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Abstract 
This reflection paper addresses the importance of  the interaction between voice 
perception and voice production, emphasizing the processes of  auditory-vocal in-
tegration that are not yet widely reported in the context of  voice clinicians. Given 
the above, this article seeks to 1) highlight the important link between voice pro-
duction and voice perception and 2) consider whether this relationship might be 
exploited clinically for diagnostic purposes and therapeutic benefit. Existing theories 
on speech production and its interaction with auditory perception provide context for 
discussing why the evaluation of  auditory-vocal processes could help identify associ-
ated origins of  dysphonia and inform the clinician around appropriate management 
strategies. Incorporating auditory-vocal integration assessment through sensorimotor 
adaptation paradigm testing could prove to be an important addition to voice assess-
ment protocols at the clinical level. Further, if  future studies can specify the means 
to manipulate and enhance a person’s auditory-vocal integration, the efficiency of  
voice therapy could be increased, leading to improved quality of  life for people with 
voice disorders.
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Resumen 
Este artículo de reflexión aborda la importancia de la interacción entre la percepción 
y la producción de la voz, haciendo hincapié en los procesos de integración auditi-
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vo-vocal, los cuales aún no han sido muy divulgados en el contexto de los clínicos de 
voz. Dado lo anterior, este articulo busca: 1) destacar la importante relación entre la 
producción y la percepción de la voz y 2) considerar si esta relación pudiese explo-
tarse clínicamente con fines diagnósticos y terapéuticos. Las teorías existentes sobre 
la producción de la voz y su interacción con la percepción auditiva proporcionan el 
contexto para discutir por qué la evaluación de los procesos auditivo-vocales podría 
ayudar a identificar los orígenes asociados a cierto tipo de disfonías e informar al clí-
nico sobre las estrategias de abordaje adecuadas. La incorporación de la evaluación 
de la integración auditivo-vocal a través de la prueba del paradigma de adaptación 
sensoriomotora podría ser una importante adición a los protocolos de evaluación de 
la voz a nivel clínico. Además, si los estudios futuros pueden especificar los medios 
para manipular y mejorar la integración auditivo-vocal de una persona, la eficacia 
de la terapia de la voz podría aumentar, lo que llevaría a mejorar la calidad de vida 
de las personas con trastornos de la voz.

Palabras clave
Trastornos de la voz; disfonía, retroalimentación auditiva; alteración auditivo-vocal; 
control motor; evaluación de la voz; terapia de la voz; modelo DIVA; retroalimenta-
ción alterada; procesamiento sensoriomotor; modelo SimpleDIVA.

Introduction
Human communication is a complex process that can be considered from various 
perspectives. It depends on several factors, one of  which is the interaction between 
speech perception and speech production. The perceptual-motor relationship is in-
extricably integrated not only in speech tasks but also in perception, auditory system, 
cognition, and language, among others [1–3]. One of  the critical aspects of  motor 
speech production is phonation, which plays an essential role in the listener’s speech 
perception and auditory self-voice feedback received as an individual speaks [4].

From the listeners’ perspective, voiced sound carries selective spectral modification 
comprised from articulatory gestures of  the vocal tract, resulting in a signal contain-
ing harmonic energy in a wide range of  frequencies, covering at least the vocal tract’s 
first acoustic resonances [5]. Furthermore, vowel formant frequencies and transitions 
(change in formant frequency of  a vowel immediately before or after a consonant) 
can affect the interpretation of  vowels and the adjacent consonant, generating the 
perception of  a word [6–11]. 

Regarding the speaker, auditory self-voice feedback plays a unique role. Once 
vocalization is initiated, auditory feedback monitors possible acoustic changes that 
may occur during speech, allowing control over the speaker’s vocal and articulatory 
output [12,13]. The above are examples of  the inherent interaction between speech 
production and speech perception in both speaker and listener. Nonetheless, this phe-
nomenon of  interaction between auditory feedback and voice has not yet been incor-
porated into the routine clinical evaluation of  voice problems.

