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El cultivo de quinua ha tomado relevancia durante la última década en diferentes partes del mundo, 
debido a su adaptabilidad a condiciones edafoclimáticas difíciles y el gran potencial nutricional con 
el que cuentan sus semillas. Sin embargo, los escenarios del cambio climático cada vez son más 
adversos, por lo que la búsqueda de estrategias que favorezcan una mayor adaptabilidad de la quinua 
a zonas donde otros cultivos no logran adaptarse, es la prioridad científica. Por esta razón, se realizó 
una revisión sistemática, utilizando la metodología de elementos de informe preferidos para revisiones 
sistemáticas y meta-análisis. Se describe inicialmente la diversidad de hongos que favorecen la 
simbiosis y los servicios que ofrecen los hongos micorrízicos arbusculares en la actividad fisiológica de 
la planta de quinua, además de su interacción con las condiciones edáficas, principalmente relacionada 
con el nitrógeno y el fósforo. Los resultados identificaron una proyección de interés en la investigación 
relacionada con la simbiosis entre estos dos organismos pero un avance muy limitado en relación a 
estudio que se ha desarrollado en torno a la actividad microbiológica de la quinua en el suelo.

 Miguel García-Parra1*, Luz Ángela Cuellar-Rodríguez2 and Helber Enrique Balaguera-López3

The crop of quinoa has gained relevance during the last decade in different parts of the world, due to 
its adaptability to difficult edaphic and climatic conditions and the great nutritional potential of its seeds. 
However, climate change scenarios are increasingly adverse, so the search for strategies that favor 
greater adaptability of quinoa to areas where other crops fail to adapt is a scientific priority. For this 
reason, a systematic review was carried out, based on the Preferred Reporting Items for Systematic 
Reviews and Meta-Analysis methodology, with documents published on Scopus and Clarivate Web 
of Science databases. This methodology describes the diversity of fungi that favors symbiosis and 
the services offered by arbuscular mycorrhizal fungi in the physiological activity of the quinoa plant, 
in addition to their interaction with the edaphic conditions, mainly related to nitrogen and phosphorus. 
The results identified a projection of interest in research related to the symbiosis between these two 
organisms, but a very limited advance in relation to the study that has been developed around the 
microbiological activity of quinoa in the soil.
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INTRODUCTION
Quinoa is a transient crop currently produced in several 
areas of the world, it is characterized by being adaptable 
to different edaphoclimatic conditions, resulting in region-
specific quinoa cultivars (Bazile et al., 2016). These 
aspects bring about the concept "ecophysiology" defined 
as the discipline that explains the relationship between 
the physiological behavior of plants and the external 
conditions that affect their performance (Larcher, 2003), 
whereby aspects such as practices and interactions with 
their physical and biological environments contribute to 
the distinctive characteristics of quinoa grains grown in 
specific regions (García-Parra et al., 2020a). 

In this sense, weather and soil characteristics, associated 
with the production area, have been studied in the last 
few years. Bosque-Sanchez et al. (2003) were the first 
scientists to talk about ecophysiology in quinoa. More 
recently, Murphy and Matanguihan (2015) considered 
the importance of seed characteristics of different quinoa 
cultivars, which was similar to that proposed by Reguera 
et al. (2018). Ruiz et al. (2014) highlighted the existence 
of edaphic microorganisms, capable of carrying out 
symbiotic relationships with different quinoa cultivars, 
however, despite the importance of these associations, 
their relevance and analysis have been scarce studied. 

Among the great diversity of edaphic organisms, 
arbuscular mycorrhizal fungi are those with the greatest 
capacity to carry out symbiosis with quinoa roots (USDA, 
2016). In this sense, this type of symbiosis is the most 
beneficial interaction between edaphic microorganisms 
and roots (Begum et al., 2019; Teste et al., 2020). The 
phylum Glomeromycota is the most important group of 
fungi in this activity, and therefore, it has been recognized 
that about 80% of terrestrial plant species including 
quinoa, manage to form a symbiosis with arbuscular 
mycorrhizae (Trouvelot et al., 2015), even though for 
many years, it was reported that some species belonging 
to the Chenopodiaceae and now Amaranthaceae family, 
it did not carry out edaphic symbiosis with fungi (Rydlová 
and Vosfitka, 2001; Chaudhry et al., 2005). 

