muy alto

CEC, 1992)

Tabla 5. Clasificación del Índice de concentración de las precipitaciones (ICP).

Rango	Descripción
8,3 – 10	Uniforme
11 – 15	Estacional moderada
16 – 20	Estacional
21 – 50	Fuertemente estacional
51 –100	Aislada

(Michiels y Gabriels, 1996)

$$EI_{30} = \sum_{12}^{1} 30,4(IMF) + 28,3$$
 (8)

donde:

 EI_{30} = Erosividad en MJ·mm·ha $^{-1}$ IMF = Índice modificado de Fournier (promedio mensual)

Los valores obtenidos se clasificaron según proponen Rivera y Gómez (1991) (Tabla 6).

Análisis estadístico. Mediante el paquete estadístico SAS versión 7.0, se elaboró una matriz de coeficientes de correlación de Spearman. Se consideraron los procedimientos con correlaciones significativas y altamente significativas, para luego determinar las respectivas regresiones lineales simples a un nivel de significancia del 5%. Se seleccionaron los modelos con un coeficiente de determinación (R^2) \geq 0,75 y un bajo coeficiente de variación ($CV \leq 12\%$).

Tabla 6. Clasificación de la erosividad de las lluvias propuesta para la zona cafetera colombiana.

Clase	Erosividad R (MJ·mm·ha ⁻¹)	Clasificación
1	< 1.000	Natural
2	1.000 a 2.500	Muy Baja
3	2.500 a 5.000	Baja
4	5.000 a 7.500	Moderada
5	7.500 a 10.000	Alta
6	10.000 a 15.000	Muy Alta
7	15.000 a 20.000	Severa
8	> 20.000	Extremadamente severa

(Rivera y Gómez, 1991)

RESULTADOS Y DISCUSIÓN

La Tabla 7, resume los valores de los ocho procedimientos utilizados para estimar el potencial erosivo y la variación temporal de las lluvias en la región Centro-Sur del departamento de Caldas. La erosividad de las lluvias, estimada mediante el IFA₁, es alta en las estaciones La Cristalina (310) y Papayal (318); mientras que en las 13 estaciones restantes sobrepasó el umbral de 350, valor por encima del

cual las precipitaciones se consideran de muy alta agresividad (Tabla 2). El IFA₁ más alto se presentó en la estación La Francia del municipio de Chinchiná, con un valor de 734 y el valor más bajo se registró en la estación La Cristalina del municipio de Neira.

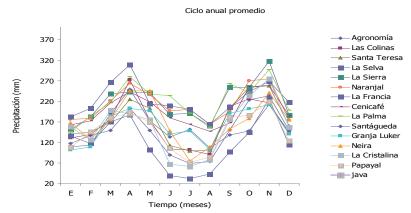
Para el IFA₂, la estación La Francia reportó el valor más alto (742) y el valor más bajo (222) se encontró en la estación Papayal ubicada en el municipio de Villamaría. Las estaciones Neira (238) y Papayal presentaron lluvias de mediana agresividad (Tabla 2).

En las estaciones La Selva y La Cristalina, con valores de 327 y 316 respectivamente, las lluvias son de alta erosividad. Las demás estaciones se clasificaron en el rango de muy alta erosividad (Tabla 2). Los datos encontrados para las estaciones Agronomía (389), Naranjal (567) y Santágueda (494), son cercanos a los reportados por Dvorakova (2002), quien estimó para estas 3 estaciones, los riesgos de erosión hídrica utilizando este procedimiento. Los valores registrados fueron 401, 5086 y 526, para Agronomía, Naranjal y Santágueda, respectivamente.

Tabla 7. Valores promedios del Índice de Fournier Anual (IFA), Índice Modificado de Fournier (IMF) e Índice de Concentración de las Precipitaciones (ICP) en 15 estaciones climáticas de la región Centro – Sur del departamento de Caldas, Colombia.