In general terms, a comprehensive voice assessment is based on information from 
numerous sources, including acoustics, aerodynamics, endoscopy of  the larynx, clini-
cal judgment of  vocal quality, and the patient’s self-perception of  their voice in terms 
of  its quality and impact on their life [14]. Just in recent years, the important role of  
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auditory feedback in voice production has begun to be described for both voice assessment 
and voice therapy; however, some aspects related to auditory-vocal integration are still not 
widely known by voice clinicians. Because of  the above, this reflection article has two pur-
poses: 1) to highlight the important link between voice production and voice perception and 
2) to consider whether this relationship might be exploited clinically for diagnostic purposes 
and therapeutic benefit. Existing theories on speech production and its interaction with audi-
tory perception provide context for discussing why the evaluation of  auditory-vocal processes 
could help identify associated origins of  dysphonia and inform the clinician around appropri-
ate management strategies.

Speech Perception and Production 
Voicing is the primary outcome of  the process of  speech production. Spoken utterances are 
then perceived by both the listener and the speaker. The role of  auditory input on speech 
and voice production can be considered from at least two perspectives. First, it is recognized 
that auditory signals external to the speaker impact how a person produces their voice. The 
Lombard effect is an example of  an external auditory signal that can cause individuals to 
increase their loudness involuntarily [15]. Also, the Lombard effect causes acoustic and pho-
netic modifications, including an increase in the fundamental frequency (𝑓 ), a change in 
the first (F1) and second formants (F2), and an increase in vowel duration [16–18]. Research 
involving people with Parkinson’s disease (PD) has shown that the Lombard effect could even 
positively affect voice therapy. By altering the subjects’ auditory feedback, the person with PD 
increased their 𝑓 , voice intensity, and stability [19]. A second type of  auditory input occurs 
when a speaker perceives their own voice in near-real-time (self-voice feedback). It is this type 
of  feedback that we are most closely considering within this reflection.

Dating back several decades, researchers have conducted auditory-feedback perturbation 
studies, shedding light on the role of  auditory feedback on voice control. In general, auditory 
perturbation studies involve altering some aspect of  the acoustic signal (e.g., vowel formant) 
that a person is producing and presenting this in near real-time to the same speaker to see if  
or how they adjust the speech production [20]. As an example, research has verified that when 
the 𝑓  of  one’s own voice is modified and presented to the individual during or before vocal-
ization, a compensatory response engages, in which the person adjusts the intended target 
𝑓  to match the 𝑓  —adjusted stimulus, evidencing that 𝑓  responds dynamically to auditory 
self-voice feedback [21]. 

Classical models of  speech and language production incorporate perception and produc-
tion as components in their structural features, such as the Broca-Wernicke-Lichtheim model 
[22]. In recent decades, scientific evidence, based on neuroimaging studies, has been collect-
ed. This evidence shows a cortical and subcortical connection related to the self-perception of  
speech, processing, and language production [23]. New neurocomputational models incorpo-
rate interactive networks, or streams, in their structure, allowing for a better understanding of  
the interaction between perception and speech production and relating comprehension and 
production processes to ventral and dorsal regions of  the brain [24,25]. 

We can mention models that attempt to explain this phenomenon, to relate some of  their 
components to voice control and production: the Directions Into Velocities of  Articulators 
(DIVA), the State Feedback Controller (SFC), and recently the SimpleDIVA models [24,26,27].
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The DIVA and SFC models are neurocomputational models to describe the speech pro-
duction process [24]. These models emphasize the role of  auditory and sensorimotor feed-
back in planning speech motor responses. In addition, these incorporate anatomical labels 
of  different brain regions at each stage, or map, which are connected by synaptic projection 
[24,28,29]. Specifically, the DIVA and SFC models’ systems both include auditory feedback 
that allows detection of  speech errors, so that corrections can be attempted and a desired 
speech motor response is generated [29,30]. The model encodes movement velocities for 
the lips, tongue, jaw, and larynx [24,28,29]. The difference is that DIVA relies primarily on 
feedforward controls, whereas SCF integrates internal predictions through efference copies, 
allowing for an increased gain during vocalization [26,31]. 

