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Abstract

Autonomous vehicles are considered a viable 
technological option to implement first/last mile 
transportation in the cities of tomorrow with 
a high population density, and for this reason 
it is essential that they have a robust localiza-
tion system for the routes first-mile transport 
and last-mile transport points, and the route’s 
planning and navigation. This article presents 
the implementation of an outdoor parking lo-
calization system which uses a map based on 
geo-referenced landmarks (road marking poles 
with reflective tape) and an Extended Kalman 
Filter, fed with both odometry and 3D LiDAR 
information. The system was evaluated in nine 
routes with distances between 85 m and 360 
m, in which an error was obtained between the 
ground-truth and the algorithm’s estimated 
position below 0.3 m and 0.5 m for the position 
in X and Y coordinates, respectively. The results 
show that this is a promising method that should 
be tested in larger settings using both natural 
and artificial landmarks.

Keywords: autonomous vehicles, robot locali-
zation, Kalman filters, laser radar.

Resumen

Los vehículos autónomos se consideran una 
buena opción tecnológica para implementar el 
transporte de primera/última milla, en ciudades 
del futuro con alta densidad poblacional. Para 
ello es necesario contar con un sistema de lo-
calización robusto en las fases de: ubicación del 
punto inicial y final del recorrido, la planificación 
y la navegación. En este artículo se presenta la 
implementación de un sistema de localización 
en parqueaderos al aire libre, que usa un mapa 
basado en estructuras georreferenciadas (pos-
tes de delimitación vial con cinta reflectiva) y 
un filtro de Kalman extendido, alimentado con 
información de odometría y de un LiDAR 3D. 
El sistema se evalúa en nueve recorridos con 
distancias entre 85 m y 360 m, y se obtiene un 
error entre el ground-truth y la posición estima-
da por el algoritmo por debajo de 0.3 m y 0.5 m 
para la posición en X y Y, respectivamente. Los 
resultados muestran que este es un método pro-
metedor que debe ser probado en entornos más 
grandes, usando una combinación de referencias 
naturales y artificiales.

Palabras clave: vehículos autónomos, locali-
zación de robots, filtros de Kalman, radar láser.
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1. Introduction

The United Nations estimates that by 2030 
two-thirds of the world’s population will live in 
cities (United Nations, 2019). This poses great 
challenges to the increasingly populated cities, 
and to face them the Smart City concept arises 
as a type of urban development that uses the po-
tential of technology and innovation to promote 
sustainable development and, in short, improve 
the quality of life of the citizens of these cities 
(Founoun & Hayar, 2018).

One of the goals of a Smart City is to give all 
individuals access to better mobility and trans-
portation solutions, including public transporta-
tion (Vernier et al., 2016). However, to promote 
its use, it is important to improve access to it, 
which implies strengthening the weakest links: 
first-mile transport (from the starting point to a 
public transport station) and last-mile transport 
(from a bus station to the destination) (Chong et 
al., 2011; Vernier et al., 2016).

Autonomous vehicles can offer a solution to 
first and last mile transportation (Boston Con-
sulting Group, 2016), and their integration with 
public transportation can provide a sustainable 
door-to-door solution (Shen et al., 2018). This 
has motivated the academic community, the 
automotive industry and technology companies 
to investigate ways to give vehicles greater au-
tonomy (Hartmannsgruber et al., 2019). Special 
interest is being placed on the achieving of 
precise and reliable localization in urban areas 
(Brenner, 2009; Payá et al., 2017; Qu et al., 2018), 
which implies acquiring information on any ins-
tant of position and orientation with respect to a 
reference frame or map using information from 
a sensory system (Thrun et al., 2006).

The most widely used system to obtain the po-
sition of a vehicle is the GNSS (Global Navigation 
Satellite System) (Kuutti et al., 2018). However, 
in urban areas, there may be interruptions in 
the reception of the signal and multiple paths 
(Cui & Ge, 2003; Kos et al., 2010), which makes it 
less reliable. This has motivated the use of rela-
tive motion information through odometry and 

inertial navigation systems (INS), but these bring 
error accumulation with it over time, generating 
a high level of uncertainty with regards to loca-
lization (Soheilian et al., 2016).