Estación	$(IFA)_1$	$(IFA)_2$	$(IFA)_3$	(IFA) ₄	$(IMF)_1$	$(IMF)_2$	$(ICP)_1$	$(ICP)_2$
Java	435	441	218	28	163	198	9	11
Agronomía	389	395	194	31	163	184	9	11
Las Colinas	486	491	229	37	182	218	9	11
Santa Teresa	500	506	244	32	189	220	9	11
La Selva	362	327	168	36	145	174	10	12
La Sierra	612	618	313	38	228	256	9	10
Naranjal	567	402	296	29	219	249	9	10
La Francia	734	742	315	34	234	268	9	9
Cenicafé	568	573	272	28	204	232	9	10
La Palma	558	564	301	33	229	258	9	10
Santágueda	494	500	217	33	166	200	9	11
Granja Luker	473	478	226	23	170	194	9	10
Neira	357	238	233	29	185	237	9	12
La Cristalina	310	316	206	39	182	218	10	12
Papayal	318	222	188	27	161	181	9	10

El IFA $_3$ calificó la erosividad entre baja, media y alta (Tabla 2). Esto sugiere una gran variabilidad anual de la precipitación diaria decadal. La estación La Francia presentó el IFA $_3$ más alto, con un valor de 315 y el valor más bajo, lo obtuvo la estación La Selva (168).


Con respecto al IFA₄, el potencial erosivo de las lluvias se clasificó entre bajo y moderado (Tabla 3). El IFA₄ más alto se registró en la estación La Cristalina (39) y el valor más bajo (23) se reportó en la estación Granja Luker. En diez de las estaciones climáticas, noviembre fue el mes más lluvioso del año con valores entre 211 y 317 mm (Tabla, 8). Abril fue el mes con mayor precipitación media mensual en las estaciones Las Colinas (272 mm), La Francia (309 mm), Santágueda (249 mm) y Neira (245 mm); mientras que en la estación Java, ubicada en el

municipio de Manizales, el mes de octubre presentó el mayor valor de precipitación con 226 mm. Además, el IFA, de 28 observado para esta última estación, es muy cercano al estimado por Matta y Ramírez (2006), quienes obtuvieron un valor de 25,55, luego de analizar los registros pluviométricos de diez años de información y aplicar este procedimiento. De otro lado, se podría afirmar que el IFA, subestimó la erosividad al considerar sólo la precipitación media del mes más lluvioso del año, sin tener en cuenta que en la región andina central colombiana, el régimen pluviométrico dominante es de tipo bimodal, caracterizado por dos picos (meses) que presentan los mayores valores de precipitación a comienzo y a final del año. Por lo tanto, esta metodología no es apropiada para las condiciones de la zona bajo estudio.

El IMF₁ muestra que todos los valores excepto para la estación La Selva, superaron el rango de 160, el cual es considerado el valor por encima del cual, las lluvias son de muy alta erosividad (Tabla 4). La estación La Francia, presentó el IMF₁ más alto, con un valor de 234, mientras que la estación La Selva, registró el valor más bajo (145). Estos resultados concuerdan con los observados por Dvorakova (2002) y Ramírez (2006), en 12 de las 15 estaciones climáticas analizadas en este estudio, reportando de igual manera, lluvias muy erosivas, con valores superiores a 160.

El IMF₂ al igual que el IMF₁, calificó las lluvias como de muy alta erosividad (Tabla 4). La estación que presentó el valor más alto fue La Francia, con un valor de 268 y el valor más bajo (174) se encontró en La Selva.

