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The passion fruit seed is an important byproduct of the agroindustry, as it accounts for 15% of this 
fruit, so it is imperative to add value to these seeds. In this context, the present study aimed to 
evaluate the functional characteristics and antimicrobial activity of passion fruit seeds. Oil extraction 
was carried out using supercritical CO2 (SC-CO2) and supercritical CO2 with ethanol cosolvent (SC-
CO2+et); both oils showed a similar fatty acid profile with a high content of polyunsaturated fatty 
acids (71.62 and 71.80%, respectively). The study of the functional quality of the oils showed low 
atherogenicity (AI) and thrombogenicity (TI) indices. The seed flour oil and the defatted passion 
fruit seed flour extract presented antimicrobial activity against Klebsiella oxytoca, Staphylococcus 
aureus and Proteus vulgaris. The ethanolic extract of flour defatted with CO2+ethanol (FDCE) 
obtained higher values of total phenolic compounds and antioxidant capacity by ABTS and FRAP. 
The present research provides the characterization of the functional properties of the passion fruit 
seed oils and the defatted seed, being data of interest for future applications of the passion fruit 
seed.

La semilla de maracuyá es un residuo agroindustrial importante, ya que representa el 15% de 
esta fruta, por lo que es imperativo añadir valor a estas semillas. En este contexto, el objetivo 
del presente estudio fue evaluar las características funcionales y actividad antimicrobiana 
de la semilla de maracuyá. La extracción de aceite se llevó a cabo utilizando CO2 supercrítico 
(SC-CO2) y CO2 supercrítico con cosolvente etanol (SC-CO2+et), ambos aceites mostraron un 
perfil de ácidos grasos similar con elevado contenido de ácidos grasos poliinsaturados (71,62 y 
71,80%, respectivamente). El estudio de la calidad funcional de los aceites presentó índices de 
aterogenicidad (IA), trombogenicidad (IT) bajos. El aceite de la harina de semilla y el extracto de 
harina de semilla de maracuyá desgrasada presentaron actividad antimicrobiana frente a Klebsiella 
oxytoca, Staphylococcus aureus y Proteus vulgaris. El extracto etanólico de harina desgrasada 
con CO2+etanol obtuvo mayores valores de compuestos fenólicos totales y capacidad antioxidante 
por ABTS y FRAP. La presente investigación proporciona la caracterización de las propiedades 
funcionales tanto de los aceites de la semilla de maracuyá como la semilla desgrasada, siendo 
datos de interés para futuras aplicaciones de la semilla de maracuyá.
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T
he Passifloraceae family has 18 genera and 
around 630 species distributed in tropical and 
subtropical areas worldwide; in America, most 
species are found in Central and South America 

(Deginani 2001). It is estimated that the agro-industrial 
waste from the passion fruit juice industry reaches 40% 
of the amount of processed fruit, and around 90% of the 
waste is composed of peels and seeds (Malacrida and 
Jorge 2012). In this context, it is important to use these 
wastes and study their bioactive compounds to offer 
alternative uses for these byproducts.

Studies on Passiflora edulis show its use as an anti-
inflammatory, antimicrobial, lipid-lowering, antioxidant, 
anxiolytic and antitumor; various types of preparations, 
extracts and individual compounds derived from this species 
possess a wide spectrum of pharmacological effects 
on various organs, as well as on different biochemical 
processes and physiological functions (Taïwe and Kuete 
2017).

Barrales et al. (2015) evaluated the combined effect of 
seed oil extraction with ultrasound and SC-CO2, managing 
to increase overall yield. In relation to the use of passion 
fruit seed oil, Arturo-Perdomo et al. (2021) and Pantoja-
Chamorro et al. (2017) studied the physicochemical 
composition of passion fruit seed oils obtained by SC-
CO2, highlighting its linoleic acid (67.53%) and sterol 
content. Santos et al. (2021) and Malacrida and Jorge 
(2012) reported a potential source of polyunsaturated 
fatty acids such as linoleic acid in passion fruit seed oil, 
as well as a source of polyphenols and tocopherol. Dos 
Santos et al. (2021) evaluated passion fruit oil obtained 
with supercritical CO2, reporting high values of linoleic acid 
in the fatty acid profile, as well as tocotrienol, squalene, 
and carotenoids. Pereira et al. (2018) evaluated the effect 
of extraction methods (subcritical propane, Soxhlet and 
ultrasound) on the composition of passion fruit seed oil, 
reaching a maximum yield of 26.12%; and also reported 
antibacterial activity against Escherichia coli, Salmonella 
enteritidis, Staphylococcus aureus and Bacillus cereus.