The mutualistic interaction between the mycorrhizal 
fungus and plant roots is based on the exchange of 
nutrients between these two actors, where the plant 
supplies carbon, while the fungus favors the activity 

of nutrient and water absorption, which takes place 
at the moment when some structures of the fungus 
colonize the cortical cells of the plant roots consolidating 
complex frameworks called arbuscules (Vierheilig, 
2004; Janouskova et al., 2017). According to the above 
information, it becomes evident that this direct link 
between soil and quinoa allows to carry out a greater 
approach between the ecophysiological behavior of 
quinoa with its environment, which is important for the 
productive and scientific community of this species.

However, the high diversity of both fungi and cultivars of 
quinoa, as well as the edaphoclimatic conditions where 
the crop is established, make their relationship dynamic, 
increasing the interest of producers and research centers 
to know the characteristics and benefits of arbuscular 
mycorrhizae. For this reason, this work aimed to present 
a systematic review of the main aspects related to 
mycorrhizal activity between fungi and quinoa plants.

MATERIALS AND METHODS
A systematic review was carried out based on the 
PRISMA methodology (Preferred Reporting Items for 
Systematic Reviews and Meta-Analysis) (Urrútia and 
Bonfill, 2010), with the research question: what is the 
relationship described by the scientific literature between 
fungi with mycorrhizal capacity and quinoa plants?

Search and data collection 
To ensure the success and sensitivity of the search, 
the descriptor "soil", "quinoa" was consolidated using 
the Boolean operator AND in the conjugation “soil AND 
quinoa”. The exploration included all documents that 
find the search path in the title, abstract, and keywords 
initially; contemplating articles, books, book chapters, 
and conferences published in the Scopus and Clarivate 
Web of Science (WoS) databases following the 
methodology proposed by Yepes et al. (2018).

Selection criteria
Within the scientific papers obtained, a second filter 
was developed that based its selection on the following 
criteria: papers from journals were indexed in the 
Scimago Journal & Country Rank SJR database; papers 
published between 2000 and 2021 and that described 
theoretical aspects and scientific experiences of the 
activity of edaphic fungi with quinoa. In addition, special 
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importance was given to documents that included (i) 
diversity of edaphic fungi with mycorrhizal capacity 
in soils suitable for quinoa cultivation; (ii) importance 
of fungi that favor the nutrition of this species, and 
finally (iii) importance on the biological response of the 
species. All documents related to quinoa and that did 
not contemplate explanation, use or extermination with 
arbuscular mycorrhizal fungi were excluded.

Data processing and analysis
To determine the dynamics of the development of 
research related to soil AND quinoa, all the documents 
obtained under this search formula in the two databases 
were analyzed, taking the results from each of them 
and eliminating duplicates with the help of Mendeley 
reference manager. Subsequently, the documents 
found were organized in Excel® software by year, by 
the number of publications and the total. In addition, 
the main countries and research areas were detailed. 
Additionally, an analysis of publications was performed 
through non-linear regressions to determine their global 

trend, modeling the information in Sigmoidal 3-4-5 
parameters, Logistic 3-4, Weibull 4-5 Gompertz 3, Hill 
3-4 and Chapman 3-4 through the statistical program 
Sigmaplot (SystatSoftware Inc., San Jose USA). Data 
fit was selected through the coefficient of determination 
(R2) and significance of the data (P<0.05) following the 
methodology used by García-Parra et al. (2020b). 

RESULTS AND DISCUSSION
Through the analysis, it was determined that there are 
239 documents published in the selected databases, 
distributed in research articles (205), review articles 
(11), book chapters (10), conferences (9), notes (2) 
and short review articles (1) between 2000 and 2020. 
In this context, the trend of research exposing the 
characteristics, use and management of soil, as well as 
its physical, chemical and microbiological properties with 
incidence on the biological performance of quinoa has 
grown exponentially, which is evidenced by the inflection 
point (2029) of the best fit model, which for this case was 
sigmoidal 3 parameters (R2 0.997; P<0.05) (Table 1).   