We focus on the recent proposal of  Kearney and colleagues who described a simplified ver-
sion of  the DIVA model, the SimpleDIVA, for being specific in voice self-feedback [27]. This 
model is a three-parameter mathematical model that quantifies the associated three subsys-
tems involved in speech control: auditory feedback control, somatosensory feedback control, 
and feedforward control mechanisms to sensorimotor adaptation. In this model, the feedfor-
ward controller consists of  stored motor sequences updated based on sensory errors. Detec-
tion of  sensory errors occurs from an auditory feedback control component in the model that 
essentially compares the planned motor speech output from the feedforward controller with 
the speaker’s auditory signal. Similarly, a somatosensory feedback control component is part 
of  the model engaged when somatosensory feedback from articulators detects errors com-
pared to the planned motor output. In this manner, sensory feedback is used to make near-
real-time adjustments to output via error detection. SimpleDIVA offers a new understanding 
of  speech and voice control, through a phenomenological explanation for the behavioral 
responses to the adaptation paradigm challenging to interpret from behavioral data alone. As 
the authors state, the SimpleDIVA can better understand sensorimotor learning and control 
differences between normal and disordered groups of  speakers, which could ultimately iden-
tify new or more refined interventions for those with communication disorders [27]. 

Contemporary speech motor control models include components within their structure 
that help explain different types of  auditory-vocal disorders and the relationship to auditory 
integration, evidencing underlying mechanisms of  sensorimotor-based communication disor-
ders. A valuable means of  studying these issues involves a sensorimotor adaptation paradigm 
[27]. In this paradigm, a perturbation of  the speaker’s auditory feedback is created through 
the modification in real-time of  formants or 𝑓  of  the speaker during the repeated production 
of  a series of  words. Generally, auditory feedback is altered in three different ways during the 
repetition of  utterances after baseline recordings, without auditory feedback manipulation: 
“ramp” in which a parameter is shifted incrementally over time; “full-shift” or “hold”, where 
a parameter is abruptly altered and held for a time; and “post-shift” or “after-effect”, where 
the alteration is removed [28,32,33].

Evidence of Auditory-vocal Impairment and Behavioral Voice 
Disorders
Different classification systems have been proposed for voice disorders. Still, one common 
designation is the division into functional and organic disorders, with subcategories for func-
tional voice disorders, often referred to as hypofunctional and hyperfunctional disorders. The 
hyperfunctional category relates to laryngeal muscle strain and ineffective or inadequate pho-
natory behavior [34]. Hyperfunctional voice disorders are common and have been associated 

https://doi.org/10.46634/riics.62


Revista de Investigación e Innovación en Ciencias de la Salud · Volume 3, Number 2, 2021 · https://doi.org/10.46634/riics.62
91

Considerations on auditory-vocal integration
Castillo-Allendes et al.

with other diagnoses, such as phonoatruamatic and benign lesions of  the free edge of  the 
vocal folds [35]. While studies identify a wide range of  clinical symptoms and biomechanical 
and laryngeal configurations, there is an incomplete understanding of  the cause(s) of  hyper-
functional voice disorders, which have been linked to poor vocal hygiene, aberrant or excessive 
use of  the voice, and psychological and personality factors [32]. Stepp and colleagues, who 
evaluated auditory-vocal integration impairment in people with diagnosed hyperfunctional 
voice disorders, hypothesized that such impairment may contribute to developing and main-
taining these behavioral voice disorders [32,36]. This hypothesis arose from observing the 
auditory-vocal integration impairment in subjects with hearing loss. Individuals with hearing 
loss have some voice characteristics similar to those with hyperfunctional dysphonias such as 
high glottal resistance, increased phonatory effort, and voice quality changes like strain and 
breathiness [32,37]. 

In normal conditions of  auditory-vocal integration, by exposing a person to an increase in 
their own 𝑓  (feedback), the expected adaptative response is a decrease in the 𝑓  of  the subject’s 
own voice, that is, subjects shift their pitch in the opposite direction to the auditory stimulus 
as a compensatory response [33]. The brain seeks to predict and recapitulate representations 
that best adapt to external stimuli and sources, creating advanced predictive models with 
sensory information to minimize error relative to the intended production [38]. Adaptive re-
sponses are influenced by interactions between the feedforward and feedback control systems 
and are seen when feedback is consistently perturbed [30,39]. 