Considering the information presented in studies related 
to passion fruit seed oil, these have been focused on 
evaluating the phytochemical profile, extraction methods 
and their effect on yield; however, no studies were found 
on functional quality, antioxidant capacity and antimicrobial 

properties of the oils obtained with two extraction techniques 
with CO2 and CO2+et. In this sense, the present study 
provides information on the functional characteristics and 
antimicrobial activity of passion fruit seeds.

MATERIALS AND METHODS
Sample preparation and reagents
The passion fruit (Passiflora edulis) seeds, a byproduct of 
juice production in Pucallpa (Ucayali, Peru), were frozen 
and transported to the Technological Institute of Production 
(Callao, Peru). Upon arrival, they were thawed, dried in 
an oven (Venticell, Ecocell, Switzerland) at 50 °C for 22 
hours until reaching 4% moisture, then placed in vacuum 
bags and stored at -20 °C. For oil extraction, the seeds 
were ground in an analytical mill (A 11 Basic, IKA, USA), 
resulting in passion fruit seed flour (PF).

The following reagents were used in this study:  Ethanol 
99.5% (Scharlau, Spain), hexane ACS (Fermont, 
Mexico), Fatty Acid Methyl Ester Mix C4-C24 standard 
mix 37 FAME (Supelco, Germany), methanol HPLC grade 
(Merck, Germany), Folin 2N (Sigma-Aldrich, Germany), 
sodium carbonate ACS (Supelco, Canada), Gallic acid 
monohydrate ≥98.5% (Sigma-Aldrich, United States), 
ABTS (2 2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic 
acid)) diammonium salt >=98% (Bio Basic, Canada), Trolox 
(6-hydroxy-2,5,7,8-tetramethyl-chroman-2-carboxylic 
acid) ≥96% (Sigma Aldrich, China), acetic acid ≥99.7% 
(Merck, Germany), TPTZ (2,4,6-tri(2-pyridyl)-1,3,5-triazine) 
98% (Alfa Aesar, England), Iron (III) chloride hexahydrate 
ACS (Merck, Germany), carbon dioxide 99.5% v/v 
liquefied gas (Linde, Peru), nitrogen atmosphere Ultrapure 
(Linde, Peru), oxygen Ultrapure (Praxair, Peru). For the 
microbiological assays, all strains were obtained in Kwik 
Stik format (Microbiologics, United States). The following 
materials were also used: McFarland standard tube No. 0.5 
(Liofilchem, Italy), Mueller-Hinton agar (Condalab, Spain), 
dimethyl sulfoxide (BioBasic, Canada), and Penicillin disc 
(OXOID, United Kingdom).

Passion fruit seed oil extraction
Supercritical CO2 (SC-CO2)
The extraction of PF oil with SC-CO2 was carried out in 
duplicate using the multisolvent equipment (Top industries, 
2802 0000) described by Barriga-Sánchez et al. (2022), a 
cell reducer was used in the reactor (87 cm3, dimensions:  
2.8 cm internal diameter and 14.1 cm inner height). A 
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40.88±3.39 g of PF was used, and the process parameters 
were 220 bar, 50 °C, CO2 flow of 40 g min-1 and time of 
240 min. The resulting flour will be referred to as CO2-
defatted flour (PFDC), which was stored at -20 °C for 
subsequent analysis.

Supercritical CO2 and ethanol cosolvent
A 50.23±0.5 g of PF was weighed in the extraction cell of 
the multi-solvent equipment, and the extraction was carried 
out as described by Barriga-Sánchez et al. (2022). The 
pressure, temperature and CO2 flow were 220 bar, 50 °C 
and CO2 flow of 40 g min-1, respectively. The sample:  
ethanol ratio was 1: 16 and extraction time was 180 min. The 
ethanolic extract was concentrated in a rotary evaporator 
(Buchi, R-300, Switzerland) until dry, then nitrogen was 
added to eliminate traces of the solvent. Oil extraction was 
performed in duplicate. The flour defatted with CO2+ethanol 
(PFDCE) was stored at -20 °C for subsequent analysis.