Table 1. Nonlinear regression models meeting the parameters for the search path “soil AND quinoa” analyzed since 2000.

Model InfIection point a b c Value p Durbin 
Watson R2

Sigmoidal 3 2029 1331.74   6.06 - 0.05 1.22 0.997

Hill 3 2044   462.13 92.45 - 0.80 0.06 0.395

Hill 4 2039   461.57 92.45 -18.37 0.90 0.06 0.427

The a, b, c, and inflection point values belong to the equation of the models used.

According to what was proposed by Escobar and Zartha 
(2017), the search areas of this systematic research are 
the key to incoming phase (Figure 1), which manifests 
an opportunity to produce this species, given as a 
consequence of the novel discovery of the symbiotic 
association between fungi and quinoa. In this sense, the 
search conjugation identified nine publications that met 
the criteria of the PRISMA methodology and that open 
in a specific way the relationship between quinoa plants 
and mycorrhizal activity, highlighting that quinoa has 
been recognized since 2013 as a promising crop against 
the effects of climate change, which is the reason why 
identifying the symbiotic association of this species with 

mycorrhizal fungi could enhance its production under 
more difficult edaphoclimatic conditions. 

The regions with the greatest publication focus on quinoa 
and its relationship with the ecophysiological environment 
are developed countries, while developing countries such 
as those belonging to Latin Americana (Table 2) present 
contributions in a smaller proportion (García-Parra and 
Plazas-Leguizamón, 2019). In the case of Colombia, 
it has a participation of 0.83% in the world scientific 
production. In the case of Denmark, Chile, and Peru, 
the recognition in the study of quinoa is framed in the 
obtaining of the Plant Variety Certification (COV), whose 
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advantage lies in the genetic improvement activity and 
its in-depth study without having to refer to the country 
of origin (Bazile et al., 2014).

Given the interdisciplinarity involved in the production 
of quinoa crops, the development of publications 
addresses main areas such as agriculture and biological 
sciences (79.91%), environmental sciences (18.41%), 
biochemistry, genetics, and molecular biology (12.97%), 

engineering (5.85%), social sciences (5.02%) and 
earth and planetary sciences (4.6%), immunology 
and microbiology (4.6%), medicine (3.76), chemistry 
(2.51%), energy (2.51%) among others (11.29). The 
above demonstrates the growing interest that continues 
to develop the crop in aspects such as interactive 
dynamics with the soil, mainly, focused on the strategies 
used by the plant to capture water and nutrients (Choukr-
Allah et al., 2016). 

Figure 1. Nonlinear regression of the “soil AND quinoa” search path. 

Table 2. Countries with the highest number of publications on the relationship between soil and quinoa (239 publications according to the 
Scopus database).

Highlighted countries Percentage of publications (%)

Denmark 11.29
United States 10.46

China 9.62
Italy 8.36

Pakistan 8.36
Chile 7.94

Bolivia 5.85
Germany 5.85

Peru 5.85

Soil AND quinoa
F=a/1+exp(-(x-x0)/b))

x column vs y column

Col 1 vs Col 2

95% Confidence band
95% Prediction band
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It is relevant to highlight the nine publications that 
were most relevant according to the search for “soil 
AND quinoa” which contributed to the development 

of the discussion of the relationship between 
mycorrhizal fungi and their symbiosis with quinoa plants 
(Table 3).

Table 3. Most relevant publications according to the bibliometric search.

Publication Authors Journal Year Citations

Fungal root symbionts and their relationship 
with fine root proportion in native plants from 
the Bolivian Andean highlands above 3,700 m 
elevation

Urcelay, C.
Acho, J.
Joffre, R.