To improve the robustness, reliability and preci-
sion in the localization of vehicles, information 
from their environment is implemented using 
sensors such as cameras and / or 2D / 3D LiDAR 
(Light Detection and Ranging) and techniques 
for the construction of maps and data association 
(Kuutti et al., 2018). The cameras provide abun-
dant information, but their performance declines 
when the lighting is not adequate. On the other 
hand, a 3D LiDAR is less sensitive to changes in 
lighting, its field of view is 360°, and it provides 
distance information. However, storing and 
processing point clouds can be very expensive 
from a computational standpoint. An alternative 
is to only use information from representative 
elements of the environment or landmarks, 
thus making the storage and processing more 
efficient (Vivacqua et al., 2018).

Natural elements present in urban roads (e.g. 
trees) (Brenner, 2010) or artificial elements (e.g. 
traffic signal poles, traffic lights or electricity po-
les) have been used as landmarks (Li et al., 2021; 
Schlichting & Brenner, 2014; Weng et al., 2018), 
and these can be easily extracted due to some 
physical characteristic (geometry or appearance), 
and are stable in the long term (Brenner, 2010; 
Schaefer et al., 2019). Table 1 shows a summary 
of the most significant works that have used in-
frastructure elements detected by laser or LiDAR 
as landmarks for localization.
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Table 1. Summary of localization methods that use detection of infrastructure elements.

Article Sensors Landmarks Localization method

(Brenner, 2010) Four laser scanners. Traffic signs, traffic lights and trees.
Pattern matching filter 
based on least squares.

(Schlichting & Brenner, 2014) LiDAR. Pole-like objects and building facades. Local feature patterns.

(Hata et al., 2014) LiDAR 3D. Road curbs. Monte Carlo.

(Hata & Wolf, 2014) LiDAR 3D. Road curbs and road marking. Monte Carlo.

(Wang et al., 2017) LiDAR 3D. Curbs. EKF.

(Weng et al., 2018) LiDAR 3D. Pole-like features. Particle filter.

(Schaefer et al., 2019) LiDAR 3D. Pole-like features. Particle filter.

(Lu et al., 2020) LiDAR 3D. Pole-like features. Non-linear optimization.

(Li et al., 2021) LiDAR 3D Pole-like features. Monte Carlo.

Pole-like objects (trees, power poles, traffic 
lights, etc.), have been used to implement lo-
calization systems in urban environments since 
they are frequently found, their geometry is well 
defined and due to their height, they are not 
totally occluded by other objects. In (Brenner, 
2010), they are used to build a geo-referenced 
map combining information from GNSS, INS and 
LiDAR. A disadvantage of this type of proposal 
is that the localization fails when the density 
of landmarks is low since the data association, 
is found to be ambiguous. For this reason, in 
Schlichting and Brenner (2014), other landmarks 
are added to the map which are composed of 
cylindrical objects, in this case planes (building 
facades), and an association technique called 
feature patterns, which describes the spatial 
relationship between the landmarks on the map, 
making the localization more robust.

In Weng et al. (2018), a map is built by detecting 
and geo-referencing pole-like objects (trees, 
lighting poles, etc.) which are to be used in a 
real-time localization system in congested urban 
areas. These type of objects are also used in 
Schaefer et al. (2019), to implement a long-term 
localization system in urban areas that have 
been tested for 15 months. In (Lu et al., 2020), this 

class of elements are also used to build a global 
map based on small local maps according to a 
grouping algorithm of detected objects. In the 
same way, Li et al. (2021), uses pole-like objects 
to implement a localization system that ranges 
from mapping to map matching, using a new al-
gorithm for feature extraction that is more stable.

Other elements present on the roads have also 
been used as landmarks. In Hata et al. (2014), a 
3D LiDAR is used to build a map based on the 
detection of road curbs, but this method pre-
sents considerable errors in the localization. To 
improve this, in Hata and Wolf (2014), lines and 
road markings are added to the map. In Wang 
et al. (2017), the road curbs are also used to build 
a map by merging information from a 3D LiDAR 
and a GPS, and the localization is carried out 
using the ICP (Iterative Closest Point) algorithm.

This paper presents a localization system for 
autonomous vehicles in outdoor parking lots 
(first and last mile environment) that uses a map 
based on geo-referenced landmarks (road mar-
king poles with reflective tape). To estimate the 
position of the vehicle, an Extended Kalman Fil-
ter (EKF), fed with odometry information, and the 
observations of the landmarks by means of a 3D 
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LiDAR are used. The implemented algorithm is 
evaluated in nine routes, which involves finding 
the error between the position estimated by the 
filter and the position of the vehicle registered 
by means of a GPS in RTK mode (Real Time Kine-
matics) as a means of establishing ground-truth. 
The results obtained show that this method has 
the potential to be used in locating autonomous 
vehicles in first-mile and last-mile environments, 
such as outdoor parking lots.