Solid-liquid extraction by Soxhlet apparatus
The extraction was carried out using the Soxhlet apparatus 
(FatExtractor E-500, Buchi, Switzerland). Three grams of 
PF was weighed and hexane was used as a solvent, the 
extraction time was 3 h and two replicates were carried out.

Extraction of bioactive compounds from defatted 
passion fruit flour
Extraction of bioactive compounds from PFDC and PFDCE 
was performed according to the recommendations of Reis 
et al. (2020). 70% ethanol was used in a 1: 5 ratio (flour:  
solvent, w: v) in a thermostatic bath (MEMMERT, WNB 
7 - 45, Germany) at 45 °C for 1 h. Subsequently, it was 
placed on a rotary shaker at 70 RPM for 2 h (MX-RL-
Pro, Dragon Lab, USA), centrifuged (Centrifuge 5804 R, 
Eppendorf, Brazil) at 4 °C for 10 min at 3,200 g, and the 
ethanolic phase containing the bioactive compounds was 
recovered and stored at -20 °C for subsequent analysis.

Extraction yield and oil recovery
The extraction oil yield, expressed as a percentage, was 
determined using Equation 1.

(1)

Where:  W1 is the mass of the oil (g) obtained after 
extraction and W2 is the mass of the passion fruit seed 
(g). The oil recovery, expressed as a percentage (%), 
was calculated using Equation 2. 

Where:  R1 is the extraction oil yield obtained by supercritical 
extraction and R2 is the extraction oil yield obtained by 
Soxhlet using hexane.

Fatty acid profile
The methodology described by Barriga-Sánchez et 
al. (2021) was followed. A chromatograph with an FID 
detector (Autosystem XL, Perkin Elmer, USA) was used; 
the oil sample was saponified and methylated prior 
to analysis. The hot methylation process was carried 
out using sodium methoxide, followed by acidification 
with sulfuric acid in methanol and subsequent heating. 
Fatty acid peaks were identified by comparison with the 
retention times of the mixture of C4-C24 fatty acid methyl 
esters. Peak area was calculated using TotalChrom 
Navigator software and the percentage of each fatty acid 
was calculated by comparing the individual area of each 
peak to the total fatty acid area. The analysis for each oil 
were performed in duplicate.

Functional oil quality
The functional quality of the oil was determined with the 
data of the fatty acid profile, which were the atherogenicity 
index (AI) according to Equation 3 (Ratusz et al. 2018), 
the thrombogenicity index (TI) according to Equation 
4 (Ratusz et al. 2018) and the hypocholesterolemic/
hypercholesterolemic ratio (H/h) according to Equation 
5 (Santos-Silva et al. 2002).

(2)

(3)

(4)

(C12 : 0 4(C14 : 0) (C16 : 0)AI
( MUFA) ( 6) ( 3)
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(5)

Where:  C12:0 (lauric acid); C14:0 (myristic acid); 
C16:0 (palmitic acid); C18:0 (stearic acid); C18:1 
⍵-9 (oleic acid); C18:2 ⍵-6 (linoleic acid); C18:3 
⍵-3 (linolenic acid); C20:4 ⍵-6 (arachidonic acid); 
C20:5 ⍵-3 EPA (eicosapentaenoic acid); C22:5 
⍵-3 DPA (docosapentaenoic acid); C22:6 ⍵-3 DHA 
(docosahexaenoic acid); MUFA (Monounsaturated Fatty 
Acids).

Induction period
The induction period of the oils was measured in a 
RapidOxy reactor (Anton Paar, Blankenfelde-Mahlow, 
Germany), 4 g of sample was weighted onto the plate, 
which was placed in the equipment, the safety cover closed 
automatically, and the process started. The parameters 
used were a temperature of 140 °C and a pressure of 
700 kPa (Rodríguez et al. 2021). The induction time 
was calculated with the OXISoftTM software when a 10% 
decrease in O2 pressure was reached according to the 
equipment indication. Each oil was analyzed in duplicate.

Total phenolic compounds (TPC)
To determine the total polyphenol content in oil, the 
methodology described by Varas et al. (2020) was used, 
0.5 g of oil was weighed in a test tube, then 1.5 mL of 
90% methanol was added, vortexed for 4 min, then 
centrifuged at 3,000 rpm for 5 min, then the supernatant 
was recovered. The process was carried out twice more 
and then the extract was evaporated to dryness.