De otro lado, según el ICP, la distribución de la precipitación en la región Centro-Sur del departamento de Caldas es uniforme (Tabla 5), con valores entre 9 y 10% (Tabla 7). Esta uniformidad se puede asociar a la tendencia bimodal (Figura 1) originada por el doble paso en el año, de la Zona de Convergencia Intertropical (ZCIT), a través de la región andina colombiana. El paso de la ZCIT genera condiciones de tiempo lluvioso (frecuente nubosidad y precipitación), particularmente en los meses de abril a mayo y octubre a noviembre, cuando se ubica hacia el centro del país y ocasionan las dos temporadas lluviosas del año. En la región central de Colombia de enero a febrero se sitúa en los 5º de latitud sur y determina la primera época seca del año, mientras que en julio a agosto se desplaza a los 8º de latitud norte y genera el segundo período seco (Guzmán y Baldión, 1997).

Figura 1. Distribución bimodal de la precipitación en 15 estaciones meteorológicas de la región Centro-Sur del departamento de Caldas, Colombia.

Tabla 8. Precipitación media mensual y anual en 15 estaciones climáticas de la región Centro-Sur del departamento de Caldas, Colombia.

Estación	Е	F	М	Α	М	J	J	Α	S	0	N	D	Año
Java	130	107	191	189	168	110	70	79	172	226	195	148	1790
Agronomía	117	137	149	203	149	89	69	74	150	223	233	149	1749
Las Colinas	131	139	176	272	174	104	101	91	207	226	216	140	1982
Santa Teresa	139	146	169	225	203	112	99	101	204	254	258	160	2077
La Selva	136	117	170	187	102	40	32	43	97	144	226	114	1414
La Sierra	150	182	238	243	240	188	190	160	254	254	317	186	2632
Naranjal	176	178	221	264	236	196	200	164	195	270	275	175	2555
La Francia	182	203	266	309	214	209	200	164	205	243	268	217	2732
Cenicafé	163	172	216	243	218	179	164	147	167	255	259	184	2370
La Palma	146	183	217	280	238	233	190	157	262	242	296	198	2648
Santágueda	109	114	191	249	172	133	151	107	138	148	212	146	1877
Granja Luker	101	109	183	203	197	141	148	103	190	202	211	140	1932
Neira	167	127	175	245	245	148	75	109	153	178	240	175	2043
La Cristalina	158	126	198	189	175	67	61	78	176	233	275	156	1896
Papayal	108	145	180	192	169	105	71	85	181	186	219	124	1769

Los meses de marzo y septiembre, se consideran de transición hacia los períodos lluviosos y los meses de junio y diciembre lo son hacia los períodos de menor precipitación del año (Guzmán y Baldión, 2003).

En la Figura 1, se puede apreciar que los meses de abril, octubre y noviembre registraron los mayores valores de precipitación durante la primera y la segunda temporada lluviosa del año respectivamente. De igual manera se encontró que el valor del ICP₁ fue mayor en los meses de marzo a mayo y septiembre a noviembre (Tabla 9), lo cual indica que en ambas temporadas se genera una dinámica más activa de la precipitación sobre la erosión del suelo, debido a una mayor concentración de las lluvias.

Tabla 9. Valor del Índice de Concentración de la Precipitación (ICP)₁ promedio mensual y anual en 15 estaciones climáticas de la región Centro – Sur del departamento de Caldas, Colombia.