Mycorrhiza 2011 36

Root foraging capacity depends on root 
system architecture and ontogeny in seedlings 
of three Andean Chenopodium species

Alvarez-Flores, R. 
Winkel, T. 
Nguyen-Thi-Truc, A.
 Joffre, R.

Plant and Soil 2014 22

Distribution of arbuscular mycorrhizal fungi in 
upland field soil of Japan

Isobe, K.
Aizawa, E.
Iguchi, Y.
Ishii, R.

Plant Production 
Science

2007 16

Quinoa: improvement and sustainable 
production

Murphy, K.
Matanguihan, J.

Book – Wiley 
Blackwell

2015 14

Productivity and soil quality of organic forage, 
quinoa, and grain cropping systems in the 
dryland Pacific Northwest, USA

Wieme, R.
Reganold, J.
Crowder, D.
Murphy, K.
Carpenter-Boggs, L.

Agriculture, 
Ecosystems and 
Environment

2020 5

Distinct factors drive the assembly of quinoa-
associated microbiomes along elevation

Cai, Z. 
Wang, X. Bhadra, S.
 Gao, Q.

Plant and Soil 2020 4

Effects of Inoculating Arbuscular Mycorrhizal 
Fungi on Growth of Quinoa under Different 
Phosphorus Levels

Chunhua, P. 
Shifang, Y.
Yongqing, Z. 
Yanhong, H. 
Xiao, H. 
Yang, Y.

Crop 2017 4

Managing soil fertility and health for quinoa 
production and weed control in organic 
systems

Buckland, KR.
Reeve, JR. 
Creech, JE.
Durham, SL.

Soil & Tillage 
Research

2018 3

A Plant-Fungus Bioassay Supports the 
Classification of Quinoa (Chenopodium quinoa 
Willd.) as Inconsistently Mycorrhizal

Kellogg, JA.
Reganold, J.
Murphy, K.
Carpenter-Boggs, L.

Microbial 
Ecology

2021 2
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Consequently, the investigations listed in the Table 3 
present the most important research advances in the world, 
where aspects related to fungal diversity are highlighted, 
its importance in the nutrition of the species, the transport 
of elements from the soil to the plant interior, as well as 
metabolic costs in symbiotic activity.

Importance of mycorrhizal diversity
The diversity of edaphic microorganisms has been 
studied mainly during the last decades, however, its 
study has been difficult due to the microscopic dimension 
of many of these species and the fact that many of 
them are hidden. In this sense, several factors affect 
their existence and their activity with other organisms, 
aspects that Landinez-Torres et al. (2019) recognize as 
determinants of fungal diversity, soil stability, and nutrient 
cycling.

All the fungi capable of establishing an arbuscular 
mycorrhizal symbiosis are grouped in the Glomeromycota 
phylum (Pedone-Bonfim et al., 2018); however, fungal 
families differ in their colonization strategy to the root, as 
demonstrated in Glomerales that carry out mycorrhization 
through hyphal fragments, while Diversisporales do it by 
spores, which is reflected in the colonization speed and the 
rapid adaptability of the plant to a particular stress condition 
(Trouvelot et al., 2015). According to this, differences 
in growth strategies between these fungi imply that soil 
management can greatly impact the diversity of arbuscular 
mycorrhizal fungi. For example, in quinoa, it has been 
reported that the greatest mycorrhizal formation occurs 
above 3700 masl and its fungal colonization dynamic is 
very similar to that of Poaceae (Urcelay et al., 2011).

Although research related to fungal diversity in quinoa is 
scarce, Cai et al. (2020) have reported a high presence of 
phylum such as Ascomycota, Basidiomycota, Zygomycota 
and Chydiomycota in the rhizospheric zone of quinoa plants, 
changing their percentage of abundance in relation to the 
altitude where the samples were collected. However, the 
authors recognize a high percentage of unidentified fungi 
that manage to carry out mycorrhization with this plant. 
This is an activity that is not only carried out in quinoa but 
also in other cultivated plants of agronomic interest such 
as maize (Zea mays), wheat (Triticum aestivum), and 
soybean (Glycine max), which naturally present a high 
diversity of mycorrhization (Renaut et al., 2020).