Ethanolic extracts PFDC and PFDCE were used to quantify 
the TPC as described by Barriga-Sánchez et al. (2021) by 
performing a 5-point gallic acid calibration curve between 
50 to 400 ppm (y = 2.18X + 0.02, R2 = 0.9980), the Folin 
reagent was added and allowed to rest for 8 min, then 
6% sodium carbonate and water were added, leaving it 
to rest for 1 h for its reading at 750 nm. Analyzes were 
performed in triplicate and expressed as mg gallic acid 
equivalent (GAE) 100 g-1 sample.

Antioxidant capacity
The antioxidant capacity of the oils obtained by SC-CO2 
and SC-CO2+et, and the ethanolic extracts PFDC and 
PFDCE were determined in duplicate and by two methods: 

ABTS
Measurement of ABTS (2-2 ′ -Azino-bis(3-ethyl 
benzothiazoline-6-sulfonic acid)) radical cation scavenging 
capacity was performed according to Prior et al. (2005). For 
the test, the ABTS radical cationic solution was prepared 
in ethanol, reaching the absorbance of 0.70±0.02 at 734 
nm. The absorbance of the mixture was measured in a 
spectrophotometer (Genesys 180, Thermo Scientific, USA) 
after 30 min, using ethanol as a blank. The reference curve 
was constructed with 5 concentrations between 0.1 to 
2.0 mM of Trolox (Sigma-Aldrich, China) in ethanol (y = 
0.31X + 0.01, R2 = 0.9975). The results were expressed 
as μmol of Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-
2-carboxylic acid) equivalent (TE) g-1 oil and μmol TE g-1 
extract (db).

FRAP
The methodology of Benzie and Strain (1996) was followed. 
The FRAP (Ferric Reducing Antioxidant Power) reagent 
was prepared by mixing acetate buffer solution:  TPTZ 
(2,4,6-Tris(2-pyridyl)-s-triazine) solution:  Fe solution in 
the ratio 25: 2.5: 2.5. Trolox was used as a standard for 
5 points of the calibration curve between concentrations 
of 50 to 600 µM (y = 1.04x + 0.16, R2 = 0.9980), adding 
distilled water and FRAP reagent, letting it rest for 30 min, 
reading at 595 nm. Before reading, the sample was filtered 
with the 0.2 µm PTFE syringe filter. The results were 
expressed as µmol TE g-1 oil and µmol TE g-1 extract (db).

Evaluation of antimicrobial activity
The antimicrobial activity of oils and PFDC and PFDCE dry 
extracts was carried out with the disk diffusion technique 
in Mueller Hinton agar according to the methodologies of 
Gómez et al. (2015) and Cecchini et al. (2018).

(C18 : 1 9) (C18 : 2 6) (C20 : 4 6) (C18 : 3 3)

H (C20 : 5 3) (C22 : 5 3) (C22 : 6 3)
h (C14 : 0) (C16 : 0)

ω− + ω− + ω− + ω− +
ω− + ω− + ω−=

+
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The strains studied (E. coli ATCC 25922, Klebsiella 
pneumoniae ATCC 13883, Klebsiella oxytoca ATCC 
700324, Enterococcus faecalis ATCC 29212, Salmonella 
enterica subsp. enterica serovar typhimurium ATCC 
14028, Staphylococcus aureus subsp. Aureus ATTC 
25923, Staphylococos epidermidis ATCC 12228, Proteus 
vulgaris ATCC 8427, Shiguella flexeri ATCC 12022) were 
incubated in brain heart infusion for 18 h at 37 °C; then 
these cultures were inoculated in 5 mL of 0.85% w/v 
saline solution. The concentrations were adjusted with the 
McFarland standard tube No. 0.5 (1.5 x 108 CFU mL-1). 
Subsequently, 100 µL of each culture was inoculated in 
Petri dishes with Mueller-Hinton agar, distributing it evenly 
with a Drigalsky spatula. In each plate, 3 wells of 6 mm 
diameter were made by perforating the agar with a sterile 
punch. 50 µL of each sample dissolved in dimethyl sulfoxide 
(DMSO) at a concentration of 30 mg of dry extract mL-1 
was placed in each well. DMSO was used as a negative 
control and Penicillin disc (10 µg) was used as a positive 
control. The plates were incubated at 37 °C for 24 h. Tests 
were performed in triplicate for each strain.