Estación	Е	F	М	Α	М	J	J	Α	S	0	N	D	Año
Java	0,527	0,357	1,139	1,115	0,881	0,378	0,153	0,195	0,923	1,594	1,187	0,684	9,132
Agronomía	0,447	0,614	0,726	1,347	0,726	0,259	0,156	0,179	0,736	1,626	1,775	0,726	9,315
Las Colinas	0,437	0,492	0,789	1,883	0,771	0,275	0,26	0,211	1,091	1,3	1,188	0,499	9,195
Santa Teresa	0,448	0,494	0,662	1,174	0,955	0,291	0,227	0,236	0,965	1,496	1,543	0,593	9,084
La Selva	0,925	0,685	1,445	1,749	0,52	0,08	0,051	0,092	0,471	1,037	2,555	0,65	10,26
La Sierra	0,325	0,478	0,818	0,852	0,831	0,51	0,673	0,37	0,931	0,931	1,451	0,499	8,67
Naranjal	0,475	0,485	0,748	1,068	0,853	0,588	0,613	0,412	0,582	1,117	1,158	0,469	8,569
La Francia	0,444	0,552	0,948	1,279	0,614	0,585	0,817	0,36	0,563	0,791	0,962	0,631	8,547
Cenicafé	0,473	0,527	0,831	1,051	0,846	0,57	0,479	0,385	0,497	1,158	1,194	0,603	8,613
La Palma	0,304	0,478	0,672	1,118	0,808	0,774	0,515	0,352	0,979	0,835	1,25	0,559	8,643
Santágueda	0,337	0,369	1,035	1,76	0,84	0,502	0,647	0,325	0,541	0,622	1,276	0,605	8,858
Granja Luker	0,273	0,318	0,897	1,104	1,04	0,533	0,587	0,284	0,967	1,093	1,193	0,525	8,814
Neira	0,668	0,386	0,734	1,438	1,438	0,525	0,135	0,285	0,561	0,759	1,38	0,734	9,043
La Cristalina	0,694	0,442	1,091	0,994	0,852	0,125	0,104	0,169	0,862	1,51	2,104	0,677	9,622
Papayal	0,373	0,672	1,035	1,178	0,913	0,352	0,161	0,231	1,047	1,106	1,533	0,491	9,091

Durante los 6 meses más lluviosos se concentra aproximadamente el 70% del volumen anual de lluvias, mientras que en los 6 meses restantes, correspondientes a las temporadas de menor precipitación, se concentra el 30% (Tabla 10). Los resultados obtenidos en la estación Cenicafé concuerdan con los valores observados por Guzmán y Baldión (2003), donde el 60,5% de las lluvias se concentra en las dos temporadas de mayor precipitación (30,3% en los meses de marzo -abrilmayo y 30,2% en los meses de septiembre-octubrenoviembre), mientras el 39,5% restante, se concentra en las dos temporadas de menor precipitación (19% en los meses de diciembre-enero-febrero y 20,5% en los meses de junio-julio-agosto). Además, los datos analizados, pueden ser comparados a los presentados por Jordán y Bellinfante (2000), quienes encontraron en el Campo de Gibraltar, que el valor del ICP es bastante homogéneo en las estaciones representativas de esta área, ya que de forma general, aproximadamente el 85% del volumen anual de la precipitación se concentra en los meses de octubre a abril (invierno) y sólo el 15% en los meses de verano.

A diferencia del ICP₁, el ICP₂ mostró mayor variabilidad, con valores entre el 9% y el 12% (Tabla 7), indicando una distribución uniforme y estacional moderada de las lluvias durante el año (Tabla 5). Estos resultados concuerdan a los observados por Ramírez (2006), quien determinó mediante esta metodología, la variación temporal de las lluvias en la zona cafetera central y occidental del departamento de Caldas, encontrando una distribución moderadamente uniforme para el 5% del área estudiada y una distribución uniforme para el 95% restante. De igual manera, Dvorakova (2002), registró valores entre 9,6% y 11,4% para las estaciones consideradas en este estudio, exceptuando la estación Neira.

Con respecto al factor R, estimado utilizando el IMF₁ promedio mensual, se encontró que en 12 de las 15 estaciones consideradas en este estudio (Tabla 11), los valores fueron cercanos a los observados por Ramírez (2006). Sin embargo, la erosividad media anual se calificó entre moderada y alta (Tabla 6), a diferencia de los valores de erosividad mencionados por el citado autor, los cuales se calificaron entre alta y muy alta.

Tabla 10. Concentración bimodal del volumen anual de lluvias en 15 estaciones climáticas de la región Centro – Sur del departamento de Caldas, Colombia.

