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This study presents a comparison of the usual statistical methods used for crop model assessment. A 
case study was conducted using a data set from observations of the total dry weight in diploid potato 
crop, and six simulated data sets derived from the observations aimed to predict the measured data. 
Statistical indices such as the coefficient of determination, the root mean squared error, the relative 
root mean squared error, mean error, index of agreement, modified index of agreement, revised 
index of agreement, modeling efficiency, and revised modeling efficiency were compared. The results 
showed that the coefficient of determination is not a useful statistical index for model evaluation. The 
root mean squared error together with the relative root mean squared error offer an excellent notion 
of how deviated the simulations are in the same unit of the variable and percentage terms, and they 
leave no doubt when evaluating the quality of the simulations of a model.

Este artículo presenta una comparación de los métodos estadísticos habituales que se utilizan para 
la evaluación de modelos de cultivos. Se realizó un estudio de caso utilizando un conjunto de datos 
observados del peso seco total en un cultivo de papa diploide y seis conjuntos de datos simulados 
destinados a predecir las observaciones. Los parámetros estadísticos evaluados fueron el coeficiente 
de determinación, la raíz cuadrada del cuadrado medio del error, la raíz cuadrada del cuadrado medio 
del error relativo, el error medio, el índice de concordancia, el índice de concordancia modificado, 
el índice de concordancia revisado, el índice de eficiencia y el índice de eficiencia revisado. Los 
resultados mostraron que el coeficiente de determinación no es un índice estadístico útil para la 
evaluación de modelos de cultivo. La raíz cuadrada del cuadrado medio del error junto a la raíz 
cuadrada del cuadrado medio del error relativo, ofrecen una excelente idea de cuánto están desviadas 
las simulaciones en la misma unidad de medida de la variable y en términos porcentuales. La raíz 
cuadrada del cuadrado medio del error y la raíz cuadrada del cuadrado medio del error relativo no 
dejan dudas al evaluar la calidad de las simulaciones de un modelo respecto a las observaciones
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T
he traditional research based on field experiments 
has a high investment in infrastructure, equipment, 
labor, and time. Alternatives to conventional 
studies are the development and application 

of crop models in agriculture, which show a simplified 
representation of the processes that occur in a real system, 
including variables that interact and evolve, showing 
dynamic and real behavior over time (Thornley, 2011). 
Crop models allow experimentation, complementing 
traditional research based on field experiments, and 
allowing an economical and practical evaluation of the 
effect of different environmental conditions and several 
agricultural management alternatives, reducing risk, time, 
and costs (Ewert, 2008).

Several simulation models have been developed for 
crops such as cassava (Moreno-Cadena et al., 2020), 
potato (Fleisher et al., 2017; Saqib and Anjum, 2021), 
wheat (Asseng, 2013; Iqbal et al., 2014), rice (Li et al., 
2015), and corn (Abedinpour et al., 2012; Bassu et al., 
2014; Kumudini et al., 2014). Moreover, models are 
continuously evaluated under different environmental 
conditions, cultivars, and treatments. These crop models 
are useful tools for simulations of real crop growth 
and development processes (Yang et al., 2014). The 
used models are assumptions that have best survived 
the unremitting criticism and skepticism that are an 
integral part of the scientific process of construction and 
development (Thornley, 2011).

In general, the datasets used to develop a crop model 
are different from the real inputs in which the model 
is expected to be used. For a crop simulation model 
to represent a real process, it must be evaluated 
considering the differences between crop systems, 
soils, climate, and management practices; otherwise, 
the conclusions may be speculative and incorrect (Yang 
et al., 2014).

The growth dynamics represented by crop models are 
based on a set of hypotheses, which could result in 
simulation biases or errors (Yang et al., 2014). Thus, the 
model performance evaluation is crucial by comparing 
model estimates to actual values, and this process 
includes a criteria definition that relies on mathematical 
measurements of how well the estimates produced by 
the model simulate the observed values (Ramos et 

al., 2018). This statistical analysis is considered as the 
critical method to compare the model outputs with the 
measured data (Montoya et al., 2016; Reckhow et al., 
1990; Willmott et al., 1985; Yang et al., 2000). 