RESULTS AND DISCUSSION
Extraction yield and oil recovery of PF
The overall oil yield was 21.75±0.22% and 22.80±0.15%, 
with the SC-CO2 and SC-CO2+et techniques, respectively, 
with a significant difference (P<0.05) between both 
extraction techniques. The difference in yields can be 
attributed to the different solubilities of the solvents. The 
solubility of SC-CO₂ is comparable to that of organic 
solvents, which significantly enhances its solvation 
capacity; this phenomenon is due to the variations in 
the density of the fluid during the extraction of non-polar 
compounds (Abbas et al. 2008). While, when using the 
SC-CO₂+et technique, CO2 is used and adding ethanol 
as a cosolvent increases the solubility of the compounds, 
resulting in greater efficiency in the extraction process, 
allowing not only the obtaining of non-polar products but 
also of polar compounds; this is attributed to the hydrogen 
bonding interactions between ethanol and polar solutes, 
which significantly improves the extraction yield (Chai et 
al. 2020). Furthermore, ethanol has been shown to be the 
most effective solvent for the extraction of polar compounds 
in supercritical CO2 systems (Asep et al. 2013).

Pantoja-Chamorro et al. (2017) found a yield of 22.23% 
in dry passion fruit seed after 450 min of extraction with 
SC-CO2 (275 bar and 50 °C), close to what was obtained 
in the present study for 240 min. Dos Santos et al. (2021) 
reported lower overall yield contents between 14.36 to 
17.22% in passion fruit seed oil with SC-CO2. The lower 
yield could be due to the origin of the sample studied (Dos 
Santos et al. 2021), among other factors. 

The PF oil recovery was 90.98±0.93% and 95.37±0.63% with 
the SC-CO2 and SC-CO2+et techniques, respectively, based 
on the overall oil yield obtained with hexane (23.91±0.05%). 
Other authors also obtained recovery percentages lower 
than 100%. Antoniassi et al. (2022) reported a 28% yield 
of PF oil and lower recovery values of passion fruit seed 
oil (81.4 to 89.0%) obtained from different companies that 
process passion fruit juice in Brazil. Likewise, Reis et al. 
(2023) performed the extraction of 15% oil from Passiflora 
cincinnata seeds by pressing using petroleum ether and 
showed a lower recovery (79%) than in this study. On the 
other hand, Pereira et al. (2017) reported a higher overall 
yield in Brazilian passion fruit seeds obtained with hexane 
(28.33% db). This difference could be due to the usage of 
enzymes for complete removal in the separation of seeds 
from passion fruit pulp. In this study, an industrial byproduct 
of seeds was used after the complete extraction of the juice, 
so there was the presence of passion fruit pulp which could 
reduce the overall yield of oil extraction since the pulp does 
not contain oil in its composition.

Fatty acid profile
The results show 86.58 and 86.51% unsaturated fatty acids, 
and 13.42 and 13.49% saturated fatty acids in oils obtained 
with SC-CO2 and SC-CO2+et, respectively (Table 1), which 
are higher in unsaturated and lower in saturated fatty acids 
compared to the values reported by Pantoja-Chamorro 
et al. (2017) for passion fruit seeds from Colombia (84% 
unsaturated and 15.45% saturated fatty acids). Reis et al. 
(2023) reported a higher palmitic (12.14±1.00%) and linoleic 
(78.34±2.22%), and lower stearic (1.09±0.26%) and oleic 
(8.43±1.32%) contents in Passiflora cincinnata seed oil 
(extracted in a continuous press) compared to this study. 
The difference in fatty acid contents could be attributed to 
the passion fruit variety and its growing area. 
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Table 1. Fatty acid content in (%), functional quality indices and induction period.