Estación	MAM	SON	Total (%)	DEF	JJA	Total (%)	Anual (%)
Java	34,32135	40,56151	74,88286	17,17435	7,94279	25,11714	100
Agronomía	30,04464	44,40069	74,44533	19,18223	6,372435	25,55467	100
Las Colinas	37,44106	38,92087	76,36193	15,52671	8,111363	23,63807	100
Santa Teresa	30,72289	44,06927	74,79215	16,90263	8,305221	25,20785	100
La Selva	36,20459	39,59142	75,79601	22,02361	2,180377	24,20399	100
La Sierra	28,85168	38,21312	67,0648	15,02079	17,9144	32,9352	100
Naranjal	31,14752	33,34942	64,49694	16,6765	18,82656	35,50306	100
La Francia	33,23719	27,10259	60,33978	19,03348	20,62674	39,66022	100
Cenicafé	31,67335	33,07192	64,74527	18,6054	16,64934	35,25473	100
La Palma	30,05475	35,44927	65,50402	15,51293	18,98304	34,49598	100
Santágueda	41,03496	27,52155	68,55651	14,80118	16,64231	31,44349	100
Granja Luker	34,49977	36,9064	71,40617	12,66899	15,92484	28,59383	100
Neira	39,92226	29,8587	69,78096	19,77712	10,44192	30,21904	100
La Cristalina	30,51372	46,5121	77,02582	18,8419	4,132289	22,97418	100
Papayal	34,38501	40,53371	74,91872	16,89461	8,186672	25,08128	100

MAM: Marzo – Abril –Mayo.

SON: Septiembre – Octubre – Noviembre.

DEF: Diciembre – Enero – Febrero.

JJA: Junio – Julio – Agosto.

Tabla 11. Valores del factor R anual en MJ \cdot mm \cdot ha⁻¹, estimado utilizando el Índice Modificado de Fournier (IMF₁) promedio mensual, en 15 estaciones climáticas de la región Centro – Sur del departamento de Caldas, Colombia.

Estación	Е	F	М	Α	М	J	J	Α	S	0	N	D	R	Clase	R*	Clase
Java	346	230	768	768	614	269	115	115	653	1114	806	461	6287	M	8013.4	A
Agronomía	307	422	499	922	499	192	115	115	499	1075	806	499	5978	M	7953.1	A
Las Colinas	346	384	614	1421	576	192	192	154	845	998	922	384	7056	M	8443.7	A
Santa Teresa	346	384	538	922	768	230	192	192	768	1190	1229	461	7248	М	8506.5	A
La Selva	499	384	768	960	269	38.4	38.4	38.4	269	576	1382	346	5481	M	9361.2	A
La Sierra	346	499	845	845	845	499	691	384	960	960	1459	499	8860	A	9890.5	Α
Naranjal	461	461	730	1037	845	576	614	422	576	1114	1152	461	8477	A	10388.8	MA
La Francia	461	576	998	1344	653	614	845	384	576	845	998	653	8975	A	10341.4	MA
Cenicafé	422	461	768	960	768	538	422	346	461	1037	1075	538	7824	A	9854.1	A
La Palma	307	499	691	1152	806	806	538	346	998	845	1267	576	8859	A	10625	MA
Santágueda	230	269	730	1267	614	346	461	230	384	461	922	422	6364	M	8942.1	A
Granja Luker	192	230	653	1267	768	384	422	192	730	806	883	384	6939	М	8952.4	A
Neira	538	307	576	1114	1114	422	115	230	422	614	1075	576	7131	M		
La Cristalina	499	307	806	730	614	77	77	115	614	1114	1536	499	7016	М		
Papayal	269	461	691	806	614	230	115	154	730	768	1037	346	6249	M		

R* Erosividad estimada por Ramírez (2006)

Clase: A (Alta); MA (Muy alta) y M (Moderada)