The most common methods for assessing the reliability 
of simulation models are based on the analysis of 
differences between measured and simulated values, 
and on regression analysis, also between measured and 
simulated values (Lin et al., 2014; Willmott, 1982; Yang 
et al., 2000). However, many authors who research 
crop modeling use such methods without detailing 
methodological basis and using terminology and symbols 
that create confusion. For example, in the analysis of the 
difference, statistics such as relative error (RE), index 
of agreement (d), and modeling efficiency (EF) may 
be useful when comparing the simulation capability of 
one model with another, but not when comparing what 
is observed with what is simulated in the same model 
(Ramos et al., 2018; Yang et al., 2014). Relative error 
(RE), which relates the error between measured and 
simulated values, concerning the measured average, 
represents the relative size of the average difference 
(Willmott, 1982), indicating whether the magnitude of 
the root-mean-square error (RMSE) is low, medium or 
high. However, it has the disadvantage that it can be 
affected by the magnitude of the values, by outliers, 
and the number of observations. It may be the case that 
two groups of data with high and low values, present a 
similar RMSE. However, having different averages, RE 
values will also be different (Cao et al., 2012).

Because of its simplicity, regression analysis is often 
misused to evaluate simulation models. In some cases, 
the RMSE that measures the average difference 
between measured and simulated values tends to 
be used indiscriminately, without considering that it is 
different from the RMSE obtained in regression analysis 
(Willmott, 1982). The coefficient of determination (R2) is 
a measure of the linear regression adjustment, which, 
when used in isolation, makes no sense since the goal is 
to evaluate the crop simulation model, not the regression 
model obtained. 

The magnitude of R2 does not necessarily reflect 
whether the simulated data represent well the observed 
data since it is not consistently related to the accuracy 
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of the prediction (Willmott, 1982). This is because an R2 
can be obtained close to 1.0 but below or above the 1:1 
line, tending to simulate high values or underestimates 
the observed values, respectively.

Many statistical indices are frequently used in model 
evaluation, and this paper aimed to compare and 
improve the understanding and interpretation of these 
conventional statistical indices in a case study.

MATERIALS AND METHODS
The performance of nine statistical indices was computed 
to evaluate the simulations of actual observations and 
simulations of total dry weight (kg ha−1) obtained in a 
diploid potato field experiment conducted in Medellín, 
Colombia. This data set were taken from Saldaña-
Villota and Cotes-Torres (2020). Besides, from the 
actual observed data, six data sets were generated with 

arbitrary deviations appropriately imposed to illustrate 
the behavior of the statistical indices under evaluation. 
(Table 1). In case 1, the first half of the simulations is 
overestimated, and the second half is underestimated 
in the same amount (200 kg ha−1). In case 2, the first 
half of the simulations is overestimated 1.5 times, and 
the second half of the simulations is underestimated 0.5 
times. In case 3, all simulations are overestimated in 
100 kg ha−1. In case 4, all simulations are overestimated 
2.5 times. In case 5, most of the simulations are 
overestimated in different proportions, and an outlier 
3.4 times larger than its corresponding observation 
is presented. Finally, in case 6, all simulations are 
overestimated in different proportions, and they do not 
have any relationship with the observations. 

The indices are expected to inform the researcher of the 
accuracy of any model in simulating the observations. 

Table 1. Actual observations of diploid potato total dry weight (kg ha−1) and simulated data sets.

Days after planting
(DAP)

Actual observed 
data seta

Simulated Data Sets
Cases

 1 2  3    4    5   6

23 57.43 257.44 86.15 157.43 143.59 52.29 549.89
30 153.20 353.20 229.79 253.19 382.99 467.99 3212.52
37 315.10 515.10 472.65 415.10 787.75 429.79 1649.67
43 547.59 747.59 821.39 647.59 1368.99 1736.02 2950.30
51 804.70 1004.70 1207.05 904.70 2011.75 1832.45 6468.99
58 1166.00 1366.00 1749.00 1266.00 2915.00 3151.93 7949.38
65 1338.00 1138.00 669.00 1438.00 3345.00 4608.72 3849.24
72 1837.00 1637.00 918.50 1937.00 4592.50 3432.99 8595.41
79 2740.00 2540.00 1370.00 2840.00 6850.00 6263.89 25702.79
85 4103.00 3903.00 2051.50 4203.00 10257.50 3968.15 5946.69
91 5657.00 5457.00 2828.50 5757.00 14142.50 18991.13 17439.52