As it was discussed above, colonization of plant roots by 
edaphic fungi is an activity that occurs in many plants, and 
thus arbuscular mycorrhizal fungi (AMF) is not specific for 
a particular plant species. For example, Ascomycota is 
recognized for being the largest group of fungi capable of 
favoring nutrient uptake and generating a greater defense 
to pest and disease attack, while Basidiomycota has 
been recognized for its high colonization effectiveness 
in forested areas, where the presence of lignocellulosic 
material is abundant (Landinez-Torres et al., 2019). For 
the case of Zygomycota, its maximum performance has 
been manifested in soils where mechanical management 
and the use of external inputs is minimal, a habit that is 
very similar to the Chytridiomycota phylum (Panelli et 
al., 2017). 
  
Thus, the question of AMF being associated with quinoa 
plants has been addressed in a few studies. This 
situation generated that the identification of the diversity 
of fungi capable of performing mycorrhization with this 
species will be carried out with detection methods based 
on DNA extraction and its amplification through PCR in 
three areas with different altitudes as reported by Cai 
et al. (2020). However, research has also analyzed the 
amount of spores present in rhizospheric soil, given 
that a relationship is found with the percentage of root 
colonization (Isobe et al., 2007).

This shows the importance of developing research related 
to the edaphic microbiota of quinoa, focused on showing 
the diversity of fungi, not only from the phylum but also from 
the species, since this would facilitate the knowledge of the 
real mutualistic activity that is developed between these two 
organisms and thus identify any advantage that strengthens 
the resistance of quinoa to soils with a higher saline activity, 
extreme water stress or strong temperature changes. 

Nutritional physiology and its relationship with AMF
The physiological activity of plants is strongly related 
to the surrounding climatic conditions and the physical, 
chemical, and biological characteristics of the soil (Taiz 
and Zeiger, 2006). This is the reason why achieving 
favorable conditions for quinoa cultivation determines the 
success of seed production and grain quality (Reguera et 
al., 2018; García-Parra et al., 2019). Thus, carrying out 
fertilization plans for the plant to generate stimuli that favor 
its yield is complex, as it depends largely on the quinoa 
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cultivar to be used, soil characteristics, and even the type 
of production (foliage or grain). As a consequence of the 
multiple campaigns developed by different governmental 
and private entities regarding the adaptability of quinoa 
to areas where other crops cannot survive, most quinoa 
production systems are located in soils with low availability of 
nutrients, water, conditions of salinity and strong temperature 
changes; scenarios that in many cases generate changes 
at the physiological, phenological and morphological level 
of quinoa (Ruiz et al., 2014). 

It is well known that a good AMF colonization occurs 
under conditions of low nutrient availability in plants or 
soil (Begum et al., 2019), where fungi colonize the root 
tissue of the plant and seek a greater exploration of soil 
area, to absorb nutrients and water, which are transported 
to the interior of the plant through the hyphal networks. 
However, this activity generates a physiological cost, 
which translates into a constant demand for carbon 
energy sources that facilitate the metabolic activity 
of the fungus; this interaction is estimated to demand 
between 10 and 30% of the photoassimilates produced 
by the plant, used for the formation, maintenance, and 
functionality of the mycorrhizal structure (Alarcón and 
Ferrera-Cerrato, 1999).

Nevertheless, all this biological activity is also determined by 
the root architecture of the plant (Bender et al., 2014). The 
root architecture of quinoa is recognized for being highly 
branched and with good development in the density of fine 
roots, which favors the ability to colonize the soil and increase 
the uptake of water and nutrients that are translocated by the 
plant and transported into biomass and seeds with greater 
efficiency in this species compared to others belonging to 
the Chenopodium subfamily (Alvarez-Flores et al., 2014). 
Therefore, once plants are colonized by AMF, nutrient uptake 
efficiency increases since nutrient uptake can occur through 
the root or the arbuscular mycorrhiza involving the hyphal 
structure of the fungus, this latter with a greater facility to 
explore areas where the root cannot reach (Liu et al., 2016).