Análisis estadístico. La Tabla 12, resume la matriz de coeficientes de correlación de Spearman entre los 8 procedimientos utilizados para estimar la erosividad y la concentración de las lluvias en 15 estaciones climáticas de la región Centro-Sur del departamento de Caldas. Se observaron correlaciones altamente significativas entre los siguientes procedimientos:

IFA₁ vs. IFA₂ (r=0.91); IFA₁ vs. IFA₃ (r=0.85); IFA₁ vs. IMF₁ (r=0.77); IFA₁ vs. IMF₂ (r=0.72); IFA₂ vs. IFA₃ (r=0.76); IFA₂ vs. IMF₁ (r=0.69); IFA₃ vs. IMF₁ (r=0.96); IFA₃ vs. IMF₂ (r=0.94); IMF₁ vs. IMF₂ (r=0.97) y correlaciones significativas entre IFA₂ vs. IMF₂ (r=0.63) e ICP₁ vs. ICP₂ (r=0.57). El IFA₄ no se correlacionó con ninguno de los procedimientos.

Tabla 12. Matriz de coeficientes de correlación de Spearman entre los procedimientos utilizados para la estimación de la erosividad y la variación temporal de las lluvias en la región Centro – Sur del departamento de Caldas, Colombia.

	IFA ₁	IFA ₂	IFA ₃	IFA ₄	IMF ₁	IMF ₂	ICP ₁	ICP ₂
IFA ₁	1,00000	0,91429	0,85357	0,11817	0,77281	0,71671	-0,49931	-0,70798
		<,0001	<,0001	0,6749	0,0007	0,0026	0,0581	0,0031
IFA_2		1,00000	0,76071	0,23993	0,69410	0,62913	-0.40853	-0,58904
			0,0010	0,3891	0,0041	0,0120	0,1306	0,0209
IFA ₃			1,00000	0,12534	0,96065	0,94370	-0,49931	-0,61735
-				0,6563	<,0001	<,0001	0,0581	0,0142
IFA_4				1,00000	0,25202	0,28315	0,50066	0,28679
					0,3649	0,3065	0,0573	0,3000
$IMF_{\scriptscriptstyle 1}$					1,00000	0,97583	-0,34105	-0,54470
-						<,0001	0,2135	0,0358
IMF ₂						1,00000	-0,34074	-0,45162
_							0,2139	0,0910
ICP_1							1,00000	0,57589
ICD								0,0247
ICP ₂								1,00000

Spearman Correlation Coefficients, N = 15. Prob > |r| under H0: Rho=0

Las ecuaciones obtenidas mediante el análisis de regresión lineal simple entre los índices de erosividad, a un nivel de significancia del 5%, con su respectivo coeficiente de determinación (R^2) y coeficiente de variación (cv), se presentan en la Tabla 13.

Tabla 13. Regresiones lineales simples entre el Índice de Fournier Anual (IFA) y el Índice Modificado de Fournier (IMF) como procedimientos utilizados en la estimación de la erosividad de las lluvias en la región Centro-Sur del departamento de Caldas.

Ecuación de regresión	R ²	cv (%)
IFA ₁ = 127,36302 + 0,77096 *(IFA) ₂	0,853312	9,90886
$IFA_1^1 = -58,85559 + 2,22261 * (IFA)_3^2$	0,780801	12,11287
$IFA_{2} = -74,34201 + 1,10682 * (IFA)_{1}$	0,853312	12,48255
IFÂ ₃ = 73,57595 + 0,3513 * (IFA), 1	0,780801	9,528867
IFA ₃ = -63,46158 + 1,62125 * (IMF),	0,949695	4,564868
$IFA_3 = -81,11715 + 1,47148 * (IMF)_2$	0,884218	6,925371
$IMF_{1} = 46,63186 + 0,58578 * (IFA)_{3}^{2}$	0,949695	3,522329
$IMF_{1} = -11,47913 + 0,91031 * (IMF)_{2}$	0,936578	3,954988
$IMF_{2} = 74,11532 + 0,6009 * (IFA)_{3}^{2}$	0,884218	4,873904
$IMF_{2} = 25,70834 + 1,02886 * (IMF)_{1}$	0,936578	3,607260