              Component SC-CO2 SC-CO2+et

C 14:0 (Myristic)   0.06±0.01a 0.06±0.0a

C 16:0 (Palmitic) 10.23±0.01a 10.36±0.06a

C 16:1 (Palmitoleic) 0.14±0.0a   0.14±0.01a

C 17:0 (Heptadecaenoic)   0.07±0.01a 0.07±0.0a

C 18:0 (Stearic)   2.82±0.01a    2.78±0.03a

C 18:1 w-9 (Oleic) 13.99±0.01a   13.8±0.21a

C 18:1 w-7 (Vaccenico)   0.58±0.01a   0.52±0.07a

C 18:2 w-6 (Linoleic) 71.06±0.01a 71.27±0.33a

C 18:3 w-3 (α-Linolenic)   0.47±0.01a   0.46±0.01a

C 20:0 (Arachidic) 0.18±0.0a 0.17±0.0b

C 20:1 w-9 (Eicosaenoic)   0.13±0.01a 0.12±0.0a

C 24:0 (Lignoceric) 0.06±0.0a   0.05±0.01a

C 22:5 w-3 (Docosapentaenoic)   0.09±0.01a 0.07±0.0a

C 24:1 w-9 (Nervonic) 0.12±0.0b 0.13±0.0a

Saturated 13.42±0.02a 13.49±0.08a

Monounsaturated 14.96±0.00a 14.71±0.28a

Polyunsaturated 71.62±0.01a 71.80±0.34a

Unsaturated/saturated   6.46±0.01a   6.41±0.05a

AI 0.121±0.00a 0.123±0.00a

TI 0.293±0.00a 0.296±0.00a

H/h 8.326±0.00a  8.214± 0.00a

Induction period (min) 40.53±0.63a 89.05±0.42b

Values are expressed as the mean ± standard deviation (n=2). Different letters within the same column indicate a significant 
difference (P<0.05) according to the t-test.

Functional oil quality
Passion fruit seed oils extracted with supercritical fluids 
showed AI and TI values, close to zero, being considered 
favorable in the prevention of coronary heart diseases 
(Pinto et al. 2020). Pham-Huy et al. (2008) state that the 
fatty acids present in passion fruit oil are essential for 
the prevention of cardiovascular diseases, the control 
of hypertension and the strengthening of the immune 
system. In fact, the consumption of foods with lower AI is 
associated with a reduction in total and LDL cholesterol 
levels in human blood plasma; and the consumption of 
foods with a lower TI is beneficial for cardiovascular health 
(Chen and Liu 2020).

There are few reports of studies on functional oil quality 
indices, one of them is from Barriga-Sánchez et al. (2021), 
who reported AI (0.20) and TI (0.23) values in Vitis labrusca 

grape seed oil; and Santos et al. (2021), who reported AI 
(0.16) and TI (0.40) values in passion fruit oil extracted by 
Soxhlet. The observed differences in values compared to 
the present study can be attributed to the type of extraction 
method used. Conventional techniques like Soxhlet employ 
organic solvents, which, while effective, can degrade the 
oil during solvent removal. This degradation can impact 
the fatty acid composition and, consequently, the quality 
indices of the oil. Therefore, it is crucial to use appropriate 
technologies for oil extraction and avoid its degradation. 

On the other hand, low values of the H/h ratio are 
considered unfavorable and can induce an increase 
in cholesterolemia (Santos-Silva et al. 2002). The H/h 
ratio values of passion fruit seed oil obtained with both 
methods presented lower values than camelina oil (11.2 
to 15.0) reported by Ratusz et al. (2018), but higher than 
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in passion fruit seed oil reported by Santos et al. (2021) 
(H/h=6.03); this difference is due to the extraction technique 
used. It is important to determine the quality indices since 
they are related to growth, development, maintenance of 
various functions of human metabolism and the promotion 
of good health (Santos et al. 2021). 

Induction time 
The induction time of the oils was measured to evaluate 
their oxidative stability and compare the stability of both 
oil samples. Despite having a similar fatty acid profile, the 
oil extracted with SC-CO2+et presented a higher induction 
time value (Table 1). The shorter induction time of 
SC-CO2 oil (40.53 min) suggests it may be more 
susceptible to oxidation compared to the SC-CO2+ethanol 
oil (89.05 min). Consequently, the oil extracted with SC-
CO2+ethanol can be considered more stable, likely due 
to the presence of polar compounds such as phenols, 
which contribute antioxidant properties and help extend 
the oil’s shelf life.