100 6738.00 6538.00 3369.00 6838.00 16845.00 6088.44 17071.64
Mean 2121.42 2121.42 1314.38 2221.42 1314.38 4251.98 8448.84

a Total dry weight in diploid potato crop. Source: Saldaña-Villota and Cotes-Torres (2020). 
Case 1: The first half of the simulations is overestimated, and the second half is underestimated in the same amount (200 kg ha−1).
Case 2: The first half of the simulations is overestimated 1.5 times, and the second half of the simulations is underestimated 0.5 times. 
Case 3: All simulations are overestimated in 100 kg ha−1. 
Case 4: All simulations are overestimated 2.5 times. 
Case 5: Most of the simulations are overestimated in different proportions, and an outlier 3.4 times larger than its corresponding observation is 
presented.
Case 6: All simulations are overestimated in different proportions, and they do not have any relationship with the observations.
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The statistical indices are expected to allow decisions 
to be made regarding the acceptance or rejection of 
the models. In this study, with the modifications applied 
to generate the six cases, the statistical indices must 
accept cases 1 and 3 and reject the other cases without 
ambiguity. 

Many statistical indices are commonly used in model 
evaluation, and they have been classified depending on 
their mathematical formulation. In this study, nine indexes 
were evaluated and classified into two categories. The 
first one corresponds to the ‘test statistics’, and the 
second one corresponds to measures of accuracy and 
precision called ‘deviation statistics’ (Ali and Abustan, 
2014; Willmott et al., 1985; Yang et al., 2014). 

Test statistics
Linear regression and coefficient of determination 
(R2) are used to explain how well the simulations (y) 
represent the observations (x) (Kobayashi and Salam, 
2000; Moriasi et al., 2007; Willmott, 1982). The linear 
model follows Equation 1.

where α is the regression intercept, β is the slope, and  
ε represents the random error.

The R2 assesses the goodness of fit of the linear model 
by measuring the proportion of variation in y, which is 
accounted for by the linear model. R2=1.0 indicates a 
perfect fit of Equation 1, and R2=0 means there is no 
linear relationship. 

However, many researchers have reported the limitation of 
R2 in the appropriate evaluation of the models, remarking 
that R2 estimates the linear relationship between two 
variables, and it is no sensitive to additive and proportional 
differences between model estimates and measured 
data (Kobayashi and Salam, 2000; McCuen and Snyder, 
1975; Willmott, 1981). The authors also indicate that 
the relationship may be non-linear, which would be an 
additional problem.

Deviation statistics
Some deviation statistics correspond to measures 
developed to test the deviation directly (deviation = y-x)
and surpass the limitation of correlation-based statistics 

y xα β ε= + + (1)

(Yang et al., 2014). The Mean Error (E) (Equation 2) 
indicates whether the model simulations (y) overestimate or 
underestimate the observations (x). When E>0 means that 
the model is overestimating, while E<0 means that model 
underestimates the measured data. E has a drawback: 
the positive and negative errors can negate each other, 
and large positive and negative deviations can still obtain 
E-0 (Addiscott and Whitmore, 1987; Yang et al., 2000).

where i-1,2,...,n .
Due to E disadvantage, some measures based on the 
sum of squares were developed (Yang et al., 2014). 
The root mean square error (RMSE) (Equation 3) 
has the same unit of deviation y-x, and it is frequently 
used in both model calibration and validation process 
(Hoogenboom et al., 2019; Hunt and Parsons, 2011)

The relative root mean square error (rRMSE) (Equation 
4) is a relative measure used for comparisons of different 
variables or models. indicating whether the magnitude of 
the root-mean-square error (RMSE) is low, medium, or 
high (Priesack et al., 2006).