cv = coeficiente de variación

CONCLUSIONES

El estudio permite concluir que las lluvias en la región Centro-Sur del departamento de Caldas tienen un alto potencial erosivo, siendo más relevante en la zona de influencia de las estaciones climáticas de los municipios de Manizales, Chinchiná y Palestina, ubicadas en un rango altitudinal comprendido entre los 1.010 y 1.800 msnm, específicamente en la zona cafetera central del departamento. Por tal motivo y con el propósito de lograr la sosteniblidad de los sistemas productivos establecidos en esta área de gran importancia para la economía departamental, regional y nacional, es necesario que los agricultores tomen medidas adecuadas de conservación de suelos para minimizar la acción erosiva de las lluvias, tales como el mantenimiento de una cobertura vegetal permanente sobre el suelo y no realizar labores de cultivo que involucren su remoción o exposición durante las dos épocas de mayor precipitación del año. De otro lado, se recomienda para trabajos posteriores, estimar la erosividad a escala municipal, mediante índices calculados utilizando la información pluviométrica y/o pluviográfica disponible, para generar una base de datos más amplia, que pueda ser espacializada y modelada a través de Sistemas de Información Geográfica.

AGRADECIMIENTOS

Los autores expresan sus agradecimientos al Centro Nacional de Investigaciones de Café (Cenicafé) y al Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM) por la información pluviométrica suministrada. A la Vicerrectoría de Investigaciones y Postgrados de la Universidad de Caldas, por la financiación del proyecto "Manejo y control de la erosión hídrica en la región andina central colombiana", código VIP 3340, del cual formó parte este trabajo de investigación.

BIBLIOGRAFÍA

Apaydin, H., G. Erpul, I. Bayramin, and D. Gabriels. 2006. Evaluation of indices for characterizing the distribution and concentration of precipitation: A case for the region of Southeastern Anatolia Project, Turkey. Journal of Hydrology 328(3-4): 726-732.

Arnoldus, H.M.J. 1977. Methodology used to determine the maximum potential average annual soil loss due to sheet and rill erosion in Morocco. FAO Soils Bulletin 34: 39-51.

CEC-Commission of the European Communities. 1992. CORINE soil erosion risk and important land resources in the southern regions of the European Community. Commission of the European Communities, Luxembourg. 97 p.

CORPOCALDAS-Corporación Autónoma Regional de Caldas. 2001. Plan de Gestión Ambiental Regional para Caldas PGAR 2001–2006. CORPOCALDAS, Manizales. 209 p.

Delgado, E.F. 2003. Un protocolo para apoyar la selección de prácticas de conservación de suelos en tierras montañosas tropicales. En: Memorias I Seminario Internacional de Agricultura de Conservación en Tierras de Ladera. Manizales. 27 p.

Dvorakova, A. 2002. Desarrollo de la erosión hídrica en la región central andina colombiana. Informe Final. Universidad de Caldas. Vicerrectoría de Investigaciones y Postgrados, Manizales. 43 p.

Gabriels, D., A. Vermeulen, K. Verbist and V. Meirvenne. 2003. Assessment of rain erosivity and precipitation concentration in Europe. pp. 87 – 92. In: Gabriels, D. and W. Cornelis (eds.). Proceedings of the International Symposium 25 Years of Assessment of Erosion. Ghent, Belgium.

Gómez, A.A. 1975. Sistema IUM para determinación del uso y manejo de los suelos de ladera. Cenicafé 26(2): 72-86.

Gómez, F.E. 1991. El potencial de erosión pluvial por período decadal y su manejo conservacionistazona suroccidental del departamento de Antioquia (Metodología de Fournier). Boletín de Ciencias de la Tierra (10):1-21.