Other studies, such as Lau et al. (2006) reported a similar 
trend in palm-pressed fiber oils where the oil obtained 
with SC-CO2+et presented greater oxidative stability 
measured by Rancimat than the oil extracted with SC-CO2. 
Furthermore, Reis et al. (2020) found longer induction times 
at 110 °C for Passiflora alata (3.52 h), Passiflora setacea 
(7.32 h) and Passiflora tenuifila (6.87 h). This could be 
attributed to the differences in the variety studied, as the 
fatty acid content differs depending on the plant variety. 

It is known that the double bonds of linoleic acid are 40 
times more unstable than those of oleic acid, which has 
a single bond (Damodaran and Parkin 2017).

TPC and Antioxidant capacity of oil and extracts 
The oil extracted with SC-CO2+et showed higher TPC 
content and antioxidant capacity, as measured by both 
the ABTS and FRAP assays (Table 2), compared to the oil 
obtained using SC-CO2 in this study. These results were 
also higher than those reported by Ribeiro et al. (2020), 
who extracted oil using pressurized ethanol, obtaining 8.54 
mg GAE g-1 and an ABTS antioxidant capacity of 18.2 µmol 
TE g-1. Furthermore, it was also higher than the ABTS 
antioxidant capacity of 0.73 µmol TE g-1 obtained through 
Soxhlet extraction with diethyl ether in Brazilian Passiflora 
seed oils (de Santana et al. 2015). This difference can 
be attributed to the use of ethanol as a cosolvent in the 
extraction with supercritical CO2, which improves the 
solubility of polyphenols (Rahal et al. 2015). Likewise, when 
a higher TPC content is present, it allows greater electron 
donation and greater synergistic antioxidant capacity on 
ABTS free radicals (Purohit et al. 2021) and the ability of 
the antioxidants present in the oil to reduce the ferric ion 
to its ferrous form (Pereira et al. 2017).

In general, fruit seeds, often considered byproducts of juice 
processing, contain oil rich in bioactive compounds such 
as tocopherols, carotenoids, flavonoids, phenolic acids, 
and phytosterols (Kaseke et al. 2020). These compounds 
are responsible for the antioxidant properties of the oil.

Table 2. TPC and antioxidant capacity of passion fruit seed oil and defatted passion fruit seed extract with CO2 (PFDC) and CO2+ethanol 
(PFDCE).

Sample TPC (mg GAE 100 g-1) ABTS (µmol TE g-1) FRAP (µmol TE g-1)

Oil obtained by SC-CO2   65.92±1.78a   16.39±0.02a 41.41±0.15a

Oil obtained by SC-CO2+et 251.78±1.07b   21.83±0.06b 63.43±1.54b

PFDC extract 1049.66±28.92A   80.47±1.19A 75.14±4.07A

PFDCE extract 1243.80±62.45B 117.79±5.65B 111.40±3.53B

Values are expressed as the mean ± standard deviation (n=2). Different lowercase letters within the same column indicate a significant 
difference (P<0.05) according to the Tukey test. Different capital letters within the same column indicate a significant difference (P<0.05) 
according to the Tukey test.

PFDCE extract presents higher values of TPC and 
antioxidant capacity (Table 2) than PFDC extract (P<0.05). 
Malik et al. (2023) reported a value of 19,360 mg EAG 100 
g-1 TPC of defatted sample in acetone extract and found 

improved solubility in contrast to the ethanol reported in 
this study. Da Costa et al. (2023) evaluated the extract 
(50% acetone) of purple passion fruit seed and reported 
758.43±7.79 mg EAG 100 g-1 and 125.207 µmol g-1 for TPC 
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and ABTS, respectively. Reis et al. (2023), after optimizing 
ethanol concentration and solid-liquid ratio for extracting 
antioxidant compounds from defatted Passiflora cincinnata 
seeds, reported higher values of 2,868 mg GAE 100 g-1 
and ABTS antioxidant capacity (195 µmol TE g-1) than 
those found in the present study. The higher ABTS and 
FRAP values in both SC-CO2+et oil and PFDCE extract 
may be attributed to the increased total phenolic content. 
In a previous study, Reis et al. (2020) also reported lower 
TPC values in ethanolic extracts from Passiflora alata 
and Passiflora tenuifila seeds but higher ABTS values.