Nash-Sutcliffe modeling efficiency coefficient (EF) 
(Equation 5) (Nash and Sutcliffe, 1970). This index is a 
dimensionless measure (−∞ to 1.0). A perfect fit between 
simulations and observations produces an EF–1.0. 
Any value between 0 and 1.0 is obtained for any realistic 
simulation. EF<0 is obtained if the simulated values 
are worse than merely using the observed mean     to 
replace the simulated y

i.

Another index that is commonly used in crop model evaluation 
is the index of agreement (d) (Equation 6) a dimensionless 
measure (0 to 1.0) proposed by Willmott (1982). This index 
has been recommended by researchers in modeling to 
carry out comparisons between simulated values and 
measured data (Krause et al., 2005; Moriasi et al., 2007).
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EF and d are more sensitive to larger deviations than 
smaller deviations. The main disadvantage of both 
statistics is the fact that the differences between model 
estimates and observations are calculated as squares 
values; thus, these sums of squares-based statistics 
are very sensitive to outliers or larger deviations due to 
the squaring of the deviation term (Krause et al., 2005; 
Legates and McCabe Jr, 1999; Willmott et al., 2012). 

To overcome the difficulty of the statistics based on 
the sum of squares that are inflated by the squaring 
deviation term, statistics based on the sum of absolute 
values were proposed (Krause et al., 2005; Willmott 
et al., 2012). The modified efficiency coefficient (EF1) 
(Equation 7) replaces the sum of squares term with the 
sum of absolute values of y–x . EF1 is less sensitive to 
outliers, and it takes also values between –∞ and 1.0 
(Legates and McCabe Jr, 1999).

Willmott et al. (1985) proposed the modified index of 
agreement (d1) (Equation. 8), to avoid the critical effect 
of outliers in the sum of squares used on d. The author 
remarks that d1 yields 1.0 more slowly than d. d and d1 
show relative high values even if a substantial deviation 
is evident, and to overcome this issue, Willmott et al. 
(2012) proposed a refined index of agreement (d1’) 
(Equation 9), which is ranged −1.0 to 1.0. When , d1’=0.5, 
the sum of the magnitude of the errors is half of the 
sum of the perfect-simulated-deviation and observed-
deviation magnitude.

The calculation of the statistics indices to evaluate the 
six simulated data sets, and figures were made with R 
statistical software (R Core Team, 2020). 
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RESULTS AND DISCUSSION
This study shows a comparison of nine statistical 
indexes used during model evaluation. The actual data 
of the total dry weight measured in a diploid potato field 
experiment and the six simulated data set are shown 
in Figure 1 to facilitate the visualization of the data and 
their analyzes.

Coefficient of determination (R2)
In the simulated data cases 1, 2, 3, and 4 (Figure 1A-D),
different scenarios were presented in which the actual 
observations are overestimated or underestimated. 
The simulations preserved the trend of the 
measurements, which is the reason why the R2 was 
high. Although simulations considerably overestimated 
the measurements in case 4, the fact that the simulated 
data follow the trend of the observations even if they are 
overestimated or underestimated, the R2 will be close to 
1.0. Consequently, this index is not adequate to evaluate 
the quality of the simulations in growth variables in crop 
models. The coefficient of determination was lower in 
cases 5, and 6 (Figures 1E and F), indicating that the 
simulated data did not follow the observed data trend.

Mean error (E)
E indicates whether the model overestimates or 
underestimates the measurements. This index presented 
difficulty to indicate what happened in case 1, in which 
half of the simulations were overestimated, and half 
were underestimated in the same proportion. In this 
case,E–0, and this value gives no indication of over or 
underestimation. In case 2, E indicates that the simulated 
data underestimate the total dry weight by 807,040 kg 
ha−1. In the remaining cases, E>0, indicating that the 
simulations overestimate the measurements. According 
to E, case 6 was the one that registered the maximum 
overestimation, exceeding 6000 kg ha−1.