The main contribution of this work is the 
implementation of a localization system for 
autonomous vehicles in outdoor first/last mile 
environments, using a low-resolution map based 
on pole-like artificial landmarks and, for map 
matching, a nonlinear estimation algorithm such 
as the EKF.

2. Methods

2.1.  Vehicle and sensors

The vehicle used is shown in Figure 1 (a). This is 
an electric vehicle developed at the Australian 
Center for Field Robotics (ACFR) at the Universi-

ty of Sydney (Zhou et al., 2018), equipped with 
different types of sensors and an NVIDIA auto-
motive computer DRIVE PX2 running ROS (Robot 
Operating System). A 3D LiDAR Velodyne VLP-16 
mounted on the top of the vehicle was used to 
perceive the environment. The relative position 
and orientation of the vehicle are obtained using 
the VN-100 IMU (Inertial Measurement Unit). The 
global position of the vehicle is obtained by the 
GPS Ublox C94-M8P-D operated in RTK mode, 
which is used as a reference (ground-truth).

2.2. Landmarks

Orange road marking poles with reflective tape 
were used as landmarks, as shown in Figure 1 
(b). This type of object was chosen since they 
are infrastructure elements that can be located 
in open spaces such as roads, or closed areas 
such as parking lots, and can be identified 
due to their shape and/or color. In this paper, 
they were detected via the reflective tape by 
thresholding the intensity information that the 
3D LiDAR deliveres. To determine the range of 
intensity values corresponding to the reflective 
tape, the calibration process shown in figure 2 
was carried out.

Figure 1. Materials: (a) Vehicle, (b) landmark.
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Figure 2. Calibration procedure for the detection of landmarks.

In step 1, the landmarks are located in front of 
the vehicle at distances between 2 m and 12 m. 
In step 2, the point cloud is captured for each 
distance. In step 3, the cumulative intensity his-
togram is constructed for all distances including 
the intensity values between 0 (poorly reflective 
objects) and 255 (highly reflective objects), as 
shown in figure 3 (a). In step 4, an intensity his-
togram analysis is performed using the Otsu’s 
Method (Otsu, 1979). This method is generally 
used to automatically find, in an intensity histo-
gram, N-1 thresholds that allow the intensities to 
be separated into N classes, thus minimizing the 
variance of intra-class intensities or, equivalently, 
maximizing the variance of inter-class intensities.

Using this method, the threshold 83 is found 
to make an initial separation of the histogram 
into two regions: the low levels (pavement and 
other background elements) and the high levels 
(elements with higher reflectivity). Figure 3 (b) 
shows the histogram for the intensity values 
between 83 and 255. It is observed that there is 
not a clearly defined number of classes, for this 
reason, thresholds for  N = 2, 3, and 4 were found, 
as shown in table 2. Afterwards, the parameter 
Metric (Otsu, 1979) is evaluated, which indicates 
a better separability between classes the closer 
it is to 1. N = 4 is chosen since it was observed 
that an increase from 3 to 4 classes, improves the 
separability by about 4%.

Figure 3. Histogram of intensity: (a) values between 0 and 255, (b) values between 83 and 255.
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Table 2. Thresholds and intensity intervals as a function of the number of classes (N).

N Thresholds Intensity intervals Metric
2 [155] [83 155] [155 255] 0.8377
3 [141 190] [83 141] [141 190] [190 255] 0.9194
4 [120 158 197] [83 120] [120 158] [158 197] [197 255] 0.9607

To determine which of the 4 intervals is adequa-
te, they were tested within the point clouds thet 
were obtained in the 9 test runs (see section 3) 
and a metric was built based on the percentage 
of correct detections of the landmarks, since 
the correct landmark detection has a direct in-

fluence on the performance of the localization 
algorithm. Table 3 shows the results and the 
chosen intensity interval was [158,197], because 
it presented the highest percentage of correct 
detections.