Phosphorus
A morphological character of AMF in the plant is its 
penetration into the cortical cells of the root and the 
development of a prominent hyphal structure. However, this 
aspect is highly variable among plants, fungal groups, and 
edaphoclimatic characteristics (Kobae, 2019). In this sense, 

the theory that most accurately explains the interaction of 
these dynamics is the one that proposes that although AMF 
rapidly colonizes the interior of the root cell, the arbuscular 
structure does not completely fuse with the colonized cell, 
there is also no instantaneous flowing exchange, given 
that the fungal structure is surrounded by periarbuscular 
membranes that can change in thickness and composition 
according to the type of fungus, determining the rate of 
exchange of substances by the two organisms (Kobae 
and Hata, 2010; Camarena-Gutierrez, 2012).    

It is well known that phosphorus is a vital element in plant 
physiology since this element is a structural part of genetic 
chains, metabolic energy, and accessory structures of 
cell membranes mainly (Shen et al., 2011). Nonetheless, 
plants encounter different difficulties when taking it from 
the soil, mainly due to its low mobility, the effect of acid pH, 
soil colloidal dynamics, and microbial activity (Marschner, 
2012).   
 
Consequently, the increase of arbuscular structures in the 
root tissue favors the expression of genes that facilitate 
the capture of phosphates from the fungal structure to the 
plant tissue, through proteins located in the periarbuscular 
membrane (Harrison et al., 2002). However, the dynamics 
developed for the exchange of elements such as phosphorus 
between the plant and the fungus are variable. This is 
because active colonization presents an accelerated 
movement of phosphorus, mainly when it is scarce. 
Furthermore, senescent colonization occurs when the 
hyphal network stops growing and, therefore, it is still 
unknown whether phosphorus mobility continues between 
the plant tissue and the arbuscular branch (Kobae et al., 
2016) (Figure 2).

In quinoa plants, the combined effect of the application 
of edaphic phosphorus and AMF (Glomus mosseae and 
Glomus tortuosum) on physiological parameters has been 
studied, resulting in a significant increase in vegetative 
growth, chlorophyll content, photosystem II photochemical 
efficiency (Fv/Fm) and photosystem II potential activity 
(Fv/Fo) during the initial phase of the trial, followed by a 
decrease in physiological vigor after the application of the 
phosphorus treatments compared to the treatment without 
AMF inoculation; It was also found that quinoa plants with 
AMF application showed better physiological parameters 
except for root diameter (Chunhua et al., 2017).
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Figure 2. Colonization dynamics of fungi with mycorrhizal capacity.

According to different scientific antecedents, it is 
possible to indicate that the benefits offered by AMF 
to the host plant, demand a carbon cost, which are 
normally attributed to carbohydrate and lipid compounds 
product of the photosynthetic activity of the plant and 
that serve the fungus to support the growth of different 
structures such as hyphae and spores mainly (Keymer 
et al., 2017), which maintains the mutualistic activity of 
the organisms through a molecular dialogue between 
the plant and AMF, including complex networks of 
perception and signal transduction of genes from 
both symbiotic partners (Panelli et al., 2017). For the 
case of plants, bioactive signals are mainly given by 
strigolactones and (iso) flavonoids, while AMF secretes 
lipochitooligosaccharide (LCO) and short-chain chitin 
oligomer (Nanjareddy et al., 2017). At present, few 
studies have reported the relationship of symbiotic 
activity between fungi and quinoa, so more efforts are 
needed to investigate the mechanism that develops 
between these two organisms, mainly in the activity with 
phosphorus uptake. 

Nitrogen
As a consequence of the high demand for nitrogen 
by the quinoa crop, its capture becomes crucial for 
the development of metabolism related to protein 
structuring and in the development of photosynthetic 
activity in this species (García-Parra et al., 2019). Thus, 
nitrogen is considered an essential element, given that 
it determines the phenological cycle of quinoa and 

the protein potential of its seeds, which is significantly 
higher compared to cereals (Bascuñán-Godoy et al., 
2018b) but is strongly influenced by the availability and 
absorption of nitrogen in relation to soil type and organic 
matter turnover and, therefore, this characteristic is 
highly changeable between edaphic microclimates.
 