Root mean squared error (RMSE) and the relative-
RMSE (rRMSE)
The RMSE indicates how deviated the simulated mean 
is from the observed mean. This index does not indicate 
whether there are overestimates or underestimates. 
Nevertheless, if the RMSE is close to zero or less than 
the amount assigned by the researcher according to the 
expertise in the crop studied, the model performs better in 
predicting the measured data. If the researcher is not an 
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Figure 1. Comparison between real observations and six simulated data set of total dry weight in diploid potato crop (kg ha−1) over time (days 
after planting). Black circles correspond to the real observations, and red ones correspond to the simulated counterpart.
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expert about the range of values that a growth variable 
can reach, the RMSE should be evaluated together 
with rRMSE, which indicates the deviation of the 
simulations from the general mean of the observations 
in percentage terms. In this sense, according to the 
characteristics of these two indices, unquestionably 
cases 1 and 3 had the best performances when 
simulating the observations, where the deviation from 
the mean was 200 and 100 kg ha−1, corresponding to 
9.428 and 4.714%, respectively.

Regarding case 2, where the simulations underestimated 
the total dry weight from 65 DAP, the RMSE was 
affected, recording a value of 1509.293 kg ha−1, meaning 
a deviation higher than 70% (rRMSE). In case 4, 
although as mentioned, the simulations overestimated 
the observations even though they followed their trend. 
This overestimation significantly influenced the RMSE, 
which registered a value of 4527.879 kg ha−1, equivalent 
to a deviation of more than 200% concerning the general 
mean of the observations (2121.42 kg ha−1). Case 5 
exemplifies the effect that outliers have on statistical 
indices. At 91 DAP, a very high datum was recorded in 
the simulations compared to the other simulations and, 
of course, to the observations. Together with the other 
predicted data, this outlier generated RMSE–4187.516 
kg ha−1, and rRMSE–197.394%. If the researcher, after 
exploring different explanations for this extreme data, 
decides not to consider the outlier, the RMSE would 
be equal to 2320 kg ha−1 and the rRMSE–10939%,  
indicating that in the same way, the model does not 
predict the observations in an acceptable way and these 
are overestimated at 2130 kg ha−1 (keeping the outlier) 
and at 547.96 kg ha−1 (eliminating the outlier). Finally, 
the RMSE and rRMSE obtained in case 6 are definitive 
to consider that the simulations are unacceptable. 
Although the graphical representation (Figure 1F) is a 
clear indication of the low quality of the predictions, an  
RMSE–8772.773 kg ha−1 and an rRMSE higher than 
400% are enough to rule out the model. Besides, this 
data set had outliers, but in general, the simulated data 
had no relationship with the observations.

Nash-Sutcliffe coefficient (EF) and the modified 
Nash-Sutcliffe coefficient (EF1)
The analysis of the following indices that are 
dimensionless, such as the Nash-Sutcliffe coefficient 

(EF) and the modified Nash-Sutcliffe coefficient (EF1), 
confirm that simulations in cases 1 and 3 are close to 
perfection with values very close to 1.0 (EF–0.991 and 
0.998; EF1–0.888 and 0.972, respectivelty).

According to Nash and Sutcliffe (1970), EF and EF1 
values between 0 and 1 are expected in any modeling 
scenario. However, in case 2, for instance, EF and EF1 
reached values of 0.506 and 0.408, which are values 
higher than zero, but by themselves, they are not clear 
with the reality of the simulation quality. Nonetheless, 
values less than zero in these two indices are indicators 
of wrong predictions; thus, cases 2, 5, and 6 achieved 
values <0, confirming what E, RMSE, and rRMSE had 
indicated. Also, the more negative values suggest that 
the simulated data were worse. The clearest example 
is case 6, which reached −15.689 in EF, but EF1 was 
−2.531. EF reached higher values (both positive and 
negative) because when considering sums in terms of 
the sum of squares in its formulation, it is more affected 
by outliers. EF1 is calculated considering the sum in 
terms of absolute values, that means less sensitivity to 
extreme data.