Table 3. Intensity intervals vs. Correct detection of landmarks.
Intensity intervals Correct detection of landmarks (%)
[83 120] 31.26
[120 158] 92.71
[158 197] 98.89
[197 255] 97.84

2.3. Localization algorithm

The localization of a vehicle is defined as the 
problem of finding at every instant of time t and 
with regards to a map m, the state vector x_t with 
its respective covariance P_t (Thrun et al., 2006). 
Figure 4 shows the block diagram of the imple-
mented localization algorithm. This algorithm is 
based on an EKF which is a statistical filter that 
operates recursively in two large blocks: predic-
tion and update. In executing the localization 
algorithm, four considerations are made:

i) The vehicle is moving in the X-Y plane, therefo-
re x_t is defined according to equation 1.

 (1)

Where  and  represent the position and 
 the orientation of the vehicle in the refe-

rence frame of the map .

ii) Map  of the environment is represented by 
a list of landmarks as indicated in equation 2.

(2)

Where  is the total number of landmarks 
on the map and each , for , is 
a vector containing the  coordinates of 
each landmark in the global frame, as indi-
cated in equation 3.

(3)

iii) The state vector  is known for , as 
indicated in equation 4.

(4)

In this paper, the initial position  is 
obtained using the GPS, and the orientation 
is calculated taking this initial position, as 
well as a second position  after the 
vehicle has moved by at least one meter, as 
indicated in equation 5.

(5)
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Figure 4. Block diagram of the localization algorithm.

iv) The covariance matrix , which repre-
sents the uncertainty of the calculated state 
and serves to indicate how reliable the pose 
estimation is, is defined as shown in equa-
tion 6.

(6)

Where ,  y , re-

present the variances at position ,  and 

the angle , respectively; while the terms 

,  y , are the 

cross covariances. 

As inputs, the localization algorithm receives: 

a map ; the previous state vector ; the 

previous covariance matrix ; and the 

control vector  where  and 

, as obtained by the IMU, are the trans-

lation and rotation velocity of the vehicle, 

respectively.

Initially, the State Prediction block is execu-
ted which returns the predicted state vector 

 and the predicted covariance . To ge-
nerate , a non-linear function called the 
velocity motion model (Thrun et al., 2006) 
with small intervals  is used, in such a way 
that  and  can be considered constant 
within that interval.

Subsequently, if there is a point cloud avai-
lable from the 3D LiDAR, the Landmark 
Extraction block is executed, as shown in 
Figure 5. First, the point cloud is filtered by 
intensity-based thresholding. Second, the 
resulting points are grouped using the k-
means algorithm according to their  
coordinates (the z-coordinate is not conside-
red), and the centroid is taken as the position 
of the possible landmark. Finally, for each of 
the L possible landmarks observed, a vec-
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tor  is created containing its 
location in polar coordinates in the sensor’s 
reference frame, where  is the distance and 

 is the orientation.

Next, the Measurement Prediction block 
is executed, which generates for each of 

the M landmarks on the map a vector 

containing its expected 

location in the sensor’s reference frame 

and in polar coordinates, where  is the 
distance and  is the orientation. It does 
this using the predicted state  and a non-
linear function called the observation mo-
del, which for this paper is the distance and 

orientation model, which is widely used with 
LiDAR sensors (Thrun et al., 2006).

Subsequently, the Data Association block is 

executed using the Mahalanobis Distance 

(MD) (Mahalanobis, 1936), to determine for 

each  if there is a correspondence with 

any . This correspondence is carried out 

using a γ threshold and establishing a relia-

bility interval α = 95%. These parameters are 

determined considering that the MD meets 

the conditions to be a chi-square distribution 

(χ2) with l degrees of freedom (Gallego et al., 

2013), where , and since l varies 
according to the number of landmarks ob-
served, so does the threshold γ.

Figure 5. Flow chart of the Landmark Extraction block.
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If a correspondence occurs, the State Update 
block is executed, which updates the state 
vector  and the covariance matrix  and 
returns the new state vector  and the new 
covariance matrix .

3. Results and discussion

To evaluate the proposed location system, 
8 landmarks are randomly distributed in an 
outdoor parking lot measuring 30 m x 40 m, as 
shown in figure 6 (a), and the map of the envi-
ronment is constructed by manually registering 

the global position of these 8 landmarks using 
a Ublox C94-M8P-D GPS in RTK mode which 
delivers an accuracy of up to 2 cm, as shown in 
figure 6 (b).