Although nutritional interactions related to nitrogen in 
quinoa cultivation, have been widely studied (González 
et al., 2009; Bascuñán-Godoy et al., 2018a; Bascuñán-
Godoy et al., 2018b), quinoa production systems do not 
optimize the supply of this element and, on the contrary, 
make excessive use of nitrogen fertilizers. Because of its 
importance, AMF has established a relevant relationship 
with plants, no greater than that developed around 
phosphorus. AMF can take up nitrogen in the form of 
NO3

-, NH4
+ and as organic nitrogen, however, the fungus 

presents a strong preference for NH4
+, which is the most 

assimilable form and of lower energy expenditure by the 
plant after reducing NO3

- into NO2
- by enzymatic action and 

this transformed into NH4
+ by the effect of nitrite reductase 

(Fonseca-López et al., 2020). AMF colonization in quinoa 
has been studied over time and has been compared with 
other food crops such as wheat (Triticum vulgare), barley 
(Hordeum vulgare) and chickpea (Cicer arietinum), showing 
a low percentage of colonization in relation to the content 
of hyphae, vesicles, and arbuscules as was reported by 
Wieme et al. (2020), which determines that further study 
of the response of this species to AMF colonization and its 
relationship with nutrient transport should be consolidated.
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In addition to the application and uptake of inorganic 
nitrogen, it has been established that AMF absorbs 
substantial amounts of organic nitrogen (Trouvelot et 
al., 2015) and that by the nature of the soil and climatic 
conditions such as temperature, its uptake into the 
plants is favored. In fact, in organic quinoa production 
systems the incorporation of behaved animal excreta 
and harvest residues has been used to increase the 
presence of nitrogen in the soil, expressing favorable 
results (Buckland et al., 2018; García-Parra et al., 2019), 
in benefit of the speed of mineralization of the material 
and the activity of organisms such as AMF and bacteria 
mainly.

Carbon cost due to the effect of symbiosis
Carbon demand by AMF is a considerable aspect for 
the colonized plant, as the fungus can receive between 
4 and 20% of carbon photosynthetically fixed by the 
plant (Soudzilovskaia et al., 2019). Quinoa, as a 
transient plant, depends on an accelerated mobility of 
C during its productive cycle, so an imbalance during 
its development, would affect productivity, given that the 
low amount of reserves that it manages to accumulate 
for long periods in the leaves. AMF growth and nutrient 
acquisition depend on plant reserves, therefore, the 
mobility of C reserves and plant development could 
be significantly affected, as reported by Kellogg et 
al. (2021), who evaluated different quinoa cultivars 
that were subjected to mycorrhization and showed an 
increase in dry biomass production, while there was 
negative growth in plant height compared to the control 
treatment; an aspect in which the authors emphasized 
the importance of not colonizing with AMF in this 
species, given the heterogeneity that quinoa shows 
when colonized with these organisms.

However, the biochemical activity that is developed 
around the symbiosis between AMF and quinoa is very 
uncertain, so research is needed to detail its effect in 
relation to their interaction, in terms of the great diversity 
of fungi that can colonize and the wide diversity of 
quinoa cultivars. 
 
AMF and water stress
The biological state of the soil and the water use of the 
plants play a key role in quinoa physiological behavior 
and grain quality. Nevertheless, given the campaigns 

developed by different governmental and private entities, 
the adaptability of quinoa in marginal areas, with problems 
of salinity, water availability, and nutritional deficit, this 
species has had to generate different metabolic strategies 
that allow its normal development. In this sense, it has 
been shown that climate change affects the phenological 
development of quinoa (Jaikishun et al., 2019; García-
Parra et al., 2020a) and despite this, quinoa generates 
strategies for its adaptability as demonstrated Reguera et 
al. (2018), who found a differentiated behavior of quinoa, 
under different agroecological zones of production. Thus, 
the agronomic and management strategies of quinoa crops 
play a determining role in supplying water and nutrients to 
plants and, therefore, it is known that AMF can absorb and 
transport water and nutrients into the plant tissue, thus, 
an increase in the extension of fungal mycelium can be 
decisive in dry seasons. 