Utilizing the sensorimotor adaptation paradigm, Stepp found that the subjects with hyper-
functional voice disorders did not show a typical adaptative response, i.e., when 𝑓  increased, 
speakers responded by further increasing their 𝑓 . The authors interpreted these results as ev-
idence that some people with voice disorder have an auditory-vocal integration impairment, 
resulting from a deficit between feedforward voice control and auditory feedback. Thus, the 
presence of  auditory-vocal disorder could explain the occurrence and persistence over time 
of  hyperfunctional vocal behaviors [32], an aspect that the SimpleDIVA model could also 
explain, regarding a deficit in the correction and adaptation of  ongoing vocal production due 
to errors in auditory feedback [27].

Stepp’s study contributes to understanding how, for example, an initial change in a per-
son’s voice, after phonotraumatic behaviors or an infection of  the upper airway, may result 
in prolonged changes in voice production that can become chronic. An altered voice quality 
received as feedback from an individuals’ own voice, continually altering the feedforward 
responses of  the system, could also help explain why some interventions are not successful 
for specific individuals. A recent article focused on people with benign vocal fold lesions also 
implicated auditory-vocal feedback impairments as a factor in developing that specific voice 
disorder [40]. Lee’s study incorporated a group of  participants with nodules, polyps, and 
cysts of  the vocal folds and non-dysphonic subjects. The participants were asked to produce 
a sustained vowel under different auditory feedback conditions in real-time. Unlike the classic 
sensory adaptation experiment, the auditory feedback modifications consisted of  integrating 
a background noise and enhanced feedback of  a self-produced voice. Lee et al. found that 
low-frequency modulations (below 3 Hz) of  vocal 𝑓  of  a sustained vowel were significantly 
high for subjects with vocal fold nodules over the other groups. The authors interpreted the 
results as supportive of  the possibility that vocal fold nodules and their vocal behaviors may 
be associated with abnormal auditory-vocal feedback integration [40]. 
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Improving Auditory Feedback as a Therapeutic Approach. 
Emerging literature regarding altered sensorimotor integration relating to voice production 
suggests an intriguing possibility: targeting auditory-vocal feedback control processes might 
be a helpful component of  therapeutic interventions, which means voice production might 
be improved, in part, through manipulation of  sensory mechanisms or auditory-feedback 
[40,41]. However, as auditory-vocal integration is just beginning to be studied as a possible 
cause and prevalence of  some types of  dysphonia, there are still many research questions to 
be addressed regarding the evaluation and treatment of  voice impairment. 

Some authors have already started exploring the impact of  devices and other interventions 
to alter or improve auditory feedback on the voice. A recently published study addressed 
whether auditory feedback control of  vocal pitch production in subjects with PD could bene-
fit from Lee Silverman voice treatment (LSVT® LOUD) [42]. LSVT LOUD is an intensive 
voice treatment program that aims to increase voice intensity in people with hypokinetic dys-
arthria through a sensorimotor recalibration of  increased vocal loudness [43,44]. Li’s study 
demonstrated the positive effects of  LSVT LOUD on auditory-vocal integration in people 
with PD [42]. After LSVT LOUD, subjects showed compensatory responses to auditory feed-
back similar to the performance of  healthy subjects. Additionally, significantly greater EEG 
cortical responses (P2) were observed in response to pitch perturbations after LSVT LOUD, 
reflecting the intervention’s possible top-down modulatory effect on auditory-motor integra-
tion for voice regulation in the PD subjects [42]. 

In addition, it is important to mention that it has been shown that the learning of  speech 
motor sequences is not only based in areas of  the brain classically related to learning, but also 
in those associated with auditory and somatosensory feedback-based speech motor learning 
and the network of  brain regions that participate in both motor and sensory processes [45]. 
All the above leads us to wonder whether the intensive nature of  some voice therapies with a 
high number of  vocal motor task repetitions and consistently used stimuli could conceivably 
improve feedforward phonatory performance, which could also be explained by the DIVA 
and SimpleDIVA model.