Subsequently, nine different routes are made 
with distances between 85 m and 360 m, and 
the position of the vehicle is obtained using 
an on board GPS Ublox C94-M8P-D operated 
in RTK mode. These positions are used as the 
ground-truth of the localization. Translational 
and rotational velocity are also obtained using 
a IMU VN-100 and point clouds with a 3D LiDAR 
Velodyne VLP-16.

Figure 6. Experimental setup, (a) photograph of the parking lot, (b) the map based on landmarks.

Figure 7 shows the result of the localization for 
three of the nine routes using only the odometry 
information (prediction) as well as the output 
of the EKF-based localization algorithm imple-
mented (prediction + update). In the Odometry-
labelled column, it can be observed that the esti-
mated position differs from the ground-truth for 

most of the path, while in the following column, 
the estimated position is much more precise. 
To make a quantitative analysis of these results, 
the RMSE (Root Mean Square Error) is calculated 
between the ground-truth and the estimated 
position in both X and Y, as shown in table 4.
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Figure 7. Result of the localization for three of the nine routes: Odometry vs EKF-
based localization algorithm implementation. The blue points represent the 
vehicle’s ground-truth, while the red line represents the estimate position.
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Table 4. RMSE of Odometry vs. RMSE of EKF-based localization algorithm.

Route Odometry EKF-based localization algorithm RMSE reduction

Number Distance 
(m)

RMSE 
X (m)

Std 
RMSE 
X (m)

RMSE 
Y (m)

Std 
RMSE 
Y (m)

RMSE 
X (m)

Std 
RMSE 
X (m)

RMSE
Y (m)

Std 
RMSE 
Y (m)

X (%) Y (%)

1 84.92 0.56 0.45 0.69 0.68 0.23 0.23 0.45 0.45 58.9 49.4

2 145.39 0.58 0.42 0.85 0.64 0.28 0.28 0.43 0.43 51.7 49.4

3 170.39 1.07 0.31 0.60 0.56 0.30 0.30 0.50 0.50 71.9 16.6

4 363.13 0.95 0.50 0.76 0.71 0.30 0.30 0.49 0.49 68.4 35.5

5 270.37 1.36 0.71 0.53 0.47 0.29 0.29 0.43 0.43 78.6 18.8

6 154.39 2.22 1.86 1.51 1.11 0.28 0.28 0.33 0.33 87.3 78.1

7 217.19 2.53 2.50 1.36 1.34 0.31 0.31 0.55 0.55 87.7 59.5

8 321.32 2.98 1.89 1.12 1.09 0.37 0.37 0.57 0.57 87.6 49.1

9 290.12 1.88 1.42 1.62 1.61 0.45 0.45 0.67 0.67 76.0 58.6

It is observed that in six of the nine tours, the 
EKF-based algorithm implementation caused 
the RMSE in position X to remain less than or 
equal to 0.3 m, and the RMSE in position Y to 
remain less than 0.5 m. In addition, on all tours, 
the EKF-based algorithm implementation redu-
ced the RMSE of the localization to between 50% 
and 90% for position X, and between 16% and 
60% for position Y.

To determine the behavior of the uncertainty 
in the estimated position, the point-to-point 
standard deviation of the position in X, Y and θ 
was calculated for each of the routes and later 
correlated with the number of observed land-
marks. Figure 8 shows the result for route 6. It 
is observed that when the position is estimated 
using odometry, the standard deviations grow 
with time, while with the EKF-based localization 
algorithm implementation, the standard devia-
tions remained at a certain interval, growing gra-

dually when only one landmark was observed, 
and quicly when none was detected, as seen 
around 10 s.
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Figure 8. Route 6, standard deviations and number of observed landmarks.



133
Rev.Investig.Desarro.Innov. Vol. 12, No. 1, enero-junio de 2022, 121-136. ISSN: 2027-8306

Breyner Posso-Bautista
Eval Bladimir Bacca-Cortés

Eduardo Caicedo-Bravo

To make a qualitative analysis of the behavior of 
the standard deviation, the average for each of 
the routes was calculated and recorded in Table 

5. It is observed that the average standard devia-
tion for both the position X and Y is maintained 
below 0.22 m, and for orientation θ, below 5.3 °.

Table 5. Mean standard deviation.