This situation, in which the fungus manages to extend its 
mycelium, favors soil structuring, since the development 
of complex and branched networks can bring soil particles 
together and improve their structure (Rillig and Mummey, 
2006), which together with the secretion of mucilages, 
polysaccharides and extracellular compounds such as 
glomalin and hydrophobins can increase the hydrophobic 
organic matter that creates more stable aggregates in the 
face of changes in soil water status (Rashid et al., 2016) 
and that would favor joint activity with organisms such 
as bacteria, which act freely in quinoa, and that would 
favor the availability of more nutrients for this crop and 
the retention of water in soil colloidal matrices. 

Nevertheless, despite the knowledge gap regarding the 
symbiotic interaction between quinoa plants and AMF, 
it is possible to intuit that quinoa plants do not fully 
recognize AMF as a beneficial agent and, therefore, 
synthesize secondary metabolites such as phytoalexins, 
which have been found in high contents in quinoa and are 
capable of generating control by the attack of pathogenic 
fungi and pests (Yactayo-Chang et al., 2020).  

Experiences of AMF in quinoa
Through the growing study of quinoa during the last 
decades, research has allowed the establishment 
of some scientific experiences that highlight the 
relationship between AMF and quinoa. In summary, 
this section will highlight the most relevant trials that 
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relate to the mutualistic interaction of the two organisms 
mentioned above. In this sense, the search analysis 
determined that the research related to this topic has 

been developed basically in the United States, China, 
Japan, Finland, and Bolivia, while the diversity of fungi 
found in association with this plant is scarce (Table 4).

Table 4. Application of mycorrhizal fungi in different countries.

Country Cultivar m a.s.l. HMF Structures Source

United States Rosa Junín 787 Funneliformis mosseae Hyphae Kellogg et al. (2021)

China - 450 Glomus mosseae
Glomus tortuosum

Hyphae Chunhua et al. (2017)

United States KU-2 779 - Hyphae, vesicles 
and arbuscules

Wieme et al. (2020)

Japan Yellow from 
Marangani

30 -        - Isobe et al. (2007)

China White and 
red

1100 Ascomycota, 
Basidiomycota, 
Zygomycota y 
Chydiomycota

Hyphae Cai et al. (2020)

Finland - 134 Glomus spp.         - Vestberg et al. (2012)

Bolivia 3700 Olpidium Hyphae, vesicles 
and arbuscules

Urcelay et al. (2011)

Wieme et al. (2020) reported that the symbiotic 
association between quinoa and fungi developed through 
the formation of structures such as hyphae, vesicles, and 
arbuscules, although their presence is significantly lower 
compared to other crops of food interest such as wheat, 
chickpea, and barley. Additionally, Urcelay et al. (2011) 
identified abundant radical colonization of Olpidium, 
with an abundant presence of mycelium, vesicles, and 
arbuscules, however, this fungus is recognized for 
its pathogenic capacity, which draws the attention of 
researchers and suggests the importance of carrying out 
trials around the activity of these two organisms. 

CONCLUSIONS
Quinoa presents a response to the presence and 
colonization of fungi with mycorrhizal capacity, which 
can manifest itself as a beneficial agent, capable of 
developing symbiotic activity, or generate physiological 
and biochemical responses that recognize this organism 
as a pathogenic agent. Because of the uncertainty 

expressed by quinoa in the presence of fungi with 
mycorrhizal capacity, the references highlight the need 
to study the behavior that different quinoa cultivars may 
show when applied under controlled and field conditions.  
In general, it has been reported that the major fungal 
structure found inside the root cells of quinoa is 
mycelium, which does not necessarily indicate that 
there is a constant activity of exchange of substances 
that benefit both organisms.
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