Guzmán, M.O. y R.J.V. Baldión. 1997. Regionalización climática de una zona montañosa tropical empleando el análisis multivariado. Cenicafé 48(4): 260-274.

Guzmán, M.O. y R.J.V. Baldión. 2003. El clima en la sede principal del Centro Nacional de Investigaciones de Café, Chinchiná, Caldas. Cenicafé 54(2):110-133.

Jordán, A. y N. Bellinfante. 2000. Cartografía de la erosividad de la lluvia estimada a partir de registros pluviométricos mensuales en el Campo de Gibraltar (Cádiz). Edafología 7(3): 83-92.

Laflen, J.M. and W.C. Moldenhauer. 2003. Pioneering Soil Erosion Prediction. The USLE Story. World Association of Soil and Water Conservation. Bangkok. 54 p.

Matta, M.A.J. y F.M. Ramírez. 2006. Indicadores de sostenibilidad del uso de la tierra, índice de riesgo de erosión y variabilidad espacial en el rendimiento de lechuga (*Lactuca sativa*) en suelos de la zona hortícola del municipio de Villamaría-Caldas. Tesis Ingeniero Agrónomo. Facultad de Ciencias Agropecuarias. Universidad de Caldas. Manizales. 181 p.

Michiels, P., and Gabriels, D. 1996. Rain variability indices for the assessment of rainfall erosivity in the Mediterranean region. pp. 49-70. In: Rubio, J.L. and A. Calva (eds.). Soil degradation and desertification in Mediterranean environments. Geoforma editions'. Logroño, Spain.

Oliver, J.E. 1980. Monthly precipitation distribution: a comparative index. Professional Geographer 32 (3): 300-309.

Pascual, A.J.A., V.C.J. Añó, D.J. Sánchez, M.F.J. Masiá y R.E. Arnau. 2001. Valoración de la idoneidad de los índices PCI y MFI para estimar la concentración y agresividad de las precipitaciones en la comunidad valenciana. Cuaternario y geomorfología: Revista de la Sociedad Española de Geomorfología y Asociación Española para el Estudio del Cuaternario 15(3-4): 77-84.

Paulet, I.M. 1973. Guía para el planeamiento del uso de las tierras agrícolas en las zonas de lluvia

del Perú. Programa de Conservación de Suelos-Publicación 3. Universidad Agraria La Molina, Lima. 54 p.

Pérez, A.J.D. y S.O.J. Mesa. 2002. Estimación del factor de erosividad de la lluvia en Colombia. En: Memorias I Simposio Latinoamericano de Control de Erosión. Bucaramanga.

Ramírez, O.A.F. 2006. Evaluación del riesgo por erosión potencial de la zona cafetera central del departamento de Caldas. Trabajo de grado Ingeniero Forestal. Facultad de Ingeniería Forestal. Universidad del Tolima. Ibagué. 98 p.

Renard, K.G., G.R. Foster, G.A. Weesies, D.K. McCool and D.C. Yoder. 1997. Chapter 2. Rainfall-Runoff Erosivity Factor (R). pp. 19-64. In: Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Agriculture Handbook No 703. United States Department of Agriculture (USDA), Washington. 384 p.

Rey, J. 1996. Proyecto de erosión. Instituto de Hidrología, Meteorología y Estudios Ambientales-IDEAM. Documento interno. Bogotá, D.C. 23 p.

Rivera, P.J.H. 1990. Determinación de los índices de erosividad, erodabilidad y erosión potencial en la zona cafetera central colombiana (Caldas, Quindío y Risaralda). Tesis Magíster. Facultad de Ciencias Agropecuarias. Universidad Nacional de Colombia. Palmira. 155 p.

Rivera, P.J.H. y A.A. Gómez. 1991. Erosividad de las lluvias en la zona cafetera central colombiana (Caldas, Quindío y Risaralda). Cenicafé 42(2): 37-52.