Route Distance (m) Mean
Std. X (m)

Mean
Std. Y (m)

Mean
Std. θ (°)

1 84.92 0.19 0.19 4.76
2 145.39 0.17 0.19 4.58
3 170.39 0.22 0.22 5.38
4 363.13 0.18 0.19 4.87
5 270.37 0.18 0.16 4.57
6 154.39 0.15 0.14 3.99
7 217.19 0.21 0.19 5.29
8 321.32 0.18 0.19 4.80
9 290.12 0.14 0.15 4.01

The proposed localization method is compared 
with the state-of-the-art method MCL method 
(Monte Carlo Localization) (Li et al., 2021; Schae-
fer et al., 2019; Weng et al., 2018), in terms of 
RMSE, and the results are shown in Table 6. It 
can be seen that with the EFK-based method, 
minor errors were obtained in all the routes in 

position X with differences between 0.10 m and 
0.26 m. On the other hand, in position Y, the 
proposed method was overcome in four runs, 
but by differences less than 0.04 m. The method 
proposed in this paper behaves more appropia-
tely in five runs, with differences between 0.03 
m and 0.16 m.

Table 6. Comparison between the EKF-based localization method and the MCL method.

Route EKF-based localization algorithm MCL algorithm Difference
MCL and
EKF-based

Number Distance 
(m)

RMSE 
X (m)

Std 
RMSE 
X (m)

RMSE 
Y (m)

Std 
RMSE 
Y (m)

RMSE 
X (m)

Std 
RMSE 
X (m)

RMSE
Y (m)

Std 
RMSE 
Y (m)

RMSE 
X (m)

RMSE 
Y (m)

1 84.92 0.23 0.23 0.45 0.45 0.37 0.38 0.48 0.49 0.14 0.03
2 145.39 0.28 0.28 0.43 0.43 0.52 0.52 0.41 0.41 0.24 -0.02
3 170.39 0.30 0.30 0.50 0.50 0.46 0.44 0.61 0.62 0.16 0.11
4 363.13 0.30 0.30 0.49 0.49 0.45 0.45 0.52 0.52 0.15 0.03
5 270.37 0.29 0.29 0.43 0.43 0.46 0.46 0.46 0.46 0.17 0.03
6 154.39 0.28 0.28 0.33 0.33 0.54 0.54 0.49 0.49 0.26 0.16
7 217.19 0.31 0.31 0.55 0.55 0.44 0.44 0.54 0.55 0.13 -0.01
8 321.32 0.37 0.37 0.57 0.57 0.52 0.52 0.53 0.54 0.15 -0.04
9 290.12 0.45 0.45 0.67 0.67 0.55 0.50 0.63 0.63 0.10 -0.04

It is observed that, in general, the method pro-
posed in this paper presents a RMSE less than or 
equal to the RMSE obtained by the MCL method. 
This may be due to the fact that the latter uses a 

particle filter in which the particles are dispersed 
a lot as time passes and no landmarks are obser-
ved, as in the experiments carried out. Therefore, 
this despersion can cause an increase in RMSE 
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when calculating the state vector. However, 
the MCL method has the advantage of being 
able to deal with several localization hypothesis 
simultaneously, wich can be very useful when 
estimating the estate vector (Li et al., 2021).

4. Conclusions

In this paper, a localization system for a vehicle in 
outdoor environments was implemented using 
a map based on geo-referenced landmarks. As 
landmarks, road marking posts with reflective 
tape were used since they are elements that can 
be located in urban environments of the last/first 
mile, such as parking lots.

To estimate the position of the vehicle, an ex-
tended Kalman filter (EKF) was used, fed with 
odometry information and the reference points 
observed by means of a 3D LiDAR in nine diffe-
rent routes with distances between 85 m and 
360 m. The results show that incorporating the 
information from the observations improves the 
estimation of the position both in X (between 
50% and 90%) and in Y (between 16% and 60%). 
Furthermore, the mean standard deviation rema-
ins below 0.22 m for both X and Y positions, and 
below 5.3 ° for the θ orientation. These results 
indicate that this is a promising localization 
method for environments with previously geo-
referenced landmarks that can be detected and 
located.

To determine the scalability of the proposed 
method, it is necessary to carry out tests in 
larger areas (for example, a university campus), 
building and updating a map that uses both the 
infrastructure landmarks and others naturally 
present in the given environment (power poles, 
traffic lights and trees) and testing the EKF-based 
localization method implementation under di-
fferent conditions.
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