Other tools that could favor therapeutic use of  auditory feedback include, for example, the 
Escera-assessed device called Forbrain® (Sound For Life Ltd/Soundev, Luxemburg, model 
UN38.3) as an Auditory Altered Feedback (AAF) device by evaluating changes in voice qual-
ity-related acoustic measures such as smoothed cepstral peak prominence (CPPS) and long-
term average spectrum (LTAS) [41]. The device allows the users to have real-time improved 
auditory feedback through bone conduction and amplification of  the high or low speech 
frequencies. The results indicated that the Forbrain® altered the voice signal in the manner 
described by the manufacturer. However, the AAF feedback had some paradoxical results. 
The values of  the trendline of  the LTAS were consistent with improved voice quality. Still, the 
values of  the CPPS, a measure associated with voice quality, decreased, which is associated 
with worsened quality. The author states that this effect may be due to a typical response to 
AAF devices, where motor feedforward is altered as a consequence of  motor adaptation to 
improve auditory feedback; conversely, motor output is more accurately adjusted when there 
is altered feedback. These results can be taken as a research opportunity to test this kind of  
device by setting different types of  auditory feedback perturbation. If  beneficial, these tools 
could be of  great utility for voice rehabilitation processes and research due to their ease of  
implementation and design, which allows performing ecological studies. 
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Another interesting fact related to tools that modify auditory feedback is an additional 
result of  Lee’s study mentioned above. Bone conduction feedback of  the self-produced voice 
significantly reduced the low-frequency modulations of  vocal 𝑓  of  a sustained vowel. From 
this result, the authors raise the reasonability of  such an auditory feedback aid being incor-
porated as a therapeutic modality for vocal folds nodules [40]. Following the same dynamic, 
these studies in subjects with voice disorders and auditory-vocal impairment could be an 
excellent opportunity to assess this type of  device’s usefulness in a population that would 
probably benefit the most. 

Final Considerations
The production of  voice and speech is a complex process that requires interaction with au-
ditory perception. Sensorimotor adaptation provides another avenue to consider in under-
standing and treating individuals with voice disorders: assessing and manipulating a person’s 
capabilities relative to vocal motor control. Comprehending key and current aspects linked 
to speech perception and its disorders opens the door to a broader view on understanding 
the process of  human voice production. It is beneficial for a voice researcher and clinician to 
advance knowledge of  the neurobiological mechanisms that support speech and voice per-
ception and how production is shaped by sensory experience (i.e., auditory and somatosen-
sory). This understanding can lead to novel ways to assess and treat a person who has a voice 
disorder. Therefore, understanding voice production requires an integrated approach [5], 
where physiology, acoustics, biomechanics, and neurological processes must be considered 
holistically and not in isolation. Part of  an integrated approach involves determining how 
voice self-perception and production are related. 

Emerging work establishing that auditory-vocal impairment is often present in those with 
functional dysphonia is an important step that may eventually influence the diagnostic and 
therapeutic voice practice [32,40]. An impairment in auditory perception could impact feed-
forward processes of  voicing and subsequently impact the recovery process after acute dys-
phonia. Incorporating auditory-vocal integration assessment through sensorimotor adapta-
tion paradigm testing could eventually prove to be an important addition to voice evaluation 
protocols. Further, suppose areas of  improvement within a person’s auditory-vocal integra-
tion can be identified. In that case, voice therapy efficacy and efficiency could be increased, 
leading to improved quality of  life and possibly reduced health-related costs. Moreover, DIVA 
models suggest that motor output changes may become more long-term by persisting on the 
integration of  auditory feedback within voice therapy. One of  the challenges for the future is 
to take advantage of  such information and consider how auditory and somatosensory feed-
back modifications in subjects with auditory-vocal impairments can be assessed and manipu-
lated. These models can provide important information about the complex and multifactorial 
nature of  the voice production process, which clearly is linked to a person’s auditory and 
somatosensory voice perception. 

There are still many challenges about the relationship between voice and auditory feed-
back. An alteration in the integration between auditory feedback and voice production ap-
pears to be a potentially important issue for some people who have a voice disorder. How-
ever, the best ways to identify and characterize how a person’s auditory-vocal integration is 
impaired have not been developed to a point where application within a clinical setting can 
be applied. Similarly, the best approaches to modify and improve a person’s auditory-vocal 
integration capabilities remain to be developed. 
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