Antimicrobial activity
The antimicrobial activity of the passion fruit seed oil and 
defatted passion fruit seed dry extract samples against 
gram (+) and gram (-) bacterial strains is shown in Table 
3. The results show that the passion fruit seed oil extracted 
with SC-CO2 and SC-CO2+et presented antimicrobial 
activity against the bacteria Escherichia coli, Klebsiella 
oxytoca, Salmonella enterica, Staphylococcus aureus and 
Proteus vulgaris with larger halo sizes for the oil obtained 
with SC-CO2+et, this positive effect would be due to the 
composition of fatty acids, antioxidants and flavonoids of 
passion fruit oils (Purohit et al. 2021). 

Pereira et al. (2018) evaluated the antibacterial effect 
of passion fruit seed oil extracted by Soxhlet against 
Staphylococcus aureus, Escherichia coli, and Salmonella 
enteritidis. Their results demonstrated the oil’s antimicrobial 
effect on these bacteria, which is consistent with the 

findings of the present study.  It is important to mention that 
the oils did not register an effect on the microorganisms 
Enterococcus faecalis and Staphylococcus epidermidis, 
possibly due to the resistance of the cell walls of these 
bacteria, which prevented the penetration of the oil (Fathi-
Achachlouei et al. 2020). PFDC and PFDCE dry extracts 
showed greater antimicrobial activity against the bacteria 
Klebsiella oxytoca, Enterococcus faecalis, Staphylococcus 
aureus, Staphylococcus epidermidis and Proteus vulgaris. 
The greatest halo of inhibition was formed by PFDC dry 
extract.

Noguera-Machado et al. (2017) evaluated the antibacterial 
potential of ethanolic extracts of Passiflora edulis seeds, 
showing the greatest antibacterial potential on strains of S. 
aureus and E. coli, with a bactericidal effect at concentrations 
of 11.7 and 9.4 mg mL-1, lower concentrations than those 
analyzed in this study. PFDC and PFDCE dry extracts at a 
concentration of 30 mg mL-1 showed antimicrobial activity 
against Staphylococcus aureus with a halo size of 17 and 
15 mm, respectively, which is consistent with that reported 
by Nugraha et al. (2018), who evaluated the antibacterial 
effect of the ethyl fraction of the peel of Passiflora edulis 
against Staphylococcus aureus, finding inhibition zones 
of 14.23, 19.53 and 20.43 mm for concentrations of 100, 
400 and 500 mg mL-1, respectively. The antibacterial 
activity of the defatted passion fruit extracts could be 
attributed to the effect of phenolic compounds and the 
effectiveness of the solvent used to recover the highest 
amount of polyphenols (Ramaiya et al. 2014).

Table 3. Antimicrobial activity in passion fruit seed oils and defatted passion fruit seed extracts.

Bacteria

Halo of inhibition (mm) 
                           Oil                                                     Extract*  

SC-CO2 SC-CO2+et PFDC PFDCE

Escherichia coli  7 9 0 0
Klebsiella oxytoca 7 10 17 12
Enterococos faecalis  0 0 17 10
Salmonella enterica 9 11 0 0
Staphylococcus aureus  8 10 17 15
Staphylococcus epidermidis  0 0 18 16
Proteus vulgaris  7 9 16 14

PFDC: Defatted passion fruit seed extract with CO2.
PFDCE: Defatted passion fruit seed extract with CO2 ethanol.
*: 30 mg of dry extract mL-1 DMSO.
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Functional characteristics and antimicrobial activity of supercritical CO2 extracts from passion fruit (Passiflora edulis) seeds

CONCLUSION
The present study showed that the fatty acid profile of 
the oils obtained with SC-CO2 and SC-CO2+et did not 
present a significant difference and that the functional 
quality indices (AI, TI and H/h) of the passion fruit 
seed oils obtained by the two techniques are notable. 
However, the oil obtained with SC-CO2+et, as well as 
the ethanolic extract of defatted passion fruit seed, 
presented a higher content of phenolic compounds 
and antioxidant activity. Furthermore, the oil extracted 
using SC-CO2+et exhibited greater oxidative stability 
compared to the oil obtained through SC-CO2 alone.  
The antimicrobial activity of the oil against pathogens 
of interest to the food industry was demonstrated, as 
well as that of the dry extracts obtained from defatted 
flours. This research provides valuable insights for the 
food industry, particularly for those seeking to repurpose 
waste materials into new products with functional 
properties.
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