Index of agreement (d), modified index of agreement 
(d1), and revised index of agreement (d1’)
Finally, from the group of indices d, d1, and d1’, the 
best simulations reach values close to 1.0 (Cases 1 
and 3). In the same way as EF and EF1, the statistics 
of group d must be estimated in association with other 
indices to make better inferences about the accuracy 
of the simulation. In case 2, d=0.764, and if this value 
is analyzed by itself, it would suggest that the model 
is adequate, but d1 is stricter than d, and its value is 
clearer suggesting that the simulations are not adequate 
(d1=0.637). d and d1 in cases 5 and 6 were less than 
0.75, suggesting that these models are not suitable for 
simulating the measured data set. Case 6 was the only 
one that reached a negative d1’ value (−0.765), again 
indicating that the simulations, in this case, are not 
adequate when predicting the measurements.

General performance of the statistical indices in 
evaluating the quality of the simulations of a model
Summarizing the previous results (Table 2), the 
RMSE, rRMSE, EF, EF1, and d1 are the best indices 
for evaluating the quality of simulations because, 
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they accepted the simulations in cases 1 and 3, 
and rejected the other cases, which was expected 
in this study when comparing the behavior of the 

statistical indices. However, given the simplicity in the 
interpretation of RMSE and rRMSE, they are preferred 
over dimensionless statistics.

Table 2. Acceptance or rejection of the simulations defined by different statistical indices for each data set.

Statistical analysis is a crucial procedure during model 
calibration and evaluation, and there are many statistical 
methods useful to support crop model researchers. It is 
unquestionably that R2 is not a suitable parameter for model 
evaluation because it is not sensitive to additive (regression 
intercept) and proportional differences (regression slope) 
(Willmott et al., 2012; Yang et al., 2013). The linear 
regression should be employed to evaluate the simulated 
outputs with the observed inputs when the time series data 
follow the assumptions of independence, normality, and 
homoscedasticity in the error term (Yang et al., 2014). 
The error term does not follow these assumptions in the 
deviation statistics because they are not hypothesis tests 
(Willmott et al., 1985).

The mean error (E) is a good statistical parameter to 
quickly determine if the model under or overestimates 
the observations. Unfortunately, it does not offer clarity on 
the quality of the simulations. Nevertheless, RMSE and 
rRMSE are very suitable for model evaluation because 
they provide the researcher with a useful decision-making 
guide. It is important to highlight the advantages that the 
RMSE and the rRMSE offer, which together offer a better 
idea of how deviated the simulations are in the same unit 
of the variable and percentage terms.

If only the group index of agreement is considered during the 
evaluation of a model, it is possible to make bad decisions 

or assume that the model predicts the measured data with 
quality when in reality, the predictions are not adequate. 
d can quickly reach 1.0 without considering significant 
discrepancies between simulations and observations 
because the sum of squares-based deviations easily 
inflates d. A researcher could consider case 2 a suitable 
model to simulate the observations according to d and 
d1’ values, even when d1’ seems to be stricter than d in 
mathematical terms. d1 and EF showed well behaviors, 
and they have a sharp meaning and interpretation when 
values tend to zero. Yang et al. (2014) suggested for plant 
growth variables simulations EF>0  and d, d1, and d1’  as 
minimum values for dry weight of leaves, stems, yield, 
tubers, total in the case of the potato crop.

Both modeling efficiency coefficients (EF and EF1) and 
indices of agreement (d, d1, and d1’) are widely used in 
modeling evaluation. Although d and EF are sensitive to 
the sum of squares and, in consequence, they achieve 
higher values even with not accurate simulations. The 
researcher should use these dimensionless indices 
carefully. Alternatively, use RMSE and rRMSE as good 
guides to evaluate the quality of the models.

CONCLUSION
The RMSE and the rRMSE offer a better idea of how 
deviated the simulations are in the same unit of the 
variable and percentage terms; for this reason, these 

Statistical parameter
Simulated Data Sets

1        2             3                     4                    5          6

R2  
E           -              -                 -                   -                     -               -

RMSE
rRMSE

EF
EF1

d
d1
d1’

Simulations accepted
Simulations rejected
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indices are the most appropriate to reflect the quality of 
the simulations of a model. This pair of indices was the 
only one that unquestionably established that cases 1 
and 3 are almost perfect with deviations less than 200 
kg ha−1, which is less than 10% concerning the mean of 
the observations. RMSE and rRMSE leave no doubt that 
cases 2, 4, 5, and 6 correspond to models that reflect very 
poorly or do not reflect the